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Small samples are prone to overftting in the neural network training process.Tis paper proposes an optimization approach based
on L2 and dropout regularization called a hybrid improved neural network algorithm to overcome this issue.Te proposed model
was evaluated based on the Modifed National Institute of Standards and Technology (MNIST, grayscale-28× 28×1) and
Canadian Institute for Advanced Research 10 (CIFAR10, RGB - 32× 32× 3) as the training data sets and data applied to the LeNet-
5 and Autoencoder neural network architectures. Te evaluation is conducted based on cross-validation; the result of the model
prediction is used as the fnal measure to evaluate the quality of the model. Te results show that the proposed hybrid algorithm
can perform more efectively, avoid overftting, improve the accuracy of network model prediction in classifcation tasks, and
reduce the reconstruction error in the unsupervised domain. In addition, employing the proposed algorithm without increasing
the time complexity can reduce the efect of noisy data and bias and improve the training time of neural network models.
Quantitative and qualitative experimental results show that the accuracy of using the proposed algorithm in this paper with the
MNIST test set has an improvement of 2.3% and 0.9% compared to L2 regularization and dropout regularization, respectively, and
based on the CIFAR10 data set, the accuracy improvement of 0.92% compared with L2 regularization and 1.31% concerning
dropout regularization. Te reconstruction error of using the proposed algorithm in this paper with the MNIST data set has an
improvement of 0.00174 and 0.00398 compared to L2 regularization and dropout regularization, respectively, and based on the
CIFAR10 data set, the accuracy improvement of 0.00078 compared with L2 regularization and 0.00174 concerning
dropout regularization.

1. Introduction

Generally, convolutional neural networks are used in the
image classifcation feld to extract feature information in
images, and fully connected layers are used to build clas-
sifers. However, due to a large number of weight parameters
in the fully connected layer, it is easy to cause the problem of
overftting in the case of small samples, which makes neural
networks overparameterized. Te review of available re-
search papers shows that to solve the overftting of neural
networks during training, Hinton et al. [1] frst proposed a

dropout regularization method to prevent overftting. Tis
method introduces dropout during network model training,
which can randomly suppress the activation values of some
neurons. Terefore, the neural network structure obtained
by each training iteration is diferent and can be regarded as
a subset of diferent neurons. Te working principle of
dropout can be understood from the perspective of model
averaging. In the fnal prediction, all neurons are retained to
participate in the test, and the average approximation of all
trained models is obtained to prevent overftting and im-
prove model prediction accuracy. Te remarkable efect of
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the dropout regularization technique is widely used in
various types of neural networks.With the same target, Zhou
and Luo [2] proposed a method to prevent overftting, which
selects the probability of node deletion according to the size
of the activation value. Te network deletes the node with a
lower activation value with a higher probability of retaining
more nodes with a higher activation value and enhances the
model’s feature extraction ability. During testing, all deleted
nodes are retained, and all training parameters are restored,
which achieves the purpose of combining multiple networks
and embodies the idea of model averaging. Zhong et al. [3]
alleviated the overftting of the model by proposing a multi-
scale fusion method to optimize dropout. Te method uses
the genetic algorithm to fnd the optimal scale, then further
updates the parameters in the network according to the
optimal scale to obtain prediction submodels, and fnally
fuses these submodels into the fnal prediction model with a
certain weight. Tis is the actual idea of model averaging.
Ghiasi et al. [4] proposed the DropBlock method to alleviate
model overftting. In this method, during the model’s
training process, the units in the continuous area of the
feature map are discarded together, and the number of
discarded units gradually increases as the number of iter-
ations increases. Tis can improve the accuracy and ro-
bustness of network model predictions. Cheng et al. [5]
proposed an improved model averaging method to prevent
overftting. Te early dropout was applied to the fully
connected layer, but the training phase of this method in-
troduced dropout in the pooling layer, which made the unit
value of the pooling layer sparse. In the test phase, the
probability of the unit value selected by the pooling layer
dropout during training is multiplied by the probability of
each unit value in the pooling area as a double probability.
Te sparsity efect of the stage pooling layer dropout can be
better refected on the test stage pooling layer. Inspired by
DropBlock, Pham and Le [6] proposed the method of auto
dropout. Unlike DropBlock, this method automatically
learns the dropout mode on each channel and layer during
the model training process, automates the design process of
the dropout mode, and divides the original continuous
dropout area into small areas. Tis causes to have better
model generalization performance [7]. Gomez et al. [8]
proposed a new method (targeted dropout) to sparse the
network. Te method is based on dropout, in which the
network is sparsed by randomly discarding some neurons.
While targeted dropout is a purposeful sparse network, the
idea is to rank weights or units according to an approximate
measure of importance (such as size) and then apply
dropout to those sets of units that are considered least useful
to achieve a better efect. Many researchers studied the
problem of preventing overftting and have made great
contributions.

In addition to the methods to prevent overftting
mentioned in the above literature, the L2 regularization term
can also be added to the loss function. Te trainable weight
parameters can be attenuated (weight decay) to reduce the
dependence on a certain feature. Improve the model’s
generalization ability, which can prevent overftting [9]. Start
with a small sample problem [10]; in order to avoid

overftting during model training to the greatest extent and
improve the generalization ability of the network model, it is
particularly important to have a powerful regularization
technique [7]. As the above survey shows to improve the
model’s generalization of parameters such as performance,
accuracy, and training time, the impact of noisy data and
complexity reduction of the neural network on model
training should be considered more and investigated. Tis
research paper proposes an improved hybrid algorithm
based on L2 and dropout regularization concerning the
mentioned parameters.

In the hybrid proposed algorithm, the dropout method is
initially used to reduce the number of updatable parameters,
which can speed up the training of the network model.Ten,
L2 constraints are hired on these parameters to attenuate the
weight parameters, reduce the dependence on a certain
feature, and enhance the robustness of feature selection.
Finally, the loss function is reconstructed to optimize the
update process of the parameters in the network model
training to prevent overftting. For the convenience of
subsequent description, this paper calls it the hybrid algo-
rithm. Te hybrid algorithm can be applied to various
classifcation tasks requiring fully connected layers. Te
present study would contribute to the existing knowledge in
several diferent ways, as follows:

(1) Tis study proposes a new hybrid algorithm to solve
the overftting problem caused by the small number
of samples in the neural network training process. As
known, the large dataset required for training a
reliable model is one of the crucial obstacles to
implement the neural network. However, such
datasets are not easily accessible because of the re-
quired time, cost, and energy for preparing them.
Terefore, an alternative approach would be making
the best use of the data in hand rather than
straightforwardly increasing the costly dataset size.
With this in mind, the results of this study would be
used in diferent disciplines, including engineering,
medicine, and geosciences, where neural networks
might be potentially used.

(2) Te proposed algorithm acts on the fully connected
neural network layer and concentrates on improving
prediction accuracy and reducing the reconstruction
error, which can efectively reduce data noise and
error. Tis is very crucial considering the approaches
that researchers have put forth recently where they
translate the developed networks into user-friendly
apps for the convenient use of fellow researchers
[11].

(3) Te proposed algorithmwas compared with two data
sets of the MNIST and CIFAR10 with diferent di-
mensions and image types. Considering the wide
usage of these two well-known datasets by diferent
researchers, the comparison results prove the ef-
ciency of the introduced method.

(4) Te proposed algorithm with the supervised (LeNet-5)
and unsupervised RAE neural network architecture
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algorithms are compared to investigate the prediction
accuracy reconstruction error, respectively.

