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In view of the shortcomings of water supply network optimization design based on the traditional genetic algorithm in water
supply safety and economy, an improved crossover operator adaptive algorithm and penalty function are proposed to improve the
traditional genetic algorithm, which can effectively solve the problem of local optimal solution caused by too early convergence of
the traditional genetic algorithm in pipe network optimization design. Taking a typical annular water supply network as an
example, the calculation results show that the economy of the design scheme of the improved genetic algorithm is better than the
traditional genetic algorithm, which fully shows that the improved genetic algorithm is practical and effective for the optimal
design of water supply network.

1. Introduction

)e design and construction of water supply network is an
important part of the construction of an urban water supply
system, accounting for 40%∼70% of the total investment in
water supply system, which is closely related to the stable
operation, maintenance, and operation of water supply
system in the future [1–3]. )erefore, it is of great signifi-
cance to optimize the design scheme of a water supply
network for system construction.

)e penalty function method is usually used to deal with
the constraints in the optimization model of the water
supply network [4], in which the penalty factor plays a major
role. However, in many cases, the penalty factor is usually
represented by a constant based on experience, which will
lead to the inability to determine the penalty intensity so that
the model obtains the local optimal solution, and the cost of
pipe network construction and operation management
cannot be reduced. In order to make up for this deficiency,
an adaptive penalty function method is proposed; that is, the
penalty factor can adjust with the number of feasible so-
lutions in the iterative process so as to improve the search
range of the model.

)e traditional genetic algorithm has the problem of
premature convergence in the optimal design of the pipe
network, resulting in entering the local optimal solution.
Among them, crossover operation [5, 6] plays a great role in
the genetic algorithm and will affect the convergence of the
genetic algorithm. )erefore, the use of constant crossover
probability is not conducive to the algorithm to find the
optimal solution. )erefore, it is necessary to update the
value of crossover probability with the iteration to ensure the
global search ability.

)e improved genetic algorithm optimizes the crossover
operator and mutation operator, updates the probability of
crossover and mutation through the expectation and vari-
ance of the population, speeds up the search speed, and
prevents entering the local optimal solution, which is very
important for the optimal design of pipe network.

2. Mathematical Model of Water Supply
Network Optimization

2.1. Objective Function. )e purpose of pipe network op-
timization design is to seek a group of optimal pipe [7]
diameter combination with the lowest cost of the pipe
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network on the premise of ensuring the water demand, water
pressure, and reliability of the water supply system [8].
)erefore, the objective function is the annual conversion
cost F of the pipe network. )e number of pipe segments in
the pipe network is N, and the number of nodes is I. )e
formula is as follows:

F �
1
T

+
P

100
􏼒 􏼓 􏽘

N

j�1
a + bd

c
j􏼐 􏼑Lj, (1)

where T is the repayment period of pipe network invest-
ment; P is the annual depreciation rate of the pipe network;
a, b , and c are the coefficients and indexes in the unit cost
formula of the pipe network; Lj is the length of pipe section
j, mm; dj is the pipe diameter of pipe section j, mm.

2.2. Constraints. Nodal equilibrium [9] equation is as
follows:

􏽘 Aq + Q � 0, (2)

where A is the incidence matrix of the pipe network dia-
gram, q is the column vector of the flow of each pipe section,
and Q is the column vector of the node flow.

Energy balance equation of the pipe network is as
follows:

Bhj − ΔHk � 0, (3)

where B is the loop matrix of the pipe network diagram; K is
the number of pipe network base ring; hj is the pressure drop
of the pipe section j; ΔHk is the closure error of the base ring
K.

Velocity limit is as follows:

vmin ≤ vj ≤ vmax, (4)

where vmax and vmin are the upper and lower limits of an
economic flow rate.

