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A discreet fractional-order Cournot–Bertrand competition duopoly game is introduced based on the fractional-order difference
calculus of the Caputo operator. &e model is designed when players can make long memory decisions. &e local stability of
equilibrium points is discussed for the proposedmodel. Some numerical simulations explore the model’s bifurcation and chaos by
employing bifurcation diagrams, phase portraits, maximal Lyapunov exponents, and time series. According to our findings, the
fractional-order parameter has an effect on the game’s stability and dynamics.

1. Introduction

Game theory is one of the most interesting and complex
topics that many researchers are interested in understand-
ing. Game theory is concerned with predicting results for
strategic games in which participants, for example, two or
more firms competing on the market, have incomplete
information on the intentions of others. It is known that the
game theory is relevant to the study of corporate behavior in
oligopolistic markets, for example, the decisions that
companies must make in terms of production and pricing
levels, as well as the amount of money invested in research
and development. &e decision-making mechanism has an
important role to play in the process of adjusting the pro-
duction and profits of firms. Firms typically use one of the
following to change their market growth: näıve learning
expectation, adaptive learning expectation, limited learning
rationality, and local learning approximation. Discrete oli-
gopoly dynamics based on company profit maximizations
have been considered [1–7]. Furthermore, these models have
been utilized to examine the dynamic characteristics of

competitive markets, which has been classified as steady
state, periodic, and chaotic [8–14].

Fractional calculus, particularly discrete fractional cal-
culus, has attracted substantial interest in recent decades due
to its extensive significance in a wide range of scientific
disciplines, including complex systems with memory and
heredity. Researchers turned their attention to a discreet
fractional calculus and tried to develop a complete theo-
retical framework for this subject. &is is due to the im-
portance of this field in many real issues, such as discreet
adaptive systems, biological growth systems, and digital
engineering systems, all of which contain memory [15–20].
&e discrete difference analogues of classical Caputo and
Riemann derivatives have been introduced in [21]. In ad-
dition, advances have been made in the study of fractional
finite difference equations and the inclusion of fractional
difference equations [22–26]. Recently, the stability of
fractional time systems in a variety of real-world problems
has been investigated.&ese studies have shown that discrete
fractional systems are more realistic to process real systems
and have a rich dynamic compared to discrete systems with
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integer-order. Many studies have studied continuous frac-
tional differentiation representing the effects of economic
memory that have been presented [27–30] and the refer-
ences that exist in them as well. &e fractional-order dif-
ference equation, which is a natural extension of the integer-
order difference equation, has long-term memory effects
that have been explored in a few studies [25, 31–36]. Re-
cently, the fractional difference calculus was used in the
Cournot duopoly game [37] and the Bertrand duopoly game
[38]. &is reflects the long-term memory effects of Cour-
not–Bertrand dynamic games in the fractional-order form
for the game. Xin et al. [37, 38] investigated the dynamics of
the Cournot and Bertrand games, which indicated the
market evolution of the two enterprises.

&is work is especially interested in the novel discrete
fractional-order Cournot–Bertrand duopoly game, which is
a modification of the Cournot–Bertrand duopoly game with
integer-order [39]. We aim to extend this game to a frac-
tional case and to study the dynamics of the game. As we
know, fractional-order calculus is a general form of integer-
order calculus, so it has a higher representation for phe-
nomena with a long memory. It can be shown that the
fractional differentiation parameter is a vital indicator of the
bifurcation path and the chaos that is created and dis-
appeared. We will investigate the dynamics of the discreet
fractional-order Cournot–Bertrand duopoly game such as
the stability, bifurcation, and chaos of the proposed game. To
analyze complexity of the game, explicit stability criteria
[40, 41], asymptotic stability criteria [42] and the local
stability regions of the boundary and Nash equilibrium
points are provided through numerical simulation. &e
dynamic behavior of the proposed game is illustrated
through an exploratory investigation of equilibrium point
stability and numerical simulation. In this work, we are
analyzing a Cournot–Bertrand duopoly game similar to
Wang and Ma [39], but using a discrete fractional calculus.
&e equilibrium point structure dynamic reflects economic

explanations for the proposed game’s market of two
enterprises.

&e work is organized as seen follows. Section 2 de-
scribes the market dynamics of two enterprises using a
discrete fractional-order Cournot–Bertrand duopoly game.
&e Nash equilibrium local stability conditions are estab-
lished in Section 3. Using numerical simulations, we in-
vestigate local bifurcations, maximal Lyapunov exponents,
and phase portraits of complex dynamics in Section 4.
Section 5 contains a summary of the findings as well as a few
observations.