In general, the authors believe that based on the con-
ducted assessments of the obtained results, as mentioned in
the upcoming sections and the observed satisfying perfor-
mance, the introduced method would efciently contribute
to solving various problems in diferent felds of science.

Te paper is set as follows: frst, the two algorithms of L2
and dropout and the proposed hybrid algorithm are de-
scribed in section 2; then, in section 3, the process of
hyperparameter estimation with the LeNet-5 and Rough
Auto Encoder (RAE), based on two datasets (MNIST and
CIFAR10) and each algorithm’s performance (without
regularization, L2 regularization, dropout regularization,
and hybrid techniques) were experimented and analyzed. In
section 4, the obtained results are compared and shown.
Finally, the paper is concluded in section 5.

2. Algorithm Introduction

Tis section provides detailed descriptions of L2 regulari-
zation [12] and dropout regularization [13]. Te core idea of
the algorithm is described according to the mathematical
theory behind it, and the pseudocode is given later to il-
lustrate the working principle of the algorithm. Finally, the
improved algorithm is described in detail in the third
module, and the pseudocode is also given.

2.1. L2 Algorithm. Te L2 regularization works with the
principle of adding a regularization term (also known as a
penalty term) to the loss function and participating in the
model’s training process. Te L2 constraint [14, 15] imposes

a greater penalty on a larger weight. Te larger the weight
parameter value, the greater the attenuation, thereby re-
ducing the dependence on a certain feature. Terefore, the
absolute value of the weight parameter in the network layer
tends to decrease, and there will be no particularly large
value to avoid the problem of overftting and improve the
model’s ability. Te general mathematical expression of the
loss function of the neural network that introduces the
regularization term during the training process of the model
is shown in the following:

J(θ) � L(θ) + 
k

l�1
λ

m

i�0


n

j�0
θl

ij 
2

⎛⎝ ⎞⎠0≤ i≤m, 0≤ j≤ n1≤ l≤ k.

(1)

As (1) shows, J(θ) means the loss function after adding
the L2 regularization term to the loss function L(θ), where
the parameter λ (its value is between 0 and 1) is used to
control the penalty on the weight parameter, the parameter λ
does not participate in the training of the networkmodel and
is a hyperparameter, and θij represents the weight parameter
in the network. k means that the network has k fully con-
nected layers. n means that each layer has n neurons.

In the process of error backpropagation (BP) [16], the
calculation formula for the partial derivative of a weight
parameter in the network model is as follows:

zJ

zθijl
�

zL

zθijl
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Taking the weight parameters of the l − th layer as an
example, it can be concluded that the gradient vector of the
weight parameter is in a certain layer of the network model.
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(3)

Te calculation of a parameter update in the network
model is represented as in the following equation:

θl
ij � θl

ij − lr
zJ

zθl
ij

,

� θl
ij − lr

zL

zθl
ij

+ 2λθl
ij

⎛⎝ ⎞⎠0≤ i≤m, 0≤ j≤ n1≤ l≤ k.

(4)

Te parameter lr in (4) is the step size of the parameter
update when using the gradient descent algorithm, also
called the learning rate. In summary, the update of all weight
parameters of a certain layer in the network model can be
obtained, as shown in (5), which is expressed in the vector
form.
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(5)

It can be seen from (5) mathematical formulas, in the
training process of the model, the L2 regularization term
R(θ) is introduced based on the loss function L(θ), and
the regularization term can control the weight param-
eters (weight decay) to prevent overftting, reduce the
dependence on all features, improve the generalization
ability of the model, and improve the accuracy of the
model prediction. Using L2 regularization can reduce the
dependence on some weight parameters to prevent
overftting, but the network structure cannot be opti-
mized, and the neural network with a complex network
and many weight parameters is helpless. Te pseudocode
description of the L2 regularization is described as
Algorithm 1.

2.2. Dropout Algorithm. Te dropout [16] regularization
method was frst proposed by Hinton et al. [1] to solve the
overftting problem of neural networks during training.
Dropout works on the idea that it is added to the neural
network in the training process, and some neurons are
inhibited by randomly generating a probability vector of 0
and 1 (p_vector) to act on the activation unit [17]. Te
network structure of each training iteration is diferent,
while all neurons are preserved in the test. In each iterative
training process, the output of the activation value of the
inhibited neuron is zero, and the connection weight pa-
rameter with the inhibited neuron does not participate in the
update process. Each neuron in the neural network is
inhibited with a certain probability. Tis mechanism of
inhibiting neurons can optimize the structure of the network
model and reduce the weight parameters that can be updated
during the model’s training process. Because of this
mechanism, the network produces a diferent network
structure each time after it is trained. Terefore, each net-
work structure can be regarded as a subset of diferent
neurons. If it is iterated n times, there are n diferent network
model structures that will be randomly generated, and the n
diferent network models will jointly determine the fnal
prediction result of the model. Tis technique is also called
model averaging [18, 19]. In this way, the overftting
problem is prevented, which is how the dropout

regularization technique works. Te core formula of the
dropout algorithm is shown in the following formulas
(6)–(9).

p vectorlayer ∼ Bernoulli(p), (6)

a
layer

� p vectorlayer ∗ a
layer

, (7)

z
layer+1

� a
layer

 .T .dot θlayer+1   + b
layer+1

, (8)

a
layer+1

� RELU z
layer+1

 , (9)

In equation (6), the function Bernoulli (p) is to generate a
probability vector between 0 and 1. (7) indicates that the
probability vector is applied to the activation unit of the
layer-th to obtain a new activation value alayerand (9) uses
the RELU activation [20] function to enhance the nonlinear
expression ability. Te dropout algorithm can optimize the
neural network’s structure, suppress some neurons’ acti-
vation values, and reduces the number of network weight
parameters that can be updated during the training process.
However, the dependence on some features cannot be al-
leviated during each iteration, and only some activated units
are suppressed. In addition, due to the huge number of
parameters, the efect of simply using dropout is not obvious
for large networks. Algorithm 2 shows the pseudocode
description of the dropout algorithm.

2.3.HybridAlgorithm. Te hybrid algorithm is an improved
algorithm derived from L2 regularization and dropout
regularization. While using L2 regularization for weight
decay, dropout is introduced to optimize the network
structure in the model training process. Using dropout can
inhibit some neurons to reduce the dependence between
neurons, thinning the connections between neurons and not
relying too much on certain features to prevent overftting
better as the structural level optimization. For example, a
neuron responsible for a key feature may fail during an
iteration due to a neuron being inhibited. Terefore, the
networkmust fnd other important features that improve the
network model’s generalization ability from another
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Initialization:
Initialize the neural network’s weight parametersθ,
regularization parameterλ,
regularization termR(θ) � 0,
and parameter learning ratelr.

# Iterate over the parameters of each layer,
l represents a certain layer,
k represents all layers.

For l in k − 1:
# Get the number of neurons in this layer. l _nums_of_ neurons� len (l)
# Get the number of neurons in the next layer. l _next_nums_of_ neurons� len (l + 1)
foriin range (l _nums_of_ neurons):

forjin range (l _next_nums_of_ neurons):
R(θ) � R(θ) + (θl

ij)
2

End for.
End for.

End for.
# Get the regularization term. R � λ × R(θ)

Suppose L(θ) is our loss function, then J(θ) � L(θ) + R(θ): fnal cost function.
Repeat do:

for epoch in epochs:
# Parameter update in units of mini_batch.

for mini_batch in range(mini_batches):
# repeat do, parameter update process.
Δθl

ij � zL/zθl
ij + zR/zθl

ij � zL/zθl
ij + 2λθl

ij

θl
ij � θl

ij − lr × Δθl
ij � θl

ij − lr × (zL/zθl
ij + 2λθl

ij)

End for
End for

ALGORITHM 1: L2 regularization algorithm.