2.3. Penalty Function Design. When the traditional genetic
algorithm without velocity constraint is used, the velocity
[10–13] in the pipe section will be unstable. Some velocity far
exceeds the economic velocity, while others tend to zero,
which will affect the hydraulic performance of the whole
pipe network [14–17]. )erefore, it is necessary to construct
a penalty function constrained by the economic flow rate to
reduce the fitness of the pipe section whose flow rate is not
within the economic range. )e formula constructed by
using (1) and penalty function is as follows:

F(d) � F + k􏽘 max v
min
j − vj, 0, vj − v

max
j􏼐 􏼑􏽨 􏽩

2
, (5)

where F is the annual conversion cost of the pipe network,
􏽐 [max(vmin

j − vj, 0, vj − vmax
j )]2 is the constraint function

of the economic flow rate, and k is the penalty factor.
At the initial stage of evolution, there are a few feasible

solutions in the population. At this time, k should take a
larger value to make the search quickly enter the feasible
region [18]; when the proportion of feasible solutions in the

population is increasing, a smaller k value should be taken to
make the searched feasible solutions better and better, which
is very important to search the global optimal solution.
)erefore, the selection of penalty factor [19, 20] k is related
to the proportion of feasible solutions in the group.

3. Improved Design of Genetic Algorithm

3.1. Coding Method and Fitness Function. Pipe network
optimization belongs to discrete combination [21–23],
which applies integer coding to improve efficiency.

We construct f′(d) by using the reciprocal [24] of (5)
and f(d) by using (6). )e formula is as follows:

f′(d) �
1

F(d)
, (6)

f(d) �
1

fmax
′ − fmin
′
× f′ (7)

where F(d) is the cost function of individuals in the pop-
ulation; f′(d) is the reciprocal of the cost function of in-
dividuals in the population; fmax

′ and fmin
′ represent the

maximum andminimum values of fitness; f(d) is the fitness
value of individuals in the population.

3.2. Genetic Operator Design

3.2.1. Adjustment of Crossover Probability and Mutation
Probability. In order to ensure the global search ability of
the genetic algorithm, it is necessary to make the crossover
and mutation process self-renewal with the emergence of
different situations. In this paper, the logistic function [25] is
used to construct the adjustment formula of cross mutation
probability [26], and it is necessary to reflect the average level
of the current population fitness value through the expected
EX and the deviation degree of the individual fitness value
from the average level through the varianceDX. By using (7)
to construct EX and DX, the formula is as follows:

EX �
f1 + f2 + . . . fM

M
, (8)

DX �
f
2
1 + f

2
2 + . . . f

2
M

M
− f

2
, (9)

where EX is expected; DX is the variance; M is the number
of chromosomes in the population; f is the average fitness.

With the increase of the number of iterations, the in-
dividuals with high fitness of each generation will be retained
and the ones with low fitness will be eliminated. )erefore,
the overall fitness of the population will gradually increase,
so the expected value will gradually increase. With more and
more individuals that can be retained, the difference of the
population will decrease, resulting in the decrease of
variance.

We introduce population similarity [10] coefficient ρ,
and the formula constructed by using (8) and (9) is as
follows:
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ρ �
EX + 1

����
DX

√ , (10)

where EX is expected; DX is the variance.
From formula (10), when the genetic algebra increases,

the individual expectation EX will increase, while the var-
iance DX will decrease, and the similarity coefficient in the
population will increase, which means that with the increase
of genetic algebra, the similarity [27] in the population is
increasing and the difference is decreasing.

)e logistic function is shown in Figure 1. By using (10),
the adjustment formula of crossover probability and mu-
tation probability is constructed as follows:

Pc �
1

1 + e
− h1/ρ

− 0.15, (11)

Pm �
h2

6 1 + e
1/ρ

􏼐 􏼑
, (12)

where Pc is the crossover probability, Pm is the probability of
variation, and h1, h2 is the constant, h1 ∈ (0, +∞),
h2 ∈ (0, 1); when ρ increases, the crossover probability de-
creases [28] and the mutation probability increases.

3.2.2. Improvement of Crossover Operator. )e crossover
operator is very dependent on the fitness function. Improper
selection of the fitness function will lead to the close fitness of
individuals at the end of evolution, resulting in the failure of
the crossover operator. )e improved operator is not
strongly dependent on the selected fitness function so that
the offspring individuals are not only limited between two
parent individuals, making the gene pool of the population
diverse [29].

