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An intelligent transportation system (ITS) is an advanced application that supports multiple transport and tra�c management
modes. ITS services include calling for emergency rescue andmonitoring tra�c laws with the help of roadside units. It is observed
that many people lose their lives in motorbike accidents mainly due to not wearing helmets. Automatic helmet violation detection
of motorcyclists from real-time videos is a demanding application in ITS. It enables one to spot and penalize bikers without a
helmet. So, there is a need to develop a system that automatically detects and captures motorbikers without a helmet in real time.
�is work proposes a system to detect helmet violations automatically from surveillance videos captured by roadside-mounted
cameras. �e proposed technique is based on faster region-based convolutional neural network (R-CNN) deep learning model
that takes video as an input and performs helmet violation detection to take necessary actions against tra�c rule violators.
Experimental analysis shows that the proposed system gives an accuracy of 97.69% and supersedes its competitors.

1. Introduction

�e world’s population is increasing at an unprecedented
rate. As per a survey report, the world population was
around 600 million at the start of the eighteenth century,
which has now increased up to 7.8 billion in 2020 [1]. �e
increasing population rate is directly proportional to an
increase in the use of vehicles. In 2018, the total number of
registered vehicles was 23,588,268 compared to 21,506,641
in the previous year [2]. Motorbike is cheaper and an
a�ordable source of transportation for middle-class
people. �e number of registered motorbikes reached an
astonishing number of 17,465,880 in the year 2018, as
compared to 15,664,098 in the previous year [1, 2].
According to the stats for the year 2018, 74% of all reg-
istered vehicles were motorbikes [3]. Due to the increased
number of vehicles, road congestion caused more

accidents [4]. An intelligent transportation system (ITS) is
an advanced transportation system, a collection of inte-
grated technologies like electronics, communication,
sensors, cameras, and so on [5]. It aims to provide a risk-
free system that saves human lives and time and keeps
them informed about road conditions, like weather,
construction, and other calamities [6–8]. ITS is capable of
implementing a transportation system that is smart, fully
functional, and based on real-time calculations. �is
system usually calls the helpline in case of any emergency
or accident encountered by travellers. It uses surveillance
cameras mounted on roads to check violations [9, 10]. It
incorporates di�erent applications from basic to ad-
vanced, i.e., navigation systems for vehicles, variable
message signs, and surveillance cameras on the road are
some of its applications [11–14]. Figure 1 displays some
applications of ITS.
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Figure 2 shows an increase in the number of accidents in
Pakistan, separating fatal and non-fatal accidents [15].
Motorbike is not only the most widely used vehicle but also
the most dangerous mode of transportation [16]. According
to a study conducted in Pakistan Institute of Medical Science
(PIMS) during September 2015–December 2015, 709 total
accidents were reported in the hospital. Out of these acci-
dents, 71% were related to motorbikers [17]. It shows that
most of the victims of traffic accidents are bike riders. So, it
leads to a high causality rate in bikers during or after ac-
cidents. In those cases, riding without a helmet is the pri-
mary cause of death. According to stats, helmet reduces the
death rate by 37% and the head injury rate by 69% [18]. So, it
is mandatory by law to use a helmet while riding a bike [19].
Capturing all the people violating the rules for a traffic
warden standing on a road is difficult. (e worldwide re-
views of studies proved that fatal accidents causing severe
injuries had been reduced from 40% to 11% in the presence
of surveillance cameras [20]. So, it is evident that there is a
need to develop an intelligent system that automatically
detects bikers without wearing a helmet with the help of
surveillance cameras.

(is paper develops a system for automatically detecting
bikers without a helmet using a faster region-based con-
volutional neural network (R-CNN). (e system takes input
in the form of video and converts that into frames to perform
helmet violation detection. (e dataset has been collected
from two sources, i.e., online repositories and self-captured
videos from different locations in Lahore, Pakistan. (e
experimental analysis shows that the proposed system has
97.69% accuracy. It may help to take necessary actions
against traffic rule violators.

(e rest of the paper is organized as follows. Section 2
consists of a literature review. Section 3 contains the pro-
posed helmet violation detection technique. Experimental
analysis is performed in Section 4. Finally, Section 5 con-
cludes the paper.

2. Literature Review

Computer vision and digital image processing are used in
various applied domains such as remote sensing, pose de-
tection, decision making, path detection, defect detection,
and automatic driving [21–26]. (e recent focus of research
in this field is the use of deep learning models that have
shown good results in various applied domains [27–29].