Input: activation value, note as a.
Initialization:

Initialize the neural network’s weight parameters θ,
bias parameters b,
and neuron drop rate p.

for epoch in epochs:
# Generate probabilistic vectors for each layer of neurons used to simulate neuronal inactivation.

for layer in layers
# According to drop rate p generate p vectorlayer.
p vectorlayer ∼ Bernoulli(p).

End for.
x ← random min-batch from Dataset D.
Repeat do:
for x in D: # Use x to represent mini_batch, Use D to represent all mini_batches.

for layer in layers-1:
alayer � p vectorlayer ∗ alayer.
zlayer+1 � [((alayer).T).dot(θlayer+1)] + blayer+1

if the layer is not the output layer:
alayer+1 � RELU(zlayer+1).

else:
alayer+1 � Softmax(zlayer+1).
# alayer+1 note as y

y � Softmax(zlayer+1)

End for.
End for.

Pass: parameter update using gradient descent.
End for.

ALGORITHM 2: Dropout regularization algorithm.

Mathematical Problems in Engineering 5



perspective. Te use of L2 regularization can prevent
overftting by attenuating the updatable parameters, which is
an optimization at the parameter level. Terefore, the hybrid
algorithm is proposed to solve the overftting problem better
so that the neural network can learn robust and concurrent
features, improve the accuracy of network model prediction,
and improve the stability of the model training process. A
new and improved algorithm for preventing overftting is
proposed to combine optimization at the parameter and
network structure levels. Te general regularization term is
denoted as R(θ) and defned as follows:

R(θ) � 
k

l�1
λ

m

i�0


n

j�0
θl

ij 
2

⎛⎝ ⎞⎠0≤ i≤m, 0≤ j≤ n1≤ l≤ k.

(10)

Te parameter λ (its value is between 0 and 1) is used
to control the penalty on the weight parameter; the pa-
rameter λ does not participate in the training of the
network model, and it is a hyperparameter, θij represents
the weight parameter in the network. In (10), k means that
the network has k fully connected layers and n shows that
each layer has n neurons. We know that the last step of the
network model is to calculate the error between the
predicted value y and the true value y. Te y is defned as
follows:

y � Softmax a
k− 1

 .T .dot θk
   + b

k
 y ∈ [0, 1]. (11)

In Equation (11), ak− 1 represents the activation value
vector of the (k − 1)th layer, θk represents the weight pa-
rameter of the (k)th layer, and bk represents the bias vector
composed of all neurons in the (k)th layer. Finally, use the
Softmax function to get the output value y of the model. Te
loss function used in this paper is the multi-class cross-
entropy loss function, denoted as L(y, y), then

L(y, y) � −
1
n



n

i�1
yilnyi + 1 − yi( ln 1 − yi(  , (12)

where, n represents the number of samples in each training
iteration, and it is used to fnd the average loss for each batch
size, the loss function J of the network model is shown in the
following:

J � L(y, y) + R(θ),

� −
1
n



n

i�1
yilnyi + 1 − yi( ln 1 − yi(   + 

k
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m

i�0


n

j�0
θl

ij 
2

⎛⎝ ⎞⎠.

(13)

In each epoch, a set of probability vectors p vector
containing only 0 and 1 are randomly generated to suppress
some neurons.

p vectorl ∼ Bernoulli(p)1≤ l≤ k. (14)

In equation (14), p is a hyperparameter drop rate. Te
loss function of the fnal network model using the hybrid
algorithm is represented in the following:

J � −
1
n



n

i�1
yilnyi + 1 − yi( ln 1 − yi(  

+ 
k

l�1
λ

m

i�0


n

j�0
p vectorl

i ∗ θ
l
ij 

2
0≤ i≤m, 0≤ j≤ n1≤ l≤ k,

(15)

where, p vectorl
i represents the element in the probability

vector corresponding to the neuron in the layer l, acting on
the weight parameter connected to the neuron. Te core
formula involved in forwarding propagation is shown in the
following equations:

z
l+1

� a
l ∗p vectorl

 .T  .dot θl+1
  + b

l+1
, (16)

a
l+1

� RELU z
l+1

 0≤ l≤ k − 2, (17)

y � a
l+1

� Softmax z
l+1

 l � k − 1. (18)

In (16), the probability vector acts on the activation unit
of a certain layer. Te activation value is subjected to a dot
product operation to achieve partial neuron inhibition (17),
and the activation function used in implementing this al-
gorithm is rectifed linear units (RELU) [21]. Based on (18),
the SoftMax [21] function is used to get the fnal output value
of the network model. Finally, the parameters are updated
using the gradient descent algorithm [22] and also Adam
(adaptive learning rate) as the optimizer [23]. It can be seen
from the above formula that the hybrid algorithm attenuates
the weight parameters in the network model through L2
regularization and, at the same time, it reduces the com-
plexity of the network model in each iterative training
process. By introducing dropout to optimize the network
model’s structure, the network model’s generalization ability
can be enhanced, and the efect of preventing overftting can
be better achieved.Te pseudocode description of the hybrid
algorithm is repressed in Algorithm 3.

3. Experimental Results and Analysis

Te experiment section is performed on the small sample
problem to investigate the overftting phenomenon and
compare the algorithm performance efciency. Te
PyCharm IDE is used for coding all algorithms [23], in order
to verify the efectiveness of the proposed algorithm, the
Modifed National Institute of Standards and Technology
databases (MNIST) dataset [24] and the Canadian Institute
for Advanced Research, 10 classes (CIFAR10) dataset
[25, 26] with respect to open-source accessibility. Te
MNIST dataset contains the image of handwritten digits
from 0 to 9 in 10 categories with the grayscale format and
28× 28×1 dimension, and the CIFAR10 dataset (collected
by Alex et al.) consists of 10 categories of 32× 32× 3 diferent
RGB images. To use both datasets (MNIST and CIFAR10),
initially, the data were randomly mixed to be randomly
distributed, and then, a total of 1000 samples were selected,
of which 800 samples were used for training, and 200
samples were used for testing and validation. Te L2 and
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dropout and the proposed hybrid algorithm mainly work on
the fully connected layer. Ten, the LeNet-5 neural network
[27] with the convolutional and fully connected layers and
rough auto encoder (RAE) [28] neural network fully con-
nected layers in their architecture were selected to estimate
the hyperparameter [29]. Afterwards, in LeNet-5 and rough
auto encoder (RAE) neural network, the 5-fold cross-vali-
dation method is used to evaluate the performance of each
model (L2 and dropout and the proposed hybrid algorithm),
and fnally, the average value is taken as the standard to
measure the model’s performance [30].

Te following experiments in 4 steps for each data set are
set up for comparison and verifcation to ensure compa-
rability between experiments. Te one-factor variable con-
trol method is used. Te following experiments are set up in
four steps to compare and verify each data set and ensure
comparability between experiments. In this experiment, the
one-factor variable control method is used in each test, the
accuracy of the training set (average accuracy), the accuracy
of the validation set (average validation accuracy), the loss
value of the training set (average loss), and the loss value of
the validation set (average validation loss) are calculated and
compared. Tests on both datasets include Step 1, test without
using any overftting prevention method and regularization;
Step 2, use the L2 regularization; Step 3, test based on the
dropout regularization method and investigate the efect of

using the dropout in this network model that suppresses
some neurons; Step 4, use the hybrid algorithm to conduct
experiments and observe the changes in the model during
the training process which is shown as in the following:

3.1. Experiment on the MNIST Dataset. As mentioned be-
fore, initially, the MNIST data set, with the help of LeNet-5
and RAE neural network used to determine the appropriate
hyperparameters as described in the following:

3.1.1. LeNet-5 Network Architecture vs. MNIST Dataset.
Since the dimensions of the MNIST dataset are 28× 28×1,
and the input to the LeNet-5 network is 32× 32, the image
data need to be resized to 32× 32× 3 to be applied to the
LeNet-5 network for training. Terefore, the outermost
edges of the image data with two zero layers are considered
[31].