M individuals were selected after the selection operation,
and the probability Pc was used for them to cross and
generate random numbers a, b, and c uniformly and in-
dependently in [0, 1]. )e specific operations are as follows
[30, 31]:

x
n+1
2i � ax

n
2i + bx

n
2i+1 + c x

n
2i+1 − x

n
2i( 􏼁

x
n+1
2i+1 � ax

n
2i+1 + bx

n
2i + c x

n
2i+1 − x

n
2i( 􏼁

,
⎧⎨

⎩ (13)

where c ∈ [0, 1], a ∈ [0, 1],a + b � 1, i � 1, 2, . . . , M/2, xn
2i

and xn
2i+1 is the parent individual pair, xn+1

2i and xn+1
2i+1 is the

individual pair of offspring.

3.2.3. Improvement of Mutation Operator. Let the parent
chromosome be xn

2i � [x1, x2, . . . , xk, . . . , xN];
xkϵ[xkmin, xkmax] is the mutated element in chromosome,
and the mutated element xn+1

2i is generated randomly in
interval θ. )e formula constructed by using (15) is as
follows:

θ � xk − μ(n) xk − xkmin( 􏼁, xk + μ(n) xkmax − xk( 􏼁􏼈 􏼉, (14)

where xk is the variation element, xkmin is the minimum
value, xkmax is the maximum value, and μ(n) is a monotonic
decreasing function.

)en, we use the generated number xn+1
2i replacing xn

2i.
Among them, with the increase of evolutionary algebra T,
)e value of μ(n) is gradually reduced, so it is necessary to
construct a monotonic [12] decreasing function as follows:

μ(n) � 1 − r
1−

n

T
􏼒 􏼓􏼔 􏼕

b

,
(15)

where T is the maximum iterated algebra, n is the current
iterated algebra, b is the parameter, and the value in this
paper is 3, R ∈ [0, 1].

As can be seen from the equation, with the increase of the
number of iterations, μ(n) tends to 1 at first and then to 0, so
the variable interval of xk gradually changes from
[xkmin, xkmax] to the neighborhood of xk, so the search speed
will be accelerated.

3.3. Pipe Network Optimization Process. First, the pipe
network information is read, and the parent population is
randomly generated [32]. )e population size is 50, and the
evolutionary algebra is 100.)e annual depreciation rate and
overhaul cost rate of the pipe network are p � 5, and the
investment payback period is T�10. )e flow is initially
distributed; then, the manual adjustment is carried out by
using (2), (3), and (4), and the fitness is calculated by using
(5) and (16). )e intersection operation is carried out by
using (13), and the variation range is determined by using
(14). )e crossover probability and mutation probability are
obtained from (11) and (12). )e natural adjustment for the
selected optimal solution is carried out, and the final op-
timization result is output. )e flowchart of pipe network
optimization is shown in Figure 2.

4. Case Application

Taking Zongyang County as an example, the pipe network is
a typical ring pipe network with 16 nodes and 22 pipe
sections, which is supplied by a pump station.)emaximum
total water supply q� 1296.30 L/s and the flow and elevation
of each node and the length of each pipe section are known.
)e water supply pipe network is shown in Figure 3.

Brand new ductile iron pipe is adopted, and its price is
shown in Table 1.
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Figure 1: Logistic function.
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4.1. Solving Penalty Function. )e penalty function can be
considered as a function k(z) of the proportion z of feasible
solutions in the population [33], and the formula is as
follows:

k(z) � 10λ(1− z)
, (16)

where λ is the constant parameter to be adjusted, and λ> 0, z
is the proportion of feasible solutions in the current
population.

Suppose K is an increasing sequence kw􏼈 􏼉, w � 1, 2, 3, · · ·.
)e initial value of the penalty factor k0 � 1, the increase
coefficient σ � 1.3 is taken, with kw � σkw−1 � . . . � σwk0.

)e problem is transformed into solving unconstrained
optimization problem minF(D, kw). Every kw in the iterative
process is its optimal solution, and the iterative termination
condition is D(w) − D(w−1) < τ. τ is a smaller value greater
than 0, taking kw