2. Preliminaries

In this section, some preliminaries about fractional-order
difference calculus are introduced. On an arbitrary time
scale, dynamic behaviors and applications of fractional
difference models were investigated in the last decade where
delta difference equation was used [40–43].

Assume that a sequence u(n) is given, and the isolated
time scale ℵa is represented in terms of real valued constant
τ, i.e., τ, τ + 1, τ + 2, . . . ,{ }, such that u: ℵτ⟶ R. Also, the
difference operator is denoted by Δ, where
Δu(n) � u(n + 1) − u(n). &en, we summarize some of the
basic definitions related to discrete fractional calculus as
follows.

Definition 1. For α> 0, the fractional sum of order α is given
by [21]

Δ− α
τ u(t) �

1
Γ(α)

􏽘

t− α

m�τ

Γ(t − m)

Γ(t − m − α + 1)
u(m), t ∈ ℵτ+α.

(1)

Definition 2. &e Caputo-like delta difference of order α is
defined by [21, 42]

CΔατu(t) � Δ− (n− α)
τ Δ

n
u(t) �

1
Γ(n − α)

􏽘

t− (n− α)

m�τ

Γ(t − m)

Γ(t − m − n + α + 1)
Δn

u(m),

t ∈ ℵτ+α, n � [α] + 1.

(2)

Theorem 1 (See [21, 40–43]). In order to solve the delta
fractional difference equation,

CΔατu(t) � f(t + α − 1, u(t + α − 1)),

Δk
u(t) � uk, n � [α] + 1, k � 0, 1, . . . , n − 1.

⎧⎨

⎩ (3)

As a result, the corresponding discrete integral equation
is

u(t) � u0(t) +
1
Γ(α)

􏽘

t− α

m�τ+n− α
(t − σ(m))

(α− 1)
f(m + α − 1, u(m + α − 1)), t ∈ ℵτ+n, (4)
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where

u0(t) � 􏽘
n− 1

k�0

Γ(t − τ + 1)

k!Γ(t − τ − k + 1)
Δk

u(t). (5)

Remark 1. If τ � 0, we rewrite discrete integral equation in
the following numerical form:

u(n) � u0(t) +
1
Γ(α)

􏽘

n

m�1

Γ(n − m + α)

Γ(n − m + 1)
f(u(m − 1)). (6)

Theorem 2 (See [40–42]). 7e linear discrete-time frac-
tional-order system is

CΔατU(t) � GU(t + α − 1), (7)

where U(t) � (u1(t), u2(t), . . . , un(t))T, 0< α≤ 1, G ∈ Rn×n,
and ∀ t ∈ ℵτ+1− α. 7e zero equilibrium of system (10) is as-
ymptotically stable if

λ ∈ z ∈ C: |z|< 2 cos
|argz| − π
2 − α

􏼠 􏼡

α

, |argz|>
απ
2

􏼨 􏼩, (8)

for all the eigenvalues λ of matrix G.

3. Discrete Fractional-OrderCournot–Bertrand
Duopoly Game

According to traditional oligopoly models [1, 6], firms
compete in the same strategic variable, such as output
(Cournot) or price (Bertrand). A hybrid model, commonly
known as the Cournot–Bertrand model [6, 39], permits
certain enterprises to compete in output, while others
compete in pricing. Real-world market observations that
match Cournot–Bertrand behavior have bolstered the
model’s validity and rapidly growing literature on ad-
vancements and applications. Long-term memory effects in
dynamic oligopoly games are economically significant
[34, 37, 38]. &erefore, we introduce the novel discrete
fractional-order Cournot–Bertrand duopoly game, which is
a modification of the Cournot–Bertrand duopoly game with
integer order. As a consequence, it has a better represen-
tation of phenomena with a long memory in oligopoly game.
&e main goal is to establish out how the fractal parameter
affects game dynamics including stability, bifurcation, and
chaos.

We suggest a simple Cournot–Bertrand duopoly com-
mon oligopoly game [39]. Two enterprises, denoted by the
letters i � 1, 2, produced differentiated goods with perfect
replacements and set their product pricing based on the
same market rule. Assume that pi(t) and qi(t) denote the
goods price and quantity output of firm i for the period
t ∈ Z+. &e inverse demand functions for a variety of
products 1 and 2 originate from the representative consumer
maximization of the following utility function [39]:

U q1, q2( 􏼁 � q1 + q2 −
1
2

q
2
1 + 2dqq2 + q

2
2􏼐 􏼑, (9)

subjected to restrictions on the budget p1q1 + p2q2 � M.
&en, the inverse demand functions is defined as follows:

p1 � 1 − q1 − dq2,

p2 � 1 − q2 − dq1,
􏼨 (10)

where p1 and p2 represent the pricing of firm 1’s and firm 2’s
items, respectively, and q1 and q2 are the quantities of
products of company 1 and company 2. &e parameter
d ∈ [0, 1] is the product differentiation between two firms.
Products are homogeneous goods when d � 1, and each firm
has a monopoly case when d � 0.&e demand system can be
written in two strategic variables q1 and p2.

p1 � 1 − d − 1 − d
2

􏼐 􏼑q1 + dp2,

q2 � 1 − p2 − dq1.