(1) LeNet-5 hyperparameters calculation. Based on the
LeNet-5 network architecture, experiments are carried out
using the MNIST data set. Te experimental results deter-
mine the hyperparameters through the 5-fold cross-vali-
dation method, and the average value is fnally taken as a
suitable hyperparameter. Te neural network’s performance
with diferent values of the hyperparameter learning rate and

Input: the feature map extracted by the convolutional neural network makes
the Flatten operation is a one-dimensional feature vector; note as a0.

Initialization: initialize the neural network’s weight parameters θ, bias parameters b, regularization parameter λ, and neuron drop
rate p.
for epoch in epochs:

# Generate probabilistic vectors for each layer of neurons
used to simulate neuronal inactivation.

for layer in layers:
# According to drop rate p generate p vectorlayer.
p vectorlayer ∼ Bernoulli(p).

End for.
X ← random min-batch from Dataset D.
Repeat do:
for X in D: # Use X to represent mini_batch, and use D to represent all mini_batches.

for layer in layers-1:
ifalayer+1 is the layer of output; note as y:

y � Softmax(alayerθlayer+1 + blayer+1)

Loss � Cross Entropy(y, y).
else:

zlayer+1 � (alayer ⊗p vectorlayer) · θlayer+1 + blayer+1.
alayer+1 � RELU(zlayer+1).

End for.
# layer-th consists of n neurons
#Turn p vectorlayern×1 into p vectorlayern×1

p vectorlayern×1 ←p vectorlayern×1
#L2 regularization term note as R(θ).
R(θ) � λ

layers
layer ((p vectorlayer.dot(θlayer)))2.

J � Cross Entropy(y, y) + λ
layers
layers((p vectorlayers.dot(θlayers)))2.

End for.
Pass : update parameters by backpropagation.

End for.

ALGORITHM 3: Hybrid algorithm.
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hyperparameter weight_decay is shown in Table 1, and drop
rate (p) (in Table 2, respectively. In Table 1, the average
parameters accuracy of train data (average train acc), av-
erage train loss, average value accuracy (average val acc), and
average value loss (average val loss) for both cases of learning
rate and weight decay based on LeNet-5 are presented. It
should be mentioned that the ideal value for the hyper-
parameter values should be selected based on the best
performance for average train accuracy (AT_ACC) and
average value accuracy (Av_Acc) near the 1 and the average
train loss (AT_Loss), as well as average val loss (AV_ Loss),
should have a value close to zero that should be chosen.

Table 1 indicates the learning rate and weight decay
values from 0.0001 to 0.01 with the step between 0.001 and
0.0001, respectively, for the LeNet-5 neural network archi-
tecture. In order to select better hyperparameters, the frst
three top-performing hyperparameters (with respect to
AT_ACC and Av_Acc near 1, AT_Loss, and AV_ Loss close
to zero) were selected [29], and the average was taken as the
fnal hyperparameter. As shown, the learning rate (LeNet-5)
for hyperparameter values of 0.002, 0.001, and 0.0006 have
the best performance. Ten, 0.0012 as the average value of
these three hyperparameters is considered the fnal learning
rate hyperparameter (LeNet-5). Similarly, the weight decay
values of 0.0002, 0.0004, and 0.0005 with an average of
0.00037 is considered the fnal weight decay hyperparameter.
Te drop rate (p) hyperparameter from 0.1 to 0.9 value with
the step of 0.1 for the LeNet-5 neural network is presented in
Table 2.

As illustrated in Table 2, the 0.2, 0.3, and 0.4, with an
average of 0.3 selected as the best performance for the
hyperparameter drop rate (p) of the LeNet-5 neural network.

(2) LeNet-5 performance and cross-validation fve-fold.
According to selected hyperparameters with the LeNet-5
architecture, the performance of each model (without reg-
ularization, L2 regularization, dropout regularization, and
the proposed hybrid algorithm) is verifed by cross-valida-
tion fve-fold [32] along with the average train accuracy,
average train loss, average accuracy value, and average loss
value which, are represented in Tables 3 and 4.

According to the extracted average value (Tables 3 and
4), each algorithm’s result performance is shown in
Figures 1–4 with four steps, without using any overftting
prevention method and regularization, L2 regularization,
dropout regularization method, and hybrid algorithm as
follows:

Te Step 1 (without using any overftting prevention
method and regularization) results in Figure 1 show that
severe overftting occurs because the accuracy rate on the
training set has reached 0.9773, which is much higher than
the accuracy rate on the validation set, which is about 0.903.
Te error between the training and validation set accuracy is
about 0.0743, indicating that the training data are perfectly
ftted. Te loss value of the validation set is also higher than
the loss value of the training set.Te loss value of the training
set is 1.4843, and the loss value of the value set is 1.5597. Te
error between the training set loss value and the validation
set loss value is about 0.0754.

As can be seen from Step 2 (L2 regularization), the
results in Figure 2 show the problem of overftting. However,
the problem of overftting in step 2 is alleviated compared
with that in step 1, and the phenomenon of overftting is
alleviated to a certain extent.Te accuracy on the training set
is 0.9778, and the accuracy on the validation set is about 0.92.
Te error between the training and validation set accuracy is
about 0.0578.Te loss value on the training set (value 1.4831)
difers from the loss value on the validation set (value 1.5407)
by about the value of 0.0576.

From the Step 3 results in Figure 3 (dropout regulari-
zation method), it can be observed that the overftting
problem is greatly improved when compared with both steps
1 and 2. Although there is a gap between the accuracy rate on
the training set (value 0.9631) and the accuracy rate on the
validation set (value 0.934), the gap will not be as large as in
steps 1 and 2. Te error between the training and validation
set accuracy is about 0.0291. Tere is still a little overftting,
and it can be seen from the training set loss (value 1.5027)
and the validation set loss (value 1.5276) that overftting is
gradually highlighted; the loss value on the training set
difers from the loss value on the validation set by about
0.249, which shows that as the number of iterations in-
creases, overftting becomes more and more serious.

It can be seen from the Step 4 (hybrid algorithm) results
in Figure 4 and Table 4 that the results in this step are the best
among all other steps. Tere are very large improvements in
Accuracy and Loss. Te error between the training set ac-
curacy (value 0.971) and the validation set accuracy (value
0.943) is about 0.028, and the loss value on the training set
(value 1.4918) difers from the loss value on the validation set
(value 1.5127) by about 0.0209. Moreover, it also has stability
during the training process, which ensures the stability of the
model during the retraining process and prevents the
overftting problem to a large extent.

(3) Time complexity. Te cross-validation method is used to
compare the time complexity performance of the tested
method (without regularization, with L2 regularization,
dropout regularization, and hybrid algorithm) LeNet-5
neural network, and the average time is calculated. Te time
complexity of the models is measured by comparing the
average time spent on model training with the LeNet-5
neural network. Te training time of each model on the
MNIST dataset is defned in Table 5.

