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­rough this article, we focus on the extension of travelling wave solutions for a prevalent nonlinear pseudo-parabolic physical
Oskolkovmodel for Kevin-Voigt �uids by using two integral techniques. First of all, we explore the bifurcation and phase portraits
of the model for di�erent parametric conditions via a dynamical system approach. We derive smooth waves of the bright bell and
dark bell, periodic waves, and singular waves of dark and bright cusps, in correspondence to homoclinic, periodic, and open orbits
with cusp, respectively. Each orbit of the phase portraits is envisaged through various energy states. Secondly, with the help of a
prevalent uni�ed scheme, an inventive version of exact analytic solutions comprising hyperbolic, trigonometric, and rational
functions can be invented with some collective parameters.­e uni�ed scheme is an excitably auspicious method to procure novel
interacting travelling wave solutions and to obtainmultipeaked bright and dark solitons, shock waves, bright bell waves with single
and double shocks, combo waves of the bright-dark bell and dark-bright bell with a shock, dark bell into a double shock wave, and
bright-dark multirogue type wave solutions of the model. ­e dynamics of the procured nonlinear wave solutions are also
presented through 2-D, 3-D, and density plots with speci�ed parameters.

1. Introduction

Recently, discoveries of novel explicit and analytical travelling
wave solutions of nonlinear models have attracted great at-
tention from blooming scientists [1–3]. A series of travelling
wave exact solutions with various nonlinear dynamics can be
illustrated as unique complex phenomena in diverse scopes of
nonlinear sciences, for instance, optics [1–3], �uid mechanics

[4, 5], shallow water wave and magneto-sound transmission in
plasmas [6], ion-acoustic plasma waves [7, 8], shallow water
waves [9, 10], solid-state physics and chemical kinetics [11],
visco-elastic Kelvin Voigt �uid [12], shallow water propagation
in the harbor and coastal region [13], and nonlinear quantum
�eld theory [14] . Due to the signi�cance of such �eld of studies,
theoretical probes on physical action emulation of NEEs are
sought day by day. Hence, much e�ort has been devoted to
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securing exact and analytical travelling wave solutions of the
NEEs. Many scholars are compelled by NEEs to raise travelling
wave solutions by implementing a number of integral ap-
proaches. +ese approaches that are accomplished in current
literature include the extended Kudryashov method [1], the
first-integral method [2], the extended trial equation method
[3], Bäcklund transformation [4, 5], the extended simple
equation method [6], modified simple equation method [7, 8],
Hirota bilinear form [9, 10], new generalized (G′/G) -expan-
sion method [11], (G′/G) -expansion method [14], the ex-
tended (G′/G)-expansion method [15], Cole-Hopf
transformation method [16], Adomian decomposition method
[17], exp(−φ(ξ))-expansionmethod [18–20], planner dynamical
system scheme [21, 22] and many more.

Among the above procedures, the planner dynamical
scheme is the most important, stable, and reliable approach
as it provides various types of phase orbits. Depending on
the parametric conditions, each type of orbit (periodic,
heteroclinic, and homoclinic) yields periodic, kink, and bell
wave solutions, respectively, under selective initial/boundary
conditions. +is type of approach is still least explored on
numerous nonlinear models; hence, it breeds a vast chal-
lenge for proximate ascertainment of the models’ dynamical
behaviors. +e (1 + 1)-dimensional Oskolkov model for
Kevin-Voigt fluids is one of the nonlinear models [23–25]
with huge applications in contemplating incompressible
visco-elastic Kelvin-Voigt fluid flows. +is category of the
pseudo-parabolic model, which involves time derivative in
the highest differential term, can also be exemplified for
wider purviews such as fluid flows of fissured rock, second
order shear of fluids, thermodynamics, consolidation of
dust, and transmission of long wave propagations with small
amplitudes. Hence, the Oskolkov model is anticipatorily
examined via diverse schemes by various researchers across
the globe [23–25]. Several fundamental and featured pro-
cedures have also been established to procure the exact
solutions of the Oskolkov model.

+e modified simple equation method [12] was used to
derive more exact and explicit solutions of the Oskolkovmodel.
+e tanh-coth method [23] was applied to accomplish exact
solutions of the nonlinear pseudo-parabolic model. Asymptotic
stable and unstable solutions to the Oskolkov model were
analyzed graphically too [24]. +e nonlinear shock wave, bell
wave, and various dynamical motions in the presence of an
exotic periodic force were discussed briefly for the generalized
Oskolkov model [25]. Although the enormous investigation
and profound dynamical solutions to the model have been
scrutinized by many researchers, there are still some unresolved
problems like bounded travelling wave solutions with their
corresponding phase orbit, solutions with boundary conditions,
and rogue wave solutions. All these updates spark inquisitions
on how the results are exhibited and how they vary with the
changing parameters. To retort such accounts, we need to derive
solutions involving some of the prominent parameters with
suitable initial/boundary conditions.

+rough this article, we shed light on the progress of
nonlinear travelling waves such as bright and dark bell waves,
periodic waves, and singular bright and dark cusp waves as
corresponding to each orbit of the phase portraits on the

dynamical Oskolkov model by utilizing the planner dynamical
strategy [20, 21]. Besides, rogue waves, multisoliton, interaction
of solitons, and breather wave solutions, which are no less
fascinating, have also received gradually increased attention in
the field of nonlinear dynamical systems [26–28].+e longwave
limit of the breather localized wave was derived by Yue et al.
[29]. Abundant research on these topics has been performed
and different types of nonlinear localized waves have been
revisited for strategic recipes of various nonlinear physical
models materialized in mathematical physics and engineering
applications [30, 31].+eHaar wavelet technique has been used
to analyze the dynamical phenomena of the fractional-order
nonlinear model [32, 33]. Nowadays, investigations on the
fractional model are studied by analytical techniques [34, 35]
and numerically [36, 37], exposing huge efforts. Notwith-
standing, we also aim to construct the solutions to multirogue
type waves, shock waves, interactions of bright-dark and dark-
bright bell solitons, interactions of shock-bell waves, and sin-
gular multisoliton to the (1+1)-dimensional Oskolkov model
by taking benefit of the lavish unified method [38, 39].

+e creation of this article is designed as follows: in
Section 2, we deliberate the bifurcation and phase portrait
analyses of the Oskolkov model. In Section 3, we exhibit
parametric expressions of explicit solutions of the Oskolkov
model. +e exact wave solutions and their graphical illus-
trations of the model via the unified method are presented in
Section 4. Finally, the perspectives of the current study on
this kind of dynamical wave phenomenon are discussed in
the last section.

2. Bifurcations and Phase Portraits of the
Oskolkov Model

+e regular form of the (1 + 1) dimensional Oskolkov model
(1) is

Ut − βUxxt − αUxx + UUx � 0, (1)

where U(x, t) � U(ξ) and ξ � kx − ωt in which k is a
constant whereas ω is the wave speed. Now, we reinstate (1)
into the form of (ODE) as follows:

2k
2ωβU″ − 2αk

2
U′ − 2ωU + kU

2
� 0, (2)

where the primes stand for the derivative with respect to ξ
Equation (2) in a concise form can be reformulated as

U″ � PU′ + QU − RU
2
, (3)

where P � α/ωβ, Q � 1/κ2β, R � 1/2κωβ, and R≠ 0.

+is (3) can further be written into a prototype system of
differential form

U′ � V � F(U, V)

V′ � PV + QU − RU
2

� G(U, V),
(4)

which yields a Hamiltonian

H(U, V) �
V

2

2
−

QU
2

2
+

RU
3

3
� Z. (5)
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Next, we attempt to detect the bifurcation of the phase
orbits of the dynamical system in (4) with various conditions on
the parameters α, β, κ,ω. From the observation, it is clear
that a smooth homoclinic orbit of the system in (4) arises
from the smooth solitary waves in equation (1). When the
solution of U(κx − ω t) � U(ξ), (−∞< ξ <∞) of the sys-
tem guarantees limξ⟶−∞U(ξ) � a and limξ⟶ ∞U(ξ) � b,
U(ξ) is said to be homoclinic and heteroclinic orbits for
a � b and a≠ b respectively. Normally, a homoclinic orbit
of the (4) correlates with a solitary wave solution of the (1)
and a heteroclinic orbit of the (4) correlates with a king
(antiking) wave solution of the (1). Alike, a periodic orbit of
the system in (4) keeps up a correspondence with a periodic
travelling wave solution of (1). +erefore, we can explore to
locate all possible phase portraits of the dynamical system
in (4) with the help of different constraints on the pa-
rameters α, β, κ,ω.

For critical points in an equilibrium situation, we have to
consider U′ � 0 and V′ � 0 then that prototype (4) will
provide two equilibrium points Ν0(0, 0) and Ν1(Q/R, 0), if
Q≠ 0. Furthermore, the dynamical prototype (4) yields one
equilibrium point Ν(0, 0) at Q � 0. Now, let us assume,
A(UΝ, VΝ) to be the coefficients’ matrix of the linearized
prototype (4) at equilibrium points Νi(i � 0, 1) and let I �

det A(UΝ, VΝ) . +erefore, we have

I Ν0( 􏼁 � −Q,

I Ν1( 􏼁 � Q,

Trace A Ν0( 􏼁( 􏼁 � P,

Trace A Ν1( 􏼁( 􏼁 � P.

(6)

With the help of the bifurcation theorem [21, 22] and the
above inspection, we will get the following remarks:

Group-1: for Q> 0 the nature at the origin Ν0(0, 0) is a
saddle point and Ν1(Q/R, 0) is a center point, whereas
the corresponding bifurcations of phase portraits of the
prototype (4) are visualized in Figures 1(a) and 1(b),
respectively.
Group-2: for Q< 0 the nature at origin Ν0(0, 0) is a
center point and Ν1(Q/R, 0) is a saddle point, whereas
the corresponding bifurcations of phase portraits of the
prototype (4) are depicted in Figures 2(a) and 2(b),
respectively.
Group-3: for Q � 0 the nature at origin Ν0(0, 0) is a
cusp point, whereas the corresponding bifurcations of
phase portraits of the prototype (4) are depicted in
Figures 3(a) and 3(b), respectively.

3. Explicit Expressions of Solution for the
Model (1)

In this segment, we derive various explicit parametric
illustrations of travelling wave solutions for the model
(1). For effortlessness, the energy level of the
Hamiltonian is specified as Z0 � H(0, 0) � 0 and
Z1 � H(Q/R, 0) � −Q3/6R2 .

3.1. Examining Group-1 Based on Figure 1 Observation
(Part 2)

(I) For the state Q> 0, R> 0, the allied homoclinic
orbit at Ν0(0, 0) is described via H(U, V) � Z0,

where the model (1) suggests itself as a valley type
smooth solitary wave solution specified by
Figure 1(a). Using the relation H(U, V) � Z0 � 0 in
equation (5), yields

V � ±
���
2R

3

􏽲

U

������
3Q

2R
− U

􏽲

. (7)

Combining the first equation of the prototype (4)
and (7), we attain the parametric expression of the
valley-type smooth solitary wave solution as
follows:

U(x, t) �
3Q

2R

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
1 − tanh2

��
Q

√

2
|ξ|􏼠 􏼡􏼠 􏼡, (8)

where ξ � κx − ω t,
P � α/ωβ, Q � 1/κ2β, R � 1/2κωβ +e profile of the
valley solitary wave solution (8) is shown in
Figure 4(a) with a � −1, b � 1 ,ω � 1, κ � 1,

P � −1, Q � 1, R � 0.5
(II) For the state Q> 0, R< 0, it is equivalent to the

homoclinic orbit to the stable point at Ν0(0, 0)

identified by H(U, V) � Z0, where the model (1)
suggests itself as a valley-type smooth solitary wave
solution portrayed in Figure 1(b). Using the rela-
tion H(U, V) � Z0 � 0 in equation (5), yields

V � ±
����

−
2R

3

􏽲

U

��������

−
3Q

2R
− U

􏽲

. (9)

Combining the first equation of the prototype (5)
and (9), we attain the parametric expression of the
valley-type smooth solitary wave solution as
follows:

U(x, t) �
3Q

2R

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
tanh2

��
Q

√

2
|ξ|􏼠 􏼡 − 1􏼠 􏼡, (10)

where ξ � κx − ω t, P � α/ωβ, Q � 1/κ2β,

R � 1/2κωβ +e profile of the valley solitary wave
solution (10) is shown in Figure 4(b) with a �

−1, b � 1 ,ω � 1, κ � −1, P � −1, Q � 1, R � −0.5
(III) For the state Q> 0, R> 0 or Q> 0, R< 0, the model

(1) represents a set of smooth periodic wave so-
lutions described by H(U, V) � Z, Z ∈ (Z1, 0) as
can be viewed in Figures 1(a) and 1(b), respectively.
For the state Q> 0, R> 0, the phase portrait of the
prototype (4) is shown in Figure 1(a). In this phase,
the formulation of the closed domain can be written
as: V � ±

�����
2R/3

√ ������������������������
(U − Θ1) (Θ2 − U) (Θ3 − U)

􏽰
,

(11) where (Θ1, 0), (Θ2, 0) and (Θ3, 0) are the
meeting points of the curve identified by the orbits
H(U, V) � Z, h ∈ (Z1, 0) on the U-axis that pre-
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serve the condition −Q/2R � Θ1 <U<Θ2(�
Q/R)<Θ3.Combining the �rst equation of the
prototype equations (4) and (11), we attain the

parametric formulation of the periodic solution as
follows:

U(x, t) � Θ1 + Θ2−Θ1( )sn2
�����������
R Θ3 − Θ1( )

6

√

|ξ|,

���������
Θ2 −Θ1( )
Θ3 −Θ1( )

√
 . (11)

­e shape of the periodic outcomes of (12) is displayed in
Figure 4(c) with ω � 1, κ � −1, Q � 1, R � 0.5.

For the state Q> 0, R< 0, similar investigation can be
used in Figure 1(b). Suppose, (Θ4, 0), (Θ5, 0) and (Θ6, 0) are
the meeting points of the curve identi�ed by the orbits

H(U,V) � Z, Z ∈ (Z1, 0) on the U -axis that preserve the
condition Q/2R � Θ4 <U<Θ5 <Θ6.

We acquire the parametric formulation of the periodic
solution as follows:
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Figure 2: ­e phase portraits of the prototype equation (4) for Q< 0; (a) R> 0; (b) R< 0.
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Figure 1: ­e phase portraits of the prototype equation (4) for Q> 0; (a) R> 0; (b) R< 0.
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Figure 4: Shapes of the solutions. (a) Bright bell wave of equation (8), (b) dark bell wave of equation (10), (c) periodic wave of equation (12),
and (d) periodic wave of equation (13).
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Figure 3: ­e phase portraits of the prototype equation (4) for Q � 0; (a) R> 0; (b) R< 0.
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U(x, t) � Θ4 +
Θ4 − Θ5( 􏼁 Θ6 −Θ4( 􏼁

Θ6 − Θ5( 􏼁 sn
2

������������

R Θ4 − Θ6( 􏼁/6
􏽱

|ξ|,

������������������

Θ6 − Θ5( 􏼁/ Θ6 − Θ4( 􏼁

􏽱

􏼒 􏼓 − Θ6 − Θ4( 􏼁

. (12)

+e shape of the periodic outcomes of (13) is presented
in Figure 4(d) with ω � 1, κ � −1, Q � 1, R � 0.5.