⎧⎨

⎩ (11)

Consider that the two companies have the same unit cost
c> 0 and that the cost function has the same linear form:

Ci qi( 􏼁 � cqi, i � 1, 2. (12)

&us, the profit functions for firms are given by

π1 � 1 − d − 1 − d
2

􏼐 􏼑q1 + dp2 − c􏼐 􏼑q1,

π2 � p2 − c( 􏼁 1 − p2 − dq1( 􏼁.

⎧⎨

⎩ (13)

In the classical dynamical Cournot–Bertrand duopoly
game, to decide the corresponding profit-maximizing, every
player erroneously believes that its rival’s pricing in period
(t + 1) is the same as in period (t). &erefore, this type of
game does not have a long memory effect. &e traditional
game will be introduced using discrete fractional-order
calculus, and the two players will make decisions using a new
dynamic adjustment mechanism with long memory and
local marginal profit expectation. &us, the marginal profit
of two players is as follows [39]:

zπ1
zq1

� 1 − d − 2 1 − d
2

􏼐 􏼑q1 + dp2􏼐 􏼑 − c􏼐 􏼑,

zπ2
zp2

� 1 + c − 2p2 − dq1( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

Assume that the two businesses have limited informa-
tion about the market demand function and also their price
decision is based on a dynamic adjustment process with
limited rationality and a long-term memory effect of mar-
ginal profit. In the next step, the firm decides to raise (re-
duce) the price of its product based on if the long-term
marginal profit is greater (less) than zero. As a result, we
utilize the dynamic adjustment process for the Cour-
not–Bertrand game as follows:

Δαq1 � ]1q1(t + α − 1)
zπ1
zq1

,

Δαp2 � ]2p2(t + α − 1)
zπ2

zp2
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)
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where ]i is the speed of adjustment of firm i, i � 1, 2 and
α ∈ (0, 1) denotes a fractional-order number, indicating the

long-term memory effect. &us, the discrete fractional-order
Cournot–Bertrand duopoly game is as follows:

Δαq1 � ]1q1(t + α − 1) 1 − c − d + dp2(t + α − 1) − 2q1(t + α − 1) + 2d
2
q1(t + α − 1)􏼐 􏼑,

Δαp2 � ]2p2(t + α − 1) 1 + c − 2p2(t + α − 1) − dq1(t + α − 1)( 􏼁.

⎧⎨

⎩ (16)

Remark 2. When α � 1, the model (16) devolves to the
Wang-Ma model [39]:

q1(t + 1) � q1(t) + ]1q1(t) 1 − c − d + dp2(t) − 2q1(t) + 2d
2
q1(t)􏼐 􏼑,

p2(t + 1) � p2(t) + ]2p2(t) 1 + c − 2p2(t) − dq1(t)( 􏼁.

⎧⎨

⎩ (17)

Wewill show that the model game parameters, especially
the long-termmemory effect, have an effect on the long-term
dynamic response of our novel game when compared to the
Wang-Ma game [39].

In the next sections, several theoretical features corre-
sponding to game (16) are investigated.

4. The Equilibrium Points and Their
Local Stability

We solve the following equation to find the equilibrium
points of game system (16):

1 − c − d + dp2(t) − 2q1(t) + 2d
2
q1(t)􏼐 􏼑 � 0,

1 + c − 2p2(t) − dq1(t)( 􏼁 � 0.

⎧⎨

⎩ (18)

&eir four equilibria are E0 � (0, 0), E1 � (0, 1 + c/2),
E2 � (1 − c − d/2(1 − d2), 0), and E∗ � (2 − 2c − d + c d/4−

3d2, 2 + 2c − d + c d− d2 − 2cd2/4 − 3d2). In economics, its
equilibria mean

(i) &e equilibrium E0 is trivial equilibrium point
(ii) &e equilibrium point E1 implies that the best

quantity of the first player is q∗1 � 0 if the second

player sets its optimal product price p∗2 � 1 + c/2.
Likewise, the second player’s best price is
p∗2 � 1 + c/2 if the player uses a zero-price approach.
Clearly, E1 is a border equilibrium point that cor-
responds to the pure monopoly.