Table 5 shows the 5-fold cross-validation based on the
LeNet-5 that represented the small average time diference
with the L2 regularization as the maximum and the hybrid
algorithm (26.27 seconds) as the least value.Te result shows
that although the proposed hybrid algorithm complicates
the loss function, the time performance does not deteriorate.
Compared with L2 regularization, the time performance is
improved by 0.99 seconds.

3.1.2. Rough Auto Encoder (RAE) vs. MNIST Dataset.
Along with the LeNet-5, another neural network architec-
ture named rough auto encoder (RAE) was used to compare
the proposed hybrid algorithm with the same MNIST
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dataset. Te results are compared to the model’s
performance.

(1) Rough Auto Encoder (RAE) hyperparameters calculation.
In a similar way to hyperparameter extraction with LetNet5,
the hyperparameter extraction test was conducted based on
Rough Auto Encoder (RAE) and MNIST data-based, and
fnally, the average of the best three performances considers

as the fnal hyperparameter. Te RAE neural network’s
performance with diferent values of the learning rate
hyperparameter, weight decay hyperparameter, and drop
rate hyperparameter (p) are given in Tables 6 and 7, re-
spectively. Table 6 shows the learning rate and weight decay
hyperparameter of RAE neural network architecture (from
0.01 to 0.0001 with the step of 0.0001 and 0.0001 to 1.00E-07
with the step of 1.00E-05 and 1.00E-06) trained on the

Table 1: Hyperparameter, learning rate, and weight decay for LeNet-5. Hyperparameter values (H_v), average train accuracy (AT_ACC),
average value accuracy (Av_Acc), average train loss (AT_Loss), and average val loss (AV_ Loss).

H_v
Learning rate (LeNet-5) Weight decay (LeNet-5)

AT_ACC AT_Loss Av_Acc AV_ loss AT_ACC AT_Loss Av_Acc AV_ loss
0.01 0.13875 2.322401 0.128 2.338074 0.10725 2.302468 0.071 2.303356
0.009 0.165 2.296151 0.137 2.32942 0.10275 2.302424 0.072 2.303542
0.008 0.25075 2.210388 0.241 2.229398 0.10425 2.302377 0.073 2.303468
0.007 0.55875 1.902463 0.526 1.932271 0.10775 2.30228 0.068 2.303894
0.006 0.565 1.89632 0.543 1.917714 0.104 2.30241 0.074 2.30361
0.005 0.903 1.557816 0.842 1.621634 0.28075 2.142584 0.239 2.152453
0.004 0.94 1.521228 0.875 1.592745 0.27775 2.144539 0.235 2.156772
0.003 0.9625 1.498606 0.909 1.557244 0.2825 2.139606 0.241 2.153521
0.002 0.988 1.472952 0.927 1.535847 0.81025 1.647499 0.732 1.716683
0.001 0.98275 1.478603 0.926 1.539544 0.984 1.480389 0.927 1.543032
0.0009 0.9675 1.493069 0.918 1.551816 0.9825 1.482059 0.935 1.532924
0.0008 0.98 1.481654 0.913 1.551816 0.98475 1.478317 0.931 1.535013
0.0007 0.978 1.483917 0.904 1.566854 0.97375 1.490902 0.907 1.559097
0.0006 0.98225 1.479007 0.921 1.544858 0.98575 1.476456 0.93 1.523315
0.0005 0.9745 1.487192 0.908 1.559124 0.99275 1.46911 0.936 1.526182
0.0004 0.93725 1.524032 0.866 1.609874 0.9755 1.487383 0.939 1.523864
0.0003 0.9255 1.536564 0.864 1.600408 0.98 1.482993 0.88 1.582227
0.0002 0.959 1.507509 0.87 1.597393 0.9865 1.475653 0.938 1.522716
0.0001 0.8755 1.595188 0.781 1.692779 0.9875 1.473937 0.921 1.537909

Table 2: Hyperparameter drop rate (p) for LeNet-5 average train accuracy (AT_ACC), average train loss (AT_Loss), average value
accuracy (Av_Acc), and average train loss (AT_Loss).

p AT_ACC AT_Loss Av_Acc AT_Loss
0.1 0.98375 1.478031 0.928 1.533589
0.2 0.9815 1.479785 0.931 1.529648
0.3 0.97325 1.488882 0.938 1.522759
0.4 0.958 1.503502 0.933 1.529574
0.5 0.941 1.520582 0.930 1.521176
0.6 0.87425 1.58673 0.929 1.535103
0.7 0.7705 1.691532 0.904 1.557894
0.8 0.615 1.846899 0.872 1.599164
0.9 0.30975 2.138675 0.536 1.962181

Table 3: Average cross-validation based on fve folds for the parameters average train accuracy (T_ACC), train loss (T_Loss), value accuracy
(V_Acc), and train loss (T_Loss).

Cross validation
Without regularization L2 regularization Dropout regularization

T_ACC T_Loss V_Acc T_Loss T_ACC T_Loss V_Acc T_Loss T_ACC T_Loss V_Acc T_Loss
One-fold 0.99125 1.4698 0.91 1.5583 0.99 1.4713 0.925 1.52536 0.965 1.497 0.93 1.5317
Two-fold 0.97125 1.4915 0.86 1.5918 0.97625 1.4869 0.905 1.5612 0.98 1.4836 0.955 1.509
Tree-fold 0.98 1.4811 0.92 1.5463 0.9875 1.4737 0.915 1.5387 0.969 1.5109 0.925 1.5411
Four-fold 0.96 1.5019 0.895 1.5734 0.985 1.477 0.955 1.5065 0.9488 1.5122 0.92 1.5362
Five-fold 0.98375 1.4774 0.93 1.5289 0.95 1.5068 0.9 1.5719 0.9525 1.5098 0.94 1.5201
Average 0.9773 1.4843 0.903 1.5597 0.9778 1.4831 0.92 1.5407 0.9631 1.5027 0.934 1.5276
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MNIST dataset. It should mention the lower value for the
reconstruction error parameter selected as the best perfor-
mance result.

As depicted in Table 6, the RAE neural network archi-
tecture learning rate hyperparameters with the three max-
imum values of 0.003, 0.004, and 0.005 as the best

Table 4: Average cross-validation based on fve folds for the parameters average train accuracy (T_ACC), train loss (T_Loss), value accuracy
(V_Acc), and train loss (T_Loss).

Cross validation T_ACC T_Loss V_Acc T_Loss
One-fold 0.98125 1.4815 0.92 1.535
Two-fold 0.96625 1.4977 0.94 1.514
Tree-fold 0.95875 1.5047 0.955 1.5053
Four-fold 0.9675 1.4953 0.945 1.5086
Five-fold 0.98125 1.4796 0.955 1.5008
Average 0.971 1.4918 0.943 1.5127
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Figure 1: MNIST training results without regularization.
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Figure 2: MNIST training results with L2 regularization.
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performance are averaged as 0.004, and on the other side for
the weight decay hyperparameter, the three values of 4.00E-
07, 3.00E-07, and 2.00E-07 with the average value of 3.00E-
07 with respect to the best performance of the reconstruction
error on the MNIST dataset selected. Te drop rate
hyperparameter (p) and respected reconstruction error from
0.1 to 0.9 with the step of 0.1 trained on the MNIST dataset
are expressed in Table 7.

Table 7 shows that as the rate of hyperparameter p in-
creases and the reconstruction error decreases, the value of
hyperparameter p as 0.1 performs best, and reconstruction
error is defned as 0.038906.