Many researchers have suggested different methods to
solve the problem of automatic detection of helmet in real-
time environment. Cheverton [30] implemented a system
using supper vector machine (SVM) and background sub-
traction techniques to identify bikers with and without a
helmet. (e self-generated dataset has been used for the
development of the system. However, the system has two
main limitations. Firstly, it examines the whole frame for
helmet detection, increasing overall computational cost.
Secondly, it also has an issue: it incorrectly classified the
number of heads without a helmet. Silva et al. [31] intro-
duced a hybrid descriptor model based on texture and
geometric features to detect bikers without a helmet. (e
Hough transform (HT) and SVM are used to detect the head
of the biker. (e self-generated dataset has been used for the
training of the algorithm.(ey extended their work and used
a multilayer perception model to differentiate among dif-
ferent objects showing an accuracy of 94.23%.

Silva et al. [32] proposed a system based on HT and
histogram oriented gradient (HOG) that helps extract the
image’s attributes. (e input images are taken from the
roadside cameras, and database of 255 images is established.
(e developed system has given accuracy of 91.37%. War-
anusast et al. [33] suggested a system based on the K-nearest
neighbor (KNN) classifier that helps determine and detect
motorcyclists with and without helmets. (e system has
been tested on the self-created dataset. (e input image is
taken from a web camera. (e experimental results showed
that the system had given a correct detection for the far lane,
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Figure 1: Applications of ITS.
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near lane, and both lanes as 68%, 84%, and 74%, respectively.
Dahiya et al. [34] developed a system that helps detect a
motorcyclist without a helmet using HOG, SIFT, LBP, and
SVM machine learning techniques. (e input is taken from
the camera in video and then converted to frames for further
processing. (ey applied the background subtraction
technique to select moving objects from the frames. HOG,
scale invariant feature transform (SIFT), and local binary
pattern (LBP) techniques are applied to extract features. If
anything except a bike is detected, it has been overlooked.
After that, SVM is used to classify the bikers with and
without helmets. (e self-generated dataset has been taken
for testing purposes. (e system has given an accuracy of
93.80%.

Boonsirisumpun et al. [35] deployed a convolutional
neural network (CNN) system to detect bikers without a
helmet. (e input has been taken using cameras. (e
dataset of 493 images has been used for training purposes.
(e system used four CNN-based models, including
Google Net, MobileNet, VGG19, and VGG16. (e
MobileNet gave the highest accuracy, which is 85.19%. Raj
et al. [36] contributed to detecting bikers who have vi-
olated helmet-wearing rules based on a deep learning
technique. (e task of detecting motorcycles is accom-
plished using HOG and then selecting the region of in-
terest. (ey applied CNN technology to identify bikers
without helmets and to perform number plate recogni-
tion. (e self-generated dataset from different sources has
been used.(ey claimed accuracy of 94.70%.Wu et al. [37]
used YOLOv3 and YOLO-dense models to detect bikers
without a helmet. (ey collected datasets from two
sources, i.e., self-generated and the Internet. (e exper-
imental results indicated that they had achieved 95.15%
mAP for YOLOv3 and 97.59% for the YOLO-dense
model.

Siebert and Lin [38] utilized a deep learning approach,
RatinaNet50, to detect bikers without a helmet. (e pro-
posed system has used self-generated data for training. (e
two classes have been created, i.e. “With Helmet” and
“Without Helmet.” (e experimental result showed that an
accuracy of 72.8% has been achieved. Vishnu et al. [39] used

an adaptive search method to identify moving objects. After
that, CNN on a self-generated dataset was used to identify
bikers frommoving objects. Finally, CNN is implemented to
differentiate bikers not wearing a helmet.

Mistry et al. [40] used CNN to detect bikers without a
helmet. (ey used YOLOv2 in 2 levels. Firstly, the system
used YOLOv2 to detect different objects and motorcyclists
without helmets. (e COCO dataset has been used for
training purposes. (e experimental result gives an accuracy
of 92.87%. Afzal et al. [41] used Faster R-CNN to detect
bikers that have not used helmets. (e system has been
trained on a self-generated dataset. (e experimental results
gave an accuracy of 97.26%. Kharade et al. [42] introduced a
system for detecting motorcyclists who are not wearing
helmets through deep learning algorithms based on the
YOLOv4 model. (e proposed model indicates true per-
formance in traffic motion pictures compared to current
CNN-based algorithms.