(iii) &e E2 equilibria indicates that the best quantity of
the first player is q∗1 � 1 − c − d/2(1 − d2) if the
second company determines the best good price
p∗2 � 0. Likewise, the first company’s best pricing is
q∗1 � 1 − c − d/2(1 − d2) if the company uses a zero-
price approach. Clearly, E2 is a border equilibrium
point.

(iv) &e equilibrium E∗ indicates two enterprises will
preserve their equilibrium quantity and pricing
jointly since no enterprise can gain an advantage by
deviating unilaterally from its own equilibrium.
Clearly, the point E∗ is a Nash equilibrium. &e
complexity of system (16) will be explored. First, the
Jacobian matrix of system (16) is computed at a
given equilibrium point E � (q∗1 , p∗2 ), and it can be
expressed as

J q1, p2( 􏼁 �
]1 1 − c − d + dp

∗
2 + 4 d

2
− 1􏼐 􏼑q
∗
1􏼐 􏼑 ]1dq

∗
1

− ]2dp
∗
2 ]2 1 + c − 4p

∗
2 − dq

∗
1( 􏼁

⎛⎝ ⎞⎠. (19)

&en, the following theorems are presented to clarify
linear stability for each equilibrium point in the model.

&e trivial equilibrium point E0 is unstable.

Proof. &e Jacobian matrix’s eigenvalues at E0 can be
demonstrated to be (]2(1 + c), ]1(1 − c − d)), which indi-
cate that one of them is always positive, and thus, the
conditions of asymptotic stability in &eorem 2 are not
satisfied. □

&e equilibrium point E1 is asymptotically stable if

]1(cd + 2 − 2c − d))< 0, ]2(1 + c)

< 2α, ]1(cd + 2 − 2c − d))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 2α+1
.

(20)

Proof. &e eigenvalues of Jacobian matrix at E1 are
(− ]2(1 + c), 1/2]1(c d + 2 − 2c − d)), which means that the
conditions of asymptotic stability in &eorem 2 are satisfied
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if the second eigenvalue has a negative sign, and also, the
modulus of the two eigenvalues is bounded by 2α and 2α+1,
respectively. Figure 1 shows stability regions in some three
and two-dimensional spaces of model’s parameters, whereas

Figure 2 shows the resulting time series when the values of
parameters are selected in stable regions of E1.

&e equilibrium E2 is asymptotically stable if and only if

]1(c + d − 1)< 0, ]2 2cd
2

− cd − 2c + d
2

+ d − 2􏼐 􏼑> 0, 0< d< 1,

]2(c + d − 1)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 2α,

]2 2cd
2

− cd − 2c + d
2

+ d − 2􏼐 􏼑< 2α+1 1 − d
2

􏼐 􏼑.

(21)

□
Proof. &e eigenvalues of Jacobian matrix at E2 are
(]1(c + d − 1), ]2(2cd2 − c d − 2c + d2 + d − 2)/2(d2 − 1)),
which means that the conditions of asymptotic stability in
&eorem 2 are satisfied if the two eigenvalues have negative
signs, and also, the modulus of the two eigenvalues is
bounded by 2α and 2α+1(1 − d2), respectively. □

However, detailed numerical examinations in space of
promoters show that the aforementioned conditions cannot
be simultaneously achieved at feasible values of parameters,
and therefore, due to the impossibility of numerically sat-
isfying the above conditions, the equilibrium point E2 is
unstable.

Finally, the Nash equilibrium point E∗ has long com-
plicated expressions for its associated eigenvalues which

renders numerical investigations of regions of stability in-
evitable. Figure 3 shows stability regions in some three and
two-dimensional spaces of model’s parameters, whereas
Figure 4 illustrates the resulting time series when the values
of parameters are selected in stable regions of E∗.

5. Numerical Simulations

In this section, the complex dynamic features of the discrete
fractional Cournot–Bertrand model (16) are investigated
using various methods such as bifurcation diagrams, phase
portraits, and MLE. &e effects of major model parameters
are investigated. For the present fractional discrete model
(16) using theorem (4), the system (16) can be numerically
rewritten as follows:

q1(n) � q1(0) +
1
Γ(α)

􏽘

n

i�1

Γ(n − i + α)

Γ(n − i + 1)
]1q1(i − 1) 1 − c − d + dp2(i − 1) − 2q1(i − 1) + 2d

2
q1(i − 1)􏼐􏼐 􏼑,

p2(n) � p2(0) +
1
Γ(α)

􏽘

n

i�1

Γ(n − i + α)