(2) Rough Auto Encoder (RAE) performance vs. MNIST
dataset. Since the input of the RAE fully connected network is

one-dimensional (1D) data, it is necessary to process the image
data into a 1D vector. Ten, based on the RAE, the recon-
struction errors of each algorithm on the MNIST dataset are
compared. Te smaller value of reconstruction error considers
the better algorithm performance. Figure 5 and Table 8 show
the compassion of the RAE reconstruction errors based on the
MNIST dataset and reconstruction errors.

As Figure 5 states, using the proposed hybrid algorithm
can more efectively reduce the impact of data noise and bias
on model training under the unsupervised neural network
and minimize the reconstruction error. As can be seen from
Table 8, the reconstruction error on theMNISTdataset using
the proposed hybrid algorithm has the least value (0.02438),
and the maximum value belongs to dropout regularization
(0.02836).
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Figure 3: MNIST training results with dropout regularization.
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Figure 4: MNIST training results with hybrid algorithm.
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(3) Time complexity. As the last stage of algorithm
comparison, the algorithm performance time in terms of
time complexity concerning the MNISTdataset based on the
RAE neural network architecture is calculated and listed in
Table 9.

As depicted in Table 9, the maximum time belongs to L2
regularization but compared with the dropout regulariza-
tion, and without regularization, the hybrid algorithm has a

higher value. It can be seen from these data that although the
proposed algorithm complicates the loss function, the time
performance does not deteriorate, and compared with L2
regularization, the performance time is improved by 64.57
seconds.

3.2. Experiment on the CIFAR10Dataset. As the second data
set, CIFAR10 is used to compare and check the afordance
algorithm. Ten, as in the previous data set, LeNet-5 and
RAE neural network architectures are used to extract the
hyperparameters, and then, the performance of each algo-
rithm is checked as follows:

3.2.1. LeNet-5 Network Architecture vs. CIFAR10 Dataset.
To use the CIFAR10 image data set, as the image and LeNet-
5 neural network architecture have the same dimension
(32× 32), the data can be used directly to speed up the
convergence of the gradient descent algorithm, a normali-
zation operation is performed on the dataset [30].

(1) LeNet-5 hyperparameters calculation. Based on the
LeNet-5 network architecture, experiments are carried out
under the CIFAR10 data set to fnd the hyperparameters
(learning rate hyperparameter, the weight decay hyper-
parameter, and the drop rate hyperparameter p) through the
5-fold cross-validation method, and fnally, the average
value is taken as the ftting hyperparameter. Te obtained
value as hyperparameters is represented in Tables 10 and 11.
It should mention the frst three top-performing hyper-
parameters selected as the fnal hyperparameter, the same as
the previous dataset.

As displayed in Table 10, the LeNet-5 neural network
architecture has the maximum three values for the learning
rate of 0.001, 0.0009, and 0.0007, with the average of 0.00087
as the fnal value for the learning rate and the weight decay
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Figure 5: Reconstruction errors of diferent algorithms.

Table 5: MNIST dataset and models average training time for
LeNet-5.

Algorithms Average time (second)
Without regularization 26.64
L2 regularization 27.26
Dropout regularization 26.80
Hybrid algorithm 26.27

Table 6: Learning rate and weight decay hyperparameter for rough
autoencoder trained on the MNIST dataset.

Learning
rate

Reconstruction
error

Weight
decay

Reconstruction
error

0.01 0.042926 0.0001 0.065342
0.009 0.044397 0.00009 0.057028
0.008 0.041419 0.00008 0.056897
0.007 0.040493 0.00007 0.057183
0.006 0.039244 0.00006 0.055813
0.005 0.034996 0.00005 0.050411
0.004 0.035179 0.00004 0.051364
0.003 0.037584 0.00003 0.047023
0.002 0.046424 0.00002 0.047418
0.001 0.047845 0.00001 0.044193
0.0009 0.04841 9.00E-07 0.038387
0.0008 0.048602 8.00E-07 0.038776
0.0007 0.049599 7.00E-07 0.041042
0.0006 0.049872 6.00E-07 0.038804
0.0005 0.051237 5.00E-07 0.038249
0.0004 0.052534 4.00E-07 0.035552
0.0003 0.057329 3.00E-07 0.035109
0.0002 0.063413 2.00E-07 0.036192
0.0001 0.063393 1.00E-07 0.038259

Table 7: Drop rate hyperparameter (p) for RAE trained on the
MNIST dataset.

p Reconstruction error
0.1 0.038906
0.2 0.04041
0.3 0.041018
0.4 0.043298
0.5 0.044949
0.6 0.044767
0.7 0.049857
0.8 0.049451
0.9 0.054446

Table 8: Te reconstruction error of the autoencoder on the
MNIST data set.

Algorithms Reconstruction error
Without regularization 0.02697
L2 regularization 0.02612
Dropout regularization 0.02836
Hybrid algorithm 0.02438
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hyperparameter the three maximum values 0.001, 0.0005,
and 0.0001 performance averaged to 0.00053 and considered
as weight decay hyperparameter value.Te same process was
followed for the hyperparameter drop loss (p), and the
results are shown in Table 11.

As demonstrated in Table 11, the values of 0.3, 0.4, and
0.5 are the maximum three, with the best performance
averaged to be 0.4 and defned as the hyperparameter p for
the next steps.

(2) LeNet-5 performance and cross-validation fve-fold. In
order to verify the proposed hybrid algorithm’s

efectiveness, each model’s performance is measured by
cross-validation and the second data set (CIFAR10)
according to the LeNet-5 architecture tests [22]. Te
average train accuracy, average validation accuracy, av-
erage train loss, and average validation loss parameters are
calculated and compared. Te cross-validation results for
all afordance algorithms, along with the train accuracy,
train loss, accuracy value, and loss value, are presented in
Tables 12 and 13.

Based on the obtained result in cross-validation tables
(Tables 12 and 13), the result of all four steps is illustrated in
Figures 6–9.

Table 9: Model training time for RAE.

Algorithms Average time (second)
Without regularization 655.91
With L2 regularization 969.61
Dropout regularization 661.05
Hybrid algorithm 905.04

Table 10: Hyperparameter, learning rate, and weight decay for LeNet-5. Hyperparameter values (H_v), average train accuracy (AT_ACC),
average value accuracy (Av_Acc), average train loss (AT_Loss), and average val loss (AV_ Loss).

H_v
Learning rate (LeNet-5) Weight decay (LeNet-5)