(e primary goal of Sridhar et al. [43] is to look at
whether the person wears a helmet or not through YOLOv2.
A method that uses deep convolutional neural networks
(CNNs) for revealing motorcycle riders who disobey the
legal guidelines has been established. It first detects the
motorbike and then classifies it as with or without helmet.
(e proposed architecture yielded better experimental re-
sults in comparison with traditional algorithms.

Kathane et al. [44] used the YOLOv3 algorithm for
implementation. Exceptional deep learning models are
trained for object detection.(e developed system uses three
diverse deep learning models to detect these objects. (e
established system gives 88.5% precision for motorcycle
detection and 91.8% for number plate detection. Raja-
lakshmi and Saravanan [45] developed a system for mon-
itoring and handling persons breaking the guidelines
through a convolutional neural network (CNN). (e system
performs vehicle classification, helmet detection, and mask
detection through an appropriate CNN-based model. Ta-
ble 1 displays the summary of the abovementioned related
work.

(e existing systems above can detect bikers without a
helmet, but there are also some limitations. Most of the
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Figure 2: Trends of accidents in Pakistan.
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existing systems have low accuracy. Moreover, the dataset
used to develop the system is also limited. Furthermore,
some of the above systems cannot differentiate between
helmet and scarf. (e proposed system can easily dif-
ferentiate between a helmet and a scarf. (e significant
contribution of this work is the establishment of the
dataset that consists of almost all types of bikes. In ad-
dition, the proposed technique is developed using a
comprehensive dataset and achieves higher accuracy than
the existing systems.

3. Proposed System

(is section presents a proposed technique to automatically
detect helmet violations from surveillance videos captured
by roadside-mounted cameras. (e proposed technique is
based on Faster R-CNN deep learning model that takes
video as an input and performs helmet violation detection to
take necessary actions against traffic rule violators. (e
proposed system performs multiple operations in a

sequence. Firstly, it detects motorbikes and separates these
from other vehicles. Secondly, it categorizes riders into two
classes, i.e. “With Helmet” and “Without Helmet.” A deep
learning algorithm, i.e., Faster R-CNN, is used to detect the
bikers without helmets. Figure 3 shows the block diagram of
the proposed technique. (e following sections describe
each component of the proposed technique.

3.1. Data Acquisition. A dataset of bikers with and without
helmet is required to develop a system. For data acquisition,
three sources include two datasets from existing works
[41, 46] and one dataset of self-captured data to accom-
modate most of the motorcycles running in different
countries. (e second source includes the surveillance
videos captured from Lahore safe city cameras mounted on
different roads of Lahore, Pakistan. (e captured videos
consist of the frontal and back views of the motorcyclists and
are converted into frames at the rate of 25 fps. Figure 4 shows
sample images from the dataset.

Save Image
True Person on bike is

without helmet

FalseIgnore
frame

Input Video frame Load Model

Training with Faster
RCNN

Annotation
1: Draw bitnding box
2: Assign values Xmax,

ymax, xmin, ymin
3: Generate XML file

Pre-processing
1:Redundancy

2:Cleaning
3:Noise

Video Frames

Figure 3: Block diagram of the proposed system.
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3.2. Preprocessing. (e dataset should be preprocessed to get
the appropriate data according to the problem.(e obtained
dataset contained redundant data, frames with irrelevant
images, an incomplete object, etc. Manual preprocessing is
done to select appropriate frames from the dataset [47].
Redundant images are removed from the dataset. A total of
23800 frames are selected after preprocessing, i.e., in which
13631 are with helmets and the remaining 10169 are without
helmets.

3.3. Annotation. Annotation has been used for image la-
belling [48, 49]. In this work, a bounding box is drawn
around the image. A total of four values are assigned to the
bounding box. (e label “with helmet” is assigned to images
containing bikers with helmets, and the “without helmet”
label is assigned to bikers without wearing a helmet. (e
sample annotated image is shown in Figure 5.

3.4. Faster R-CNN. (is work uses Faster R-CNN [50] to
detect bikers without a helmet. It is the extended version of
the Fast R-CNN [51] and consists of two main modules,
region proposal network (RPN) and Fast R-CNN. (e RPN
guides the Fast R-CNN detection module to find objects in
the image [52]. (e RPN generates a region proposal, and
Fast R-CNN helps to perform object detection from the
proposed region. (e general architecture of the Faster
R-CNN is shown in Figure 6.