Γ(n − i + 1)
]2p2(i − 1) 1 + c − 2p2(i − 1) − dq1(i − 1)( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(22)

&e initial point (q1(0), p2(0)) � (0.2, 0.1) is used in the
following simulations. In particular, the complicated dynamics
exhibited by the model are examined via using the bifurcation
diagram, phase portraits, and maximal Lyapunov exponent
(MLE).&eLyapunov exponent for a one-dimensionalmap can
be calculated by calculating the average value for perturbations
from the trajectory over a time interval. &e Lyapunov expo-
nents for an n-dimensional mapping can be obtained using the
eigenvalues of the product of Jacobian matrices for integer-
order systems. In order to approximate the values of Lyapunov
exponents of the discrete fractional model (16), the Jacobian
matrix method which has been introduced byWu and Baleanu
[44] can be employed [45, 46]. In the following part, the nu-
merical analysis will look at the effects of the model’s main
parameters, as well as the effects of long-term memory and
adjustment speeds.

First, the influences of parameter ]1 in integer-order and
fractional-order cases are explored. Figure 5 shows bifurcation
diagrams and MLE plots versus parameter ]1 along with ex-
amples of phase portraits at some selected values of parameters.

Second, the influences of parameter ]2 in integer-order and
fractional-order cases are explored. Figure 6 shows bifurcation
diagrams and MLE plots versus parameter ]2, along with ex-
amples of phase portraits at some selected values of parameters.

&ird, the influences of parameter d in integer-order and
fractional-order cases are explored. Figure 7 shows bifurcation
diagrams and MLE plots versus parameter d along with ex-
amples of phase portraits at some selected values of parameters.

Finally, the effects of fractional-order α are explored.
Figure 8 shows bifurcation diagrams and MLE plots versus
parameter α along with examples of phase portraits at some
selected values of parameters.

Mathematical Problems in Engineering 5
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Figure 1: Stability regions of equilibrium point E1 in some three and two-dimensional spaces of model’s parameters when (a)
c � 1.15; d � 0.6, (b) c � 1.15; ]1 � 0.5; ]2 � 0.6, and (c) d � 0.5; ]1 � 0.7; ]2 � 0.7.
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Figure 2: Time series of model (16) at c � 1.15, d � 0.5, ]1 � 0.7, ]2 � 0.7, and α � 0.9.
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Figure 3: Stability regions of equilibrium point E∗ in some three and two-dimensional spaces of model’s parameters when (a)
c � 0.15; d � 0.8, (b) c � 1; ]1 � 0.4; ]2 � 0.7, and (c) d � 0.5; ]1 � 0.3; ]2 � 0.6.
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Figure 4: Time series of model (16) at c � 0.5, d � 0.5, ]1 � 0.3, ]2 � 0.6, and α � 0.9.
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Figure 5: Continued.
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Figure 5: (a) Bifurcation diagram of system (16) vs. ]1 at c � 0.1; d � 0.2; ]2 � 2; α � 1. (b) MLE plot of system (16) vs. ]1 at
c � 0.1; d � 0.2; ]2 � 2;α � 1.(c) Phase portrait of system (16) at c � 0.1; d � 0.2; ]1 � 4.9; ]2 � 2;α � 1. (d)–(f) similar to (a)–(c) but forα � 0.95.
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Figure 6: Continued.
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Figure 6: (a) Bifurcation diagram of system (16) vs. ]2 at c � 0.1; d � 0.2; ]1 � 1.5; α � 1. (b) MLE plot of system (16) vs. ]2 at
c � 0.1; d � 0.2; ]1 � 1.5; α � 1. (c) Phase portrait of system (16) at c � 0.1; d � 0.2; ]1 � 1.5; ]2 � 3.4; α � 1. (d)–(f) similar to (a)–(c) but for
α � 0.95.
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6. Conclusion

&e new fractional-order Cournot–Bertrand game based
on a long memory effect is proposed. &e stability of the
game’s equilibrium points, including the Nash equilibria,
has been explored both qualitatively and numerically.
Bifurcation, phase portraiture, time series, and maximal
Lyapunov exponents’ diagrams have been used to analyze
the complex dynamic characteristics of the proposed
game. When we compared our new model to the Wang-
Ma model [39], we found that the game parameters, es-
pecially the long-term memory influence, had an effect on
the long-term dynamic response of our novel model. &is
is important for understanding the performance of the
duopoly game with the long-term memory effect.
According to our findings, the Cournot–Bertrand duopoly
game with the long-term memory effect is more efficient
than the duopoly game without long-term memory im-
pact from economic viewpoint. As a consequence, we
advise researchers to investigate the competitive games of
long-term memory impact further.
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