AT_ACC AT_Loss Av_Acc AV_ loss AT_ACC AT_Loss Av_Acc AV_ loss
0.01 0.100665 2.325601 0.087 2.329935 0.103843 2.302525 0.07757 2.302969
0.009 0.11661 2.321201 0.1032 2.325257 0.147838 2.269972 0.11444 2.276568
0.008 0.104085 2.313793 0.08103 2.318763 0.199558 2.22705 0.16228 2.247321
0.007 0.118305 2.334549 0.10925 2.342245 0.210432 2.218645 0.16343 2.242279
0.006 0.111295 2.344276 0.10447 2.349096 0.3635 2.093841 0.29837 2.151691
0.005 0.107287 2.344719 0.10937 2.341619 0.41001 2.051818 0.33659 2.116615
0.004 0.115883 2.34176 0.11308 2.344981 0.468345 1.996177 0.339 2.113303
0.003 0.108578 2.352489 0.1048 2.356354 0.46432 1.998804 0.34399 2.108453
0.002 0.318593 2.141057 0.25226 2.206989 0.564043 1.901666 0.36199 2.091373
0.001 0.641668 1.820811 0.37911 2.075958 0.629605 1.835522 0.38038 2.076359
0.0009 0.639165 1.823672 0.37641 2.07908 0.60578 1.858498 0.35942 2.094168
0.0008 0.629515 1.833676 0.36403 2.090948 0.616883 1.847611 0.36528 2.08955
0.0007 0.611138 1.85274 0.37436 2.07947 0.605088 1.85905 0.36004 2.094749
0.0006 0.627852 1.836708 0.35691 2.097898 0.625547 1.838004 0.3672 2.086873
0.0005 0.607905 1.857226 0.37204 2.081586 0.633242 1.830361 0.38206 2.072243
0.0004 0.566653 1.89906 0.35047 2.103409 0.620425 1.842975 0.36759 2.086849
0.0003 0.53116 1.935363 0.35188 2.101477 0.651738 1.81153 0.36794 2.086562
0.0002 0.506135 1.962681 0.3551 2.098744 0.64045 1.822653 0.37564 2.078767
0.0001 0.437427 2.031425 0.3265 2.126424 0.648648 1.814119 0.38642 2.068413

Table 11: Hyperparameter p for LeNet-5, average train accuracy (T_ACC), average train loss (T_Loss), average value accuracy (V_Acc), and
average train loss (T_Loss).

p Average train Acc Average train loss Average val Acc Average val loss
0.1 0.622085 1.840741 0.37342 2.081888
0.2 0.602748 1.859754 0.37194 2.082475
0.3 0.543943 1.917456 0.37764 2.07829
0.4 0.49937 1.960975 0.3778 2.077712
0.5 0.440283 2.018242 0.3784 2.076063
0.6 0.404923 2.052566 0.34546 2.107493
0.7 0.35408 2.100192 0.34361 2.110094
0.8 0.272338 2.178325 0.28199 2.164043
0.9 0.18234 2.260305 0.16645 2.265217
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As Figure 6 shows, in Step 1 (without using any over-
ftting prevention method and regularization), as the
number of iterations increases, the diference between the
training set’s loss (value 1.6456) and the validation set’s loss
(value 2.0868) is large; the error between the training set
accuracy (value 0.815) and the validation set accuracy (value
0.3716) is about 0.4434. Te loss value on the training set
difers from the loss value on the validation set by about
0.4412, which also refects that overftting is serious from the
side.

Figure 7 (Step 2: L2 regularization) illustrates that the
diference between the training set’s loss (value 1.611) and
the validation set’s loss (value 2.0764) is also large. Te

training set’s loss value difers from the value on the vali-
dation set by about 0.4724. From the perspective of average
accuracy, the error between the training set accuracy (value
0.8515) and the validation set accuracy (value 0.3791) is
about 0.4654. Te overftting problem is also serious.

As can be seen from Figure 8 (Step 3: dropout regula-
rization method), as the number of iterations increases, the
diference between the training set’s loss (value 1.6635) and
the validation set’s loss (value 2.081) becomes larger and
larger; the error between the training set accuracy (value
0.807) and the validation set accuracy (value 0.3752) is about
0.4318, and from the perspective of average accuracy, the loss
value on the training set difers from the loss value on the

Table 12: Average cross-validation for steps 1–3, train accuracy (Train Acc), train loss (Train Loss), and value accuracy (Val Acc).

Cross
validation

Without regularization L2 regularization Dropout regularization
Train
Acc

Train
loss Val Acc Val loss Train

Acc
Train
loss Val Acc Val loss Train

Acc
Train
loss Val Acc Val loss

One-fold 0.7932 1.6674 0.38525 2.0737 0.8475 1.6152 0.38215 2.0739 0.7958 1.6684 0.369 2.0886
Two-fold 0.8222 1.6386 0.3712 2.0872 0.8685 1.594 0.37 2.0837 0.8039 1.6802 0.3621 2.0942
Tree-fold 0.8269 1.6339 0.3758 2.0826 0.83 1.6322 0.353 2.1013 0.823 1.642 0.3825 2.0731
Four-fold 0.8244 1.6364 0.373 2.0849 0.8682 1.5946 0.3899 2.0666 0.8135 1.661 0.3775 2.0787
Five-fold 0.8088 1.6519 0.353 2.1057 0.8434 1.6192 0.4004 2.0565 0.7986 1.666 0.3851 2.0707
Average 0.815 1.6456 0.3716 2.0868 0.8515 1.611 0.3791 2.0764 0.807 1.6635 0.3752 2.081

Table 13: Average cross-validation for hybrid algorithm train accuracy (Train Acc), train loss (Train Loss), and value accuracy (Val Acc).

Cross validation Train Acc Train loss Val Acc Val loss
One-fold 0.7522 1.708 0.3902 2.0679
Two-fold 0.7427 1.7183 0.39215 2.0657
Tree-fold 0.74585 1.7154 0.37185 2.0545
Four-fold 0.7738 1.6869 0.3996 2.0582
Five-fold 0.7385 1.722 0.3878 2.0697
Average 0.751 1.710 0.3883 2.0692
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Figure 6: CIFAR10 dataset training results without regularization.
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validation set by about 0.4175, which also refects that
overftting is becoming more and more serious from the
side.

Te step 4 (hybrid algorithm) results shown in Figure 9
and Table 14 are the best compared to the previous steps and
regarding average accuracy values. Te error between the
training set accuracy (value 0.751) and the validation set
accuracy (value 0.3883) is about 03627. From the perspective
of loss value, the stability during training is greatly improved
compared to other steps; the loss value on the training set
(value 1.710) difers from the loss value on the validation set
(value 2.0692) by about 0.3592, which also shows that using
the proposed hybrid algorithm is more efective than using
other regularization methods.

(3) Time complexity. To compare the performance of each
model in terms of time complexity, the cross-validation
method is used, and the average time is calculated based on
the LeNet-5 neural network architecture and CIFAR10
dataset, as indicated in Table 14.

As can be seen from Table 14, the average time diference
of each model in the CIFAR10 dataset training is very small,
and without regularization with the 227.27 value, the least
value, L2 regularization is the maximum (235.45), and
proposed hybrid algorithm has the second least value
(228.09) among other algorithms. Te result shows that
although the hybrid algorithm complicates the loss function,
the time performance does not deteriorate. Compared with
L2 regularization, the time performance is improved by 7.36
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Figure 7: CIFAR10 training results with L2 regularization.
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Figure 8: CIFAR10 training results with dropout regularization.
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seconds, and the diference with the without regularization is
0.82 seconds.

3.2.2. Rough Auto Encoder (RAE) vs. CIFAR10 Dataset.
Similar to the method used in the previous data set, the RAE
-based neural network architecture was also used for the
CIFAR10 dataset. To conduct the following test, the fully
connected layers are used to build the RAE’s encoder and
decoder parts, and the hyperparameters are determined.
Ten, all mentioned algorithms are compared based on the
reconstruction error to measure the model’s performance.

(1) Rough Auto Encoder (RAE) hyperparameters calculation.
Based on the Autoencoder’s RAE network architecture, sev-
eral experiments are carried out under the CIFAR10 data set.
Te hyperparameters are determined from the results of
many experiments, and fnally, the average value is taken as
the appropriate hyperparameter. Te neural network’s
performance with diferent values of the hyperparameter
learning rate, weight decay hyperparameter, and drop rate
hyperparameter p are displayed in Tables 15 and 16, re-
spectively. In order to select more suitable hyperparameters,
this paper selects the frst three hyperparameters with the
best performance and then, takes the average value as the
fnal hyperparameter.