(is task is performed with the help of a fully con-
volutional network for sharing computation with a Fast
R-CNN object detection network. (e RPN takes an image
as input (of any dimension) and generates a series of
rectangular object proposals along with an objectless score as
an output. So, the RPN does not require extra time to

generate the region proposals compared to its competitors
like selective search.(is sharing of convolutional layers also
helps in reducing the training time.

A small window is sided over the feature map for the
generation of region proposals. (e RPN consists of a re-
gressor and classifier. Classifier tells about the probability of
an object at a specific location while regressor tells its co-
ordinates. (e aspect ratio and scale are critical parameters
for any image, and their values are set to 3. (e central part
of the sliding window is known as anchor.(ere are a total of
9 anchors at a position by default. Each anchor is assigned a
binary label telling whether an object is present or not. A
positive label is assigned to the anchors that either have
maximum intersection-over-union (IoU) overlap with a
ground-truth box or have IoU overlap greater than 0.7 with
any ground-truth box. A negative label is assigned to the
anchor if its IoU is less than 0.3. Labels are assigned on two
bases, i.e., “the anchors that have high intersection-over-
union overlap with a ground truth box” and “the anchors
with intersection-over-union overlap which are higher than
0.7.” For the training of RPNs, a loss function given in
equation (1) is used [53].

Loss ai , bi (  �
1

MClass


i

Nclass ai, a
∗
i( 

+ λ
1

Mreg


i

a
∗
i Nreg bi, b

∗
i( ,

(1)

where i indicates the anchor index in a mini-batch and ai is
the probability of anchor i predicted as an object. a∗i denotes
the ground truth label, and its value is 1 or 0, depending on
whether the anchor is positive or negative. (e coordinates
of the predicted bounding box are represented by bi vector

Figure 4: Sample images from the dataset.
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and b∗i represents the positive anchor’s ground truth label.
Nclass is referred to as classification loss. It is the log of the
loss over object and non-object classes. Nreg is the regression
loss, so the expression a∗i Nreg shows that regression loss has
an effect only for positive anchors where a∗i � 1. (e clas-
sification and regression layers output comprise ai  and bi 

that are normalized using MClass and Mreg, respectively. λ is
used as the balancing weight.

(e input of the proposed model is cropped helmet
image of size 224 × 224 × 3. (ere are 8 blocks in the
backbone architecture, of which 3 are connected layers,
and the remaining 5 are convolutional layers. Non-line-
arities follow each convolutional layer as the max pooling
and rectification (ReLU) layer. (e outcomes of two of the
three fully connected layers are 4049 dimensional. (e
output of the last connected layer depends on the class
present in the dataset and has N � 2622. (e primary
purpose of the softmax layer is to handle the un-nor-
malized vectors. It is placed right after the 2nd connected
layer. (e output of all these is the prediction probability
represented in the form of probabilistic scores as shown in
the following equation:

probabilistic score � Pc �
e

Pc

dePd

for all c in 1, 2, . . . . . . . . . , n{ }.

(2)

Table 2 compares Faster R-CNN with other models like
Fast R-CNN and R-CNN. (e comparison is performed by
taking three attributes, i.e., the region proposal method,
computation time, and prediction time. Faster R-CNN uses
RPN for region proposal instead of a selective search method
which is used in R-CNN [54] and Fast R-CNN. Moreover,
the computation and prediction time of Faster R-CNN is
better than its predecessor, making it appropriate to be used
in this work.

4. Experiment Analysis

Core i7 system is used with 32GB RAM and Ubuntu op-
erating system to develop a proposed technique. For training
and validation of themodel, GPUGTX 1080 Ti is being used.
A dataset that contains a total of 23800 images is divided into
two parts, i.e., training and validation. For training and
validation of the model, 70% and 30% of the data are used,

Figure 5: Sample annotated image.
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Figure 6: (e architecture of the Faster R-CNN.
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respectively. (e number of epochs is set to 200000. During
the training process, an early stop function is used in which
the model is trained until the convergence does not occur.
Figure 7 shows the training and validation loss. It indicates
that, initially, validation loss is high. But as the training
continues, loss gradually decreases. At 200000 epochs, this
loss decreases significantly. It is necessary to pass the de-
tected object to the model for the classification of the object.