3.2. Examining Group-2 Based on Figure 2 Observation
(Part 2)

(I) For the state Q< 0, R> 0, it is equivalent to the
homoclinic orbit at the stable point Ν1(Q/R, 0)

identified by H(U, V) � Z1 where the prototype (4)
suggests itself as a smooth solitary wave solution of
valley type as depicted in Figure 2(a). With the help
of the relation H(U, V) � Z1 yields

V
2

�
2R

3
U +

Q

R
􏼒 􏼓

2
U −

Q

2R
􏼒 􏼓. (13)

+en, by means of the first equation of the pro-
totype (4) and (14), we attain the parametric ex-
pression of the valley-type smooth solitary wave
solution that has a similar nature as depicted in
Figure 4(a) as follows:

U(x, t) �
Q

2R

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
1 − 3 tanh2

���
−Q

√

2
|ξ|􏼠 􏼡􏼠 􏼡, (14)

where ξ � κx − ω t, P � α/ωβ, Q � 1/κ2β, R �

1/2 κωβ
(II) For the state Q< 0, R< 0, it is related to the

homoclinic orbit at the stable point Ν1(Q/R, 0)

identified by H(U, V) � Z1, where the model (1)
represents a valley-type smooth solitary wave so-
lution as displayed in Figure 2(b). With the help of
the relation H(U, V) � Z1, yields

V
2

� −
2R

3
U +

Q

R
􏼒 􏼓

2 Q

2R
− U􏼒 􏼓. (15)

+en, by means of the first equation of the pro-
totype (4) and (16), we attain the parametric ex-
pression of the valley-type smooth solitary wave
solution that has similar nature as depicted in
Figure 4(b) as follows:

U(x, t) �
Q

2R

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
3 tanh2

���
−Q

√

2
|ξ|􏼠 􏼡 − 1􏼠 􏼡, (16)

where ξ � κx − ω t, P � α/ωβ, Q � 1/κ2β, R �

1/2 κωβ
(III) For the state Q< 0, R> 0 or Q< 0, R< 0, the pro-

totype (4) has a group of smooth periodic wave
solutions identified by H(U, V) � Z, Z ∈ (0, Z1),
which can be observed in Figures 2(a) and 2(b),
respectively. For this aspect, the formulation of the
periodic solution is identical to the solutions in (12)
and (13).

3.3. Examining Group-3 Based on Figure 3 Observation (Part
2).

(I) For the state Q � 0, R> 0, there is an unrestricted
orbit with the alike Hamiltonian as the originΝ0(0 , 0)

(Figure 3(a)). +e open cusp orbit can be specified by

V
2

�
2R

3
U

3
. (17)

+en, by means of the first equation of the prototype
(4) and (18), we acquire the periodic cusp wave
solution as follows:

U(x, t) �
6

|R| ξ2
, (18)

where ξ � κx − ω t, P � α/ωβ, Q � 1/κ2β, R �

1/2 κωβ
+e shape of the singular bright cusp wave of (19) is
depicted in Figure 5(a) a � −1, b � 1 ,ω � 1, κ � 1,

P � −1, Q � 0, R � 0.5.
(II) For the state Q � 0, R< 0, there is also an unre-

stricted orbit with the alike Hamiltonian as the
origin Ν0(0, 0) (Figure 3(b)). Due to this condition,
we also catch out the similar periodic cusp wave
solution in the form as follows:

U(x, t) � −
6

|R|ξ2
, (19)

where ξ � κx −ωt, P � α/ωβ,Q � 1/κ2β,R � 1/2κωβ

+e profile of the singular dark cusp wave solution in
(20) is depicted in Figure 5(b) a � −1, b � 1 ,ω � 1,

κ � 1, P � −1, Q � 0, R � −0.5.

4. Solutions of the Oskolkov Model via the
Unified Method and Graphical Illustration

Let us apply a steadfast treatment of the unified method
[32, 33] to the (1 + 1) dimensional Oskolkovmodel (1) in this
portion. Graphical presentations are also outlined here.

4.1. Solutions of the Oskolkov Model. Using the travelling
wave variable, we reinstate (1) into the ODE (2). Next, we
enumerate the balance number of expressions in (2) between
the linear term, U″ and the nonlinear term, U2 by letting
N � 2. +rough this effort, a trial solution can be formed as
follows:

U(ξ) � a0 + a1S(ξ) + a2S(ξ)
2

+ b1S(ξ)
− 1

+ b2S(ξ)
− 2

. (20)

Here ai, bi; i � 0, 1, 2 are unfamiliar constants to be
formed subsequently and we consider the derivative of S(ξ)

satisfying an ODE namely the Riccati differential equation
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S′ � S(ξ)2 + λ. (21)

­e solutions of the given Riccati equation are given as
follows:

Case-01: hyperbolic function (when λ< 0) as follows:

S(ξ) �

���������
− l2 + d2( )λ
√

− l
���
−λ

√
cosh(2

���
−λ

√
(ξ + E))

l sinh(2
���
−λ

√
(ξ + E)) + d

,

−
���������
− l2 + d2( )λ
√

− l
���
−λ

√
cosh(2

���
−λ

√
(ξ + E))

l sinh(2
���
−λ

√
(ξ + E)) + d

,

���
−λ

√
+

−2l
���
−λ

√

l + cosh(2
���
−λ

√
(ξ + E)) − sinh(2

���
−λ

√
(ξ + E))

,

−
���
−λ

√
+

2l
���
−λ

√

l + cosh(2
���
−λ

√
(ξ + E)) + sinh(2

���
−λ

√
(ξ + E))

.




(22)

Case-02: trigonometric function (when λ> 0) as
follows:

S(ξ) �

���������
l2 − d2( )λ

√
− l

�
λ

√
cos(2

�
λ

√
(ξ + E))

l sin(2
�
λ

√
(ξ + E)) + d

,

−
��������
l2 − d2( )λ

√
− l

�
λ

√
cos(2

�
λ

√
(ξ + E))

l sin(2
�
λ

√
(ξ + E)) + d

,

i
�
λ

√
+

−2li
�
λ

√

l + cos(2
�
λ

√
(ξ + E)) − i sin(2

�
λ

√
(ξ + E))

,

−i
�
λ

√
+

2li
�
λ

√

l + cos(2
�
λ

√
(ξ + E)) + i sin(2

�
λ

√
(ξ + E))

,




(23)

where l≠ 0 and d, S(ξ) are real arbitrary constants. Case-03: rational function solutions (when λ � 0.)
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Figure 5: Shapes of the solutions. (a) Bright cusp wave of equation (19) and (b) dark cusp wave of equation (20).
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S(ξ) �
1

ξ + E
. (24)

Differentiating (21) as many times as necessary while
satisfying (22), these expressions are substituted back into

(1). Next, we attain a polynomial of S(ξ)J where
(J � ± 0, ± 1, ± 2, ..., ± N), and then by letting the coef-
ficients of S(ξ)J equal to zero yields as follows:

S
4
(ξ):

1
2

ka
2
2 + 6βk

2ωa2 � 0,

S
3
(ξ): ka1a2 − 2αk

2
a2 + 2βk

2ωa1 � 0,

S
2
(ξ): 8βk

2ωa2λ + ka0a2 − αk
2
a1 +

1
2

ka
2
1 − ωa2 � 0,

S
1
(ξ): ka2b1 + ka0a1 − 2αk

2
a2λ + 2βk

2ωa1λ − ωa1 � 0,

S
0
(ξ): 2βk

2ωb2 − αk
2
a1λ + 2βk

2ωa2λ
2

+ αk
2
b1 + ka2b2 − ωa0 + ka1b1 +

1
2

ka
2
0 � 0,

S
− 1

(ξ): 2αk
2
b2 + 2βk

2ωb1λ − ωb1 + +ka1b2 + ka0b1 � 0,

S
− 2

(ξ): − ωb2 + 8βk
2ωb2λ + ka0b2 +

1
2

kb
2
1 + αk

2
b1λ � 0,

S
− 3

(ξ): 2βk
2ωb1λ

2
+ 2αk

2
b2λ + kb1b1 � 0,

S
− 4

(ξ):
1
2

kb
2
2 + 6βk

2ωb2λ
2

� 0.

(25)

By solving the above system of equations, many sets of
solutions can be attained as follows:

Set-01:

k �
1
24

���
−6
βλ

􏽳

,

ω �
α
20β

���
−1
λ

􏽲

,

a0 �
α
4

��
6
β

􏽳

,

a1 �
α
10

���
−6
βλ

􏽳

,

a2 � −
α
40

���
−6
βλ

􏽳 ���
−1
λ

􏽲

,

b1 �
−α
10

����
−6λ
β

,

􏽳

b2 �
−3λα
20

��
1
β

􏽳

.

(26)

Set-02:

k �
1
24

��
6
βλ

􏽳

,

ω �
α
20β

���
−1
λ

􏽲

,

a0 �
3α
20

���
−6
β

􏽳

,

a1 �
α
10

��
6
βλ

􏽳

,

a2 � −
α
40

��
6
βλ

􏽳 ���
−1
λ

􏽲

,

b1 �
−α
10

���
6λ
β

,

􏽳

b2 �
−λα
40

���
−6
β

􏽳

.

(27)

8 Mathematical Problems in Engineering



Set-03:

k �
1
12

���
−6
βλ

􏽳

,

ω �
α
10β

���
−1
λ

􏽲

,

a0 �
3α
10

��
6
β

􏽳

,

a1 �
α
5

���
−6
βλ

􏽳

,

a2 � −
α
10

���
−6
βλ

􏽳 ���
−1
λ

􏽲

,

b1 � b2 � 0.

(28)

Set-04:

k �
1
12

��
6
βλ

􏽳

,

ω �
α
10β

���
−1
λ

􏽲

,

a0 �
α
10

���
−6
β

􏽳

,

a1 �
α
5

��
6
βλ

􏽳

,

a2 � −
α
10

��
6
βλ

􏽳 ���
−1
λ

􏽲

,

b1 �

b2 � 0.

(29)

Set-05:

k �
1
12

���
−6
βλ

􏽳

,

ω �
α
10β

���
−1
λ

􏽲

,

a0 �
3α
10

��
6
β

􏽳

,

b1 � −
α
5

����
−6λ
β

􏽳

,

b2 �
λα
10

��
6
β

􏽳

,

a1 � a2 � 0.

(30)

Set-06:

k �
1
12

��
6
βλ

􏽳

,

ω �
α
10β

���
−1
λ

􏽲

,

a0 �
α
10

���
−6
β

􏽳

,

b1 � −
α
5

��
6λ
β

􏽳

,

b2 � −
λα
10

���
−6
β

􏽳

,

a1 � a2 � 0.

(31)

Now, by plugging these expressions into (21) for un-
familiar constants, different types of solutions for (1) can be
acquired.

Mathematical Problems in Engineering 9



For the Set-01, if λ< 0, then we obtain the hyperbolic
function solutions U1,1(ξ) �

α
4

��
6
β

􏽳

+
α
10

���
−6
βλ

􏽳 ���������
− l

2
+ d

2
􏼐 􏼑λ

􏽱
− l

���
−λ

√
cosh(2

���
−λ

√
(ξ + E))

l sinh(2
���
−λ

√
(ξ + E)) + d

⎛⎜⎜⎝ ⎞⎟⎟⎠

−
α
40

���
−6
βλ

􏽳 ����
−1
λ

􏽲 ���������
− l2 + d2( )λ

􏽰
− l

���
−λ

√
cosh(2

���
−λ

√
(ξ + E))

l sinh(2
���
− λ

√
(ξ + E)) + d

􏼠 􏼡

2

−
α
10

����
−6λ
β

􏽳 ���������
− l2 + d2( )λ

􏽰
− l

���
−λ

√
cosh(2

���
−λ

√
(ξ + E))

l sinh(2
���
− λ

√
(ξ + E)) + d

􏼠 􏼡

− 1

−
3λα
20

��
1
β

􏽳 ���������
− l2 + d2( )λ

􏽰
− l

���
−λ

√
cosh(2

���
−λ

√
(ξ + E))

l sinh(2
���
− λ

√
(ξ + E)) + d

􏼠 􏼡

− 2

.

U1,2(ξ) �
α
4

��
6
β

􏽳

+
α
10

���
−6
βλ

􏽳
−

���������
− l

2
+ d

2
􏼐 􏼑λ

􏽱
− l

���
−λ

√
cosh(2

���
−λ

√
(ξ + E))

l sinh(2
���
−λ

√
(ξ + E)) + d

⎛⎜⎜⎝ ⎞⎟⎟⎠

−
α
40

���
−6
βλ

􏽳 ����
−1
λ

􏽲
−

���������
− l2 + d2( )λ

􏽰
− l

���
−λ

√
cosh(2

���
−λ

√
(ξ + E))

l sinh(2
���
− λ

√
(ξ + E)) + d

􏼠 􏼡

2

−
α
10

����
−6λ
β

􏽳
−

���������
− l2 + d2( )λ

􏽰
− l

���
−λ

√
cosh(2

���
−λ

√
(ξ + E))

l sinh(2
���
− λ

√
(ξ + E)) + d

􏼠 􏼡

− 1

−
3λα
20

��
1
β

􏽳
−

���������
− l2 + d2( )λ

􏽰
− l

���
−λ

√
cosh(2

���
−λ

√
(ξ + E))

l sinh(2
���
− λ

√
(ξ + E)) + d

􏼠 􏼡

− 2

.

U1,3(ξ) �
α
4

��
6
β

􏽳

+
α
10

��
6
β

􏽳

1 +
−2l

l + cosh(2
���
−λ

√
(ξ + E)) − sinh(2

���
−λ

√
(ξ + E))

􏼠 􏼡

−
α
40

���
−6
βλ

􏽳 ����
−1
λ

􏽲
���
−λ

√
+

−2l
���
−λ

√

l + cosh(2
���������
− λ(ξ + E)

􏽰
) − sinh(2

���
− λ

√
(ξ + E))

􏼠 􏼡

2

−
α
10

����
−6λ
β

􏽳
���
−λ

√
+

−2l
���
−λ

√

l + cosh(2
���
− λ

√
(ξ + E)) − sinh(2

���
− λ

√
(ξ + E))

􏼠 􏼡

− 1

−
3λα
20

��
1
β

􏽳
���
−λ

√
+

−2l
���
−λ

√

l + cosh(2
���
− λ

√
(ξ + E)) − sinh(2

���
− λ

√
(ξ + E))

􏼠 􏼡

− 2

U1,4(ξ) �
α
4

��
6
β

􏽳

+
α
10

��
6
β

􏽳

−1 +
2l

l + cosh(2
���
−λ

√
(ξ + E)) + sinh(2

���
−λ

√
(ξ + E))

􏼠 􏼡

−
α
40

���
−6
βλ

􏽳 ����
−1
λ

􏽲

−
���
−λ

√
+

2l
���
−λ

√

l + cosh(2
���
− λ

√
(ξ + E)) + sinh(2

���
− λ

√
(ξ + E))

􏼠 􏼡

2

−
α
10

����
−6λ
β

􏽳

−
���
−λ

√
+

2l
���
−λ

√

l + cosh(2
���
− λ

√
(ξ + E)) + sinh(2

���
− λ

√
(ξ + E))

􏼠 􏼡

− 1

−
3λα
20

��
1
β

􏽳

−
���
−λ

√
+

2l
���
−λ

√

l + cosh(2
���
− λ

√
(ξ + E)) + sinh(2

���
− λ

√
(ξ + E))

􏼠 􏼡

− 2

,

(32)

10 Mathematical Problems in Engineering



where ξ � 1/24
�����
−6/βλ

􏽰
x − α/20β

�����
−1/λ

√
t while l, d, E are

arbitrary constants.
For the Set-01, if λ> 0, then we obtain trigonometric

function solutions

U1,5(ξ) �
α
4

��
6
β

􏽳

+
α
10

���
−6
βλ

􏽳 ���������
l
2

− d
2

􏼐 􏼑λ
􏽱

− l
�
λ

√
cos(2

�
λ

√
(ξ + E))

l sin(2
�
λ

√
(ξ + E)) + d

⎛⎜⎜⎝ ⎞⎟⎟⎠

−
α
40

���
−6
βλ

􏽳 ����
−1
λ

􏽲 ��������
l2 − d2( )λ

􏽰
− l

�
λ

√
cos(2

�
λ

√
(ξ + E))

l sin(2
�
λ

√
(ξ + E)) + d

􏼠 􏼡

2

−
α
10

����
−6λ
β

􏽳 ��������
l2 − d2( )λ

􏽰
− l

�
λ

√
cos(2

�
λ

√
(ξ + E))

l sin(2
�
λ

√
(ξ + E)) + d

􏼠 􏼡

− 1

−
3λα
20

��
1
β

􏽳 ��������
l2 − d2( )λ

􏽰
− l

�
λ

√
cos(2

�
λ

√
(ξ + E))

l sin(2
�
λ

√
(ξ + E)) + d

􏼠 􏼡

− 2

.

U1,6(ξ) �
α
4

��
6
β

􏽳

+
α
10

���
−6
βλ

􏽳
−

��������
l
2

− d
2

􏼐 􏼑λ
􏽱

− l
�
λ

√
cos(2

�
λ

√
(ξ + E))

l sin(2
�
λ

√
(ξ + E)) + d

⎛⎜⎜⎝ ⎞⎟⎟⎠

−
α
40

���
−6
βλ

􏽳 ����
−1
λ

􏽲
−

��������
l2 − d2( )λ

􏽰
− l

�
λ

√
cos(2

�
λ

√
(ξ + E))

l sin(2
�
λ

√
(ξ + E)) + d

􏼠 􏼡

2

−
α
10

����
−6λ
β

􏽳
−

��������
l2 − d2( )λ

􏽰
− l

�
λ

√
cos(2

�
λ

√
(ξ + E))

l sin(2
�
λ

√
(ξ + E)) + d

􏼠 􏼡

− 1

−
3λα
20

��
1
β

􏽳
−

��������
l2 − d2( )λ

􏽰
− l

�
λ

√
cos(2

�
λ

√
(ξ + E))

l sin(2
�
λ

√
(ξ + E)) + d

􏼠 􏼡

− 2

.

U1,7(ξ) �
α
4

��
6
β

􏽳

+
α
10

��
6
β

􏽳

1 +
−2l

l + cos(2
�
λ

√
(ξ + E)) − i sin(2

�
λ

√
(ξ + E))

􏼠 􏼡

−
α
40

���
−6
βλ

􏽳 ����
−1
λ

􏽲

i
�
λ

√
+

−2li
�
λ

√

l + cos(2
�
λ

√
(ξ + E)) − i sin(2

�
λ

√
(ξ + E))

􏼠 􏼡

2

−
α
10

����
−6λ
β

􏽳

i
�
λ

√
+

−2li
�
λ

√

l + cos(2
�
λ

√
(ξ + E)) − i sin(2

�
λ

√
(ξ + E))

􏼠 􏼡

− 1

−
3λα
20

��
1
β

􏽳

i
�
λ

√
+

−2li
�
λ

√

l + cos(2
�
λ

√
(ξ + E)) − i sin(2

�
λ

√
(ξ + E))

􏼠 􏼡

− 2

.

U1,8(ξ) �
α
4

��
6
β

􏽳

+
α
10

���
−6
βλ

􏽳

−i
�
λ

√
+

2li
�
λ

√

l + cos(2
�
λ

√
(ξ + E)) + i sin(2

�
λ

√
(ξ + E))

􏼠 􏼡

−
α
40

���
−6
βλ

􏽳 ����
−1
λ

􏽲

−i
�
λ

√
+

2li
�
λ

√

l + cos(2
�
λ

√
(ξ + E)) + i sin(2

�
λ

√
(ξ + E))

􏼠 􏼡

2

−
α
10

����
−6λ
β

􏽳

−i
�
λ

√
+

2li
�
λ

√

l + cos(2
�
λ

√
(ξ + E)) + i sin(2

�
λ

√
(ξ + E))

􏼠 􏼡

− 1

−
3λα
20

��
1
β

􏽳

−i
�
λ

√
+

2li
�
λ

√

l + cos(2
�
λ

√
(ξ + E)) + i sin(2

�
λ

√
(ξ + E))

􏼠 􏼡

− 2

,

(33)
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where ξ � 1/24
�����
−6/βλ
√

x − α/20β
�����
−1/λ

√
t while l≠ 0, d and

E are real arbitrary constants.
If λ � 0, we can search out rational function type so-

lutions, but in this case, if we consider λ � 0 then the ex-
ecuted values of k,ω, a2, b1 and b2 will be unde�ned. So, the
solution is rejected. Similarly, the other sets (Set-02 to Set-
06) each provide us with eight solutions in the same way.

4.2. Numerical Illustrations of the Obtained Results and
Discussion. In this section, we will deliberate the nature and
behavior of all the solutions physically with 2-D and 3-D
graphs, as well as density plots of the (1 + 1) dimensional
Oskolkov model by instigating the most recent method,
namely, the uni�ed method. ­e solution U1,1 conveys the
multipeaked bright solitonic nature for the parametric
values λ � −0.5, α � 1, β � 0.2, d � 1, E � 0.5, l � 2 . Oppo-
sitely, the solution U1,2 conveys the multipeaked dark
solitonic nature for the parametric values
λ � −0.5, α � 1, β � 0.2, d � 1, E � 0.5, l � 2 as illustrated in
Figure 6. ­e real part of U1,5 presents the kink type shock

wave whereas its imaginary part presents the combo bright-
dark bell wave for the parameters λ � 2, α � −1, β � 1, d �
1, E � 3, l � 2 as illustrated in Figure 7. On the other hand,
the real part ofU1,6 conveys the combo dark-bright bell wave
with a shock wave, whereas its imaginary part expresses the
bright bell wave with a shock for the parameter
λ � 2, α � β � 1, d � 3, E � −3, l � 2, as illustrated in Fig-
ure 8. ­e real part of the solutionU1,7 presents the dark bell
as a double shock wave but its imaginary part presents the
double bright-dark bell wave with a shock for the parameters
λ � 2, α � β � 1, d � 3, E � −3, l � 2, as demonstrated in
Figure 9. ­e real part of U1,8 conveys the bright bell wave
with double shocks but its imaginary part conveys the
bright-dark bell wave with a shock for the parametric values
λ � 2, α � −1, β � 1, d � 3, E � −3, l � 2, as demonstrated in
Figure 10. Both the real and imaginary parts of U5,5 rep-
resents the multi-rogue type waves with singularities for
λ � 2, α � 1, β � 0.2, d � 1, E � −1, l � −2, as demonstrated
in Figure 11. Yet, every solution obtained for the model by
using this technique can be reduced to the multirogue
(bright-dark) type wave with the changing signs of the
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Figure 6: (a) U1,1, (b) U1,2 with parameters λ � −0.5, α � 1, β � 0.2, d � 1, E � 0.5, l � 2.
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Figure 7: (a) Real and (b) imaginary parts of U1,5 for λ � 2, α � −1, β � 1, d � 1, E � 3, l � 2.
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Figure 8: (a) Real and (b) imaginary parts of U1,6 for λ � 2, α � β � 1, d � 3, E � −3, l � 2.
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Figure 9: (a) Real and (b) imaginary parts of U1,7 for λ � 2, α � β � 1, d � 3, E � −3, l � 2.
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Figure 10: (a) Real and (b) imaginary parts of U1,8 for λ � 2, α � −1, β � 1, d � 3, E � −3, l � 2.
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parameters β and E. Such a dynamic is displayed in Figure 12
of the solution U2,1 for the parametric values λ � −1, α � −1,
β � 0.2, d � 1, E � 0, l � 0.5. Besides, we display its density
and 2D plots of corresponding real and imaginary parts
altogether.

5. Conclusions

­rough this work, the key e�ort is to procure, test, and
explore the innovative travelling wave solutions and the
physical properties of the nonlinear Oskolkov model for
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Figure 11: (a) Real and (b) imaginary parts of U5,5 for λ � 2, α � 1, β � 0.2, d � 1, E � −1, l � −2.
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Figure 12: (a) Real and (b) imaginary parts (upper plots for real and lower plots for the imaginary part) of U2,1 for λ � −1, α � −1, β �
0.2, d � 1, E � 0, l � 0.5 and (c) 2D plot of the graph at t � 0.
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Kevin-Voigt fluids by utilizing two reliable mathematical
techniques. Based on the bifurcation theory of the dynamical
scheme, we explored the bifurcation and derived a phase
portrait of the model using diverse parametric conditions.
We have derived smooth bright bell and dark bell waves,
periodic solutions as well as singular dark cusp and bright
cusp waves. +ese travelling waves are achieved by corre-
sponding to homoclinic, periodic, and open orbits with the
cusp of each orbit of the phase portraits, respectively. +e
unified method as a substantial way to derive the new
travelling wave solutions has been utilized through which we
have successfully achieved the solutions for multipeaked
bright and dark solitons, shock waves, bright bell waves with
a shock, bright bell waves with a double shock, combo
bright-dark and dark-bright bell waves with a shock, dark
bell into a double shock wave, and bright-dark multirogue
type waves. +e bifurcation analysis of this model is pre-
sented first in this article, even though most of the obtained
solutions derived by direct integration from the Hamilto-
nian of the model according to each energy is the first step
here. In particular, the bright bell waves with a shock, bright
bell waves with double shock, combo bright-dark, combo
dark-bright bell waves with a shock, dark bell into a double
shock wave, and bright-dark multirogue type waves were not
reported in the previous literature. +is technique proposes
solutions with free parameters that could be significant to
deliberate more intricate nonlinear corporal phenomena.
+e obtained solutions in this paper reaffirmed that the
method is very effective and easily applicable to formulate
more exact travelling wave solutions than other methods of
the nonlinear evolution models occurring in many mathe-
matical physics and engineering applications.
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