Table 15 indicates that the RAE neural network archi-
tecture is trained data based on the CIFAR10 dataset. Te
top three perform best when the learning rate

Table 14: Average model training time for LeNet-5.

Algorithms Average time (second)
Without regularization 227.27
L2 regularization 235.45
Dropout regularization 233.47
Hybrid algorithm 228.09

Table 15: Learning rate and weight decay hyperparameter for
autoencoder trained on the CIFAR10 dataset.

Learning
rate

Reconstruction
error

Weight
decay

Reconstruction
error

0.01 0.062009 1.00E-05 0.033044
0.009 0.062047 9.00E-06 0.037125
0.008 0.061958 8.00E-06 0.032976
0.007 0.061975 7.00E-06 0.033005
0.006 0.061991 6.00E-06 0.037
0.005 0.062031 5.00E-06 0.032751
0.004 0.061894 4.00E-06 0.032763
0.003 0.048493 3.00E-06 0.032802
0.002 0.046619 2.00E-06 0.032881
0.001 0.036068 1.00E-06 0.033129
0.0009 0.034174 9.00E-07 0.032664
0.0008 0.034174 8.00E-07 0.032751
0.0007 0.033736 7.00E-07 0.03283
0.0006 0.035271 6.00E-07 0.032748
0.0005 0.03735 5.00E-07 0.032959
0.0004 0.033001 4.00E-07 0.032808
0.0003 0.034589 3.00E-07 0.032485
0.0002 0.036847 2.00E-07 0.032824
0.0001 0.037022 1.00E-07 0.032701
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Figure 9: CIFAR10 training results with the hybrid algorithm.

Table 16: Hyperparameter drop rate (p) for RAE Vs CIFAR10.

p Reconstruction error
0.1 0.032797
0.2 0.033228
0.3 0.033777
0.4 0.037264
0.5 0.037555
0.6 0.037791
0.7 0.044
0.8 0.044079
0.9 0.049096
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hyperparameters are equal to 0.0003, 0.0004, and 0.0005
averaged as 0.0004, and for the hyperparameter weight decay
as 9.00E-07, 3.00E-07, and 1.00E-07, and the top three with
the best performance averaged as 4.33E-07.Te drop rate (p)
hyperparameter from 0.1 to 0.9 with the step of 0.1 is given in
Table 16.

As Table 16 shows, the reconstruction error’s loss value
on the CIFAR10 dataset increases as the drop rate hyper-
parameter p increases, and the best drop rate hyper-
parameter belongs to the value 0.1.

(2) Rough Auto Encoder (RAE) performance vs. CIFAR10
dataset. Since the input of the fully connected network is
one-dimensional data, and the CIFAR10 dataset contains
32∗ 32∗ 3 RGB images, then the image data should convert
into a one-dimensional vector. Ten, based on the RAE, the
reconstruction errors of each algorithm on the CIFAR10
dataset are compared. Te smaller value of reconstruction
error considers the better algorithm performance. Figure 10
and Table 17 ofer the compassion of the RAE reconstruction
errors based on the CIFAR10 dataset and reconstruction
errors.

As Figure 10 indicates, the proposed hybrid algorithm
can more efectively reduce the impact of data noise and bias
on model training under the RAE unsupervised neural
network and minimize the reconstruction error. Te re-
construction errors of each algorithm are presented in Ta-
ble 17. Te table shows that the reconstruction error on the
CIFAR10 dataset using the proposed hybrid algorithm is the
least (0.02808), and the dropout is the most compared to the
algorithms; the reconstruction error value is reduced by
0.00174.

(3) Time complexity. To compare the algorithm’s perfor-
mance in terms of time complexity based on the CIFAR10
and RAE neural network architecture, the obtained results
are displayed in Table 18.

As Table 18 demonstrates, the average time by the
proposed hybrid algorithm is 4560 seconds as the second
maximum value, but it can be seen that although the

proposed algorithm complicates the loss function, the time
performance does not deteriorate. Compared with L2 reg-
ularization, the time performance is improved by 945.74
seconds.

4. Result

Te trained models were applied to the test set of the MNIST
and CIFAR10 datasets. Concerning the diferent network
architectures, cross-validation was adopted to evaluate the
performance of the without regularization, L2, dropout, and
hybrid algorithm models to calculate the accuracy and
training time. Te results using diferent algorithms are
specifed in Table 19.

As Table 19 explains, the highest accuracy belongs to the
proposed hybrid algorithm, and the lowest one fts without
regularization; the highest reconstruction errors parameter
goes for the dropout regularization and the least performed
by the hybrid algorithm for both the data sets MNIST and
CIFAR10. Te accuracy result for the MNIST data shows
that using the hybrid algorithm causes an improvement of
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Figure 10: Reconstruction errors of diferent algorithms.

Table 17: Te reconstruction error of RAE on the CIFAR10 data
set.

Algorithms Reconstruction error
Without regularization 0.02907
L2 0.02886
Dropout 0.02982
Hybrid algorithm 0.02808

Table 18: Model training time for autoencoder.

Algorithms Average time (second)
Without regularization 2521.93
L2 regularization 5506.71
Dropout regularization 2431.45
Hybrid algorithm 4560.97
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4.0%, 2.3%, and 0.9%; on the other side, for the CIFAR10, the
accuracy improved by 1.67%, 0.92%, and 1.31%, in com-
parison with without regularization, L, and dropout model
respectively. Te training time for LeNet-5 is less for the
hybrid algorithm and second high for RAE neural network
in both data sets. But the results show that its performance
improves by 0.99 seconds in MNIST and 7.36 seconds in
CIFAR10, compared to L2 regularization for LeNet-5. Also,
RAE trains the neural network on the MNIST dataset, the
hybrid algorithm improves the time performance by 64.57
seconds and 945.74 seconds on the CIFAR10 compared to
L2 regularization.

5. Conclusion

Tis study introduces the hybrid algorithm as an improved
algorithm for the neural networks model training process
based on L2 and dropout regularizations. Te proposed al-
gorithm combines the advantages of the L2 regularization
term with the loss function so that the network model at-
tenuates the weight parameters during the training process
and prevents overftting; on the other side, the dropout
benefts from optimizing the network structure in the training
process and some neurons are randomly suppressed to obtain
diferent network structures; fnally, a model-averaging
strategy is used in the testing phase to prevent overftting.
Under the cross-validation method, comparative experiments
are conducted under diferent datasets by designing diferent
neural network architectures. Based on the supervised (LeNet-
5) and unsupervised (RAE) neural network architectures and
verifed under the MNIST (grayscale— 28× 28×1) and
CIFAR10 (RGB—32× 32× 3) datasets. Te obtained results
show that hybrid algorithms can efectively improve the
model’s prediction performance and performance without
much increment in the training time, and even compared to
L2 regularization, the results are improved.

In addition, the proposed algorithm can reduce the
reconstruction error to a certain extent. Te experimental
results on small samples show that although the loss function
of the hybrid algorithm proposed in this paper becomes
complicated, the algorithm can efectively improve the
model’s prediction performance and reduce the recon-
struction error without reducing the time performance.
However, this also has a small drawback. Due to the

introduction of the hybrid algorithm, the loss function
becomes more complex. In each iteration process, the for-
ward and backward propagation calculations require ad-
ditional time, leading to the network model training taking
longer compared with no regularization and dropout reg-
ularization. Given this potential shortcoming, we will sug-
gest that the algorithm can be optimized in future work to
reduce the algorithm’s time complexity and speed up the
convergence of the network model.
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