Figure 8 illustrates the training and validation accuracy.
(e system attains an accuracy of 97.69%. As training starts,
accuracy is low, and the loss is high. As time increases, the
accuracy is also increased. (e maximum accuracy obtained
at 200000 epochs is 97.69%.

(e confusion matrix for the proposed technique is
shown in Table 3. In this work, 7133 samples are used for
validation purposes in which 4089 samples are those who
have helmets, and 3044 are those who do not have helmets.
For samples that have helmets, 3995 samples are predicted
correctly. Only 94 samples are wrongly predicted. For the
remaining 3044 samples (without helmets scenario), 71 are
wrongly predicted while 2973 are predicted correctly.

Several performance metrics are computed to evaluate
the proposed system. Table 4 lists the performance measure
metrics and their values. It indicates that proposed system
has achieved 97.67% accuracy, 97.70% precision, 97.98% F1
score, and 98.25% sensitivity.

Table 5 lists the comparative analysis of the proposed
technique with the existing systems. It reflects that the
proposed system gives accuracy of 97.69% and supersedes its
competitor.

Figure 9 displays some predictions made by the pro-
posed system. (e yellow bounding box indicates those
motorcyclists who did not wear the helmet, whereas green

Table 2: Comparison of Faster R-CNN with other models.

Attributes Faster R-CNN Fast R-CNN R-CNN
Region proposal method Region proposal network Selective search Selective search
Computation time 0.2 seconds 2 seconds 40–50 seconds
Prediction timing Low computation time High computation time High computation time

Training and Validation loss

Training loss
Validation loss
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0

20

40

60

80

100
Lo

ss

Figure 7: Training and validation loss.
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Figure 8: Training and validation accuracy.

Table 3: Confusion matrix.

N� 7133 With helmet Without helmet
With helmet 3995 94
Without helmet 71 2973
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bounding box represents those who have worn the helmet.
In Figure 9(a), the system correctly predicted the helmet
violation, and the yellow bounding box encompasses the
motorcyclist who did not wear the helmet. Figure 9(b)
portrays the case of correct and incorrect prediction of
helmet violations. Similarly, in Figures 9(c)–9(f), the algo-
rithm correctly predicted both kinds of motorcyclist, i.e.,
with and without helmet. It is evident from Figures 9(c) and
9(e) that the proposed system successfully differentiated
among helmet, scarf, and cap.

5. Conclusion

Automatic helmet violation detection of motorcyclists from
real-time videos is a demanding application in ITS. It enables
one to spot and penalize bikers without a helmet. (is work
proposes an automatic helmet violation detection technique
for ITS. (e proposed technique is based on Faster R-CNN
deep learning model that takes video as an input and per-
forms helmet violation detection to take necessary actions
against traffic rule violators. (e experimental analysis

Table 4: Experimental results.

Performance metrics Scores Derivations
Sensitivity 0.9825 TPR�TP/(TP + FN)
Specificity 0.9694 SPC�TN/(FP +TN)
Precision 0.9770 PPV�TP/(TP + FP)
Negative predictive value 0.9767 NPV�TN/(TN+FN)
False positive rate 0.0306 FPR� FP/(FP +TN)
False discovery rate 0.0230 FDR� FP/(FP +TP)
False negative rate 0.0175 FNR� FN/(FN+TP)
Accuracy 0.9769 ACC� (TP+TN)/(P +N)
F1 score 0.9798 F1� 2TP/(2TP+ FP + FN)
Matthews correlation coefficient 0.9528 TP×TN− FP× FN/sqrt((TP + FP)× (TP + FN)× (TN+FP)× (TN+FN))

Table 5: Comparison of the proposed technique with existing work.

Author Technique Accuracy (%)
Proposed Faster R-CNN 97.6
Vishnu et al. [39] CNN 92.87
Dasgupta et al. [53] CNN 91.08
Afzal et al. [41] Faster R-CNN 97.26

(a) (b) (c)

(d) (e) (f )

Figure 9: Cases predicted by the system.
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shows that the proposed technique achieved 97.6% accuracy.
(is work may be extended to incorporate more features,
like number plate detection and other traffic violations, in
the future.

Data Availability

(e data used to support the findings of this study are
available from the corresponding author upon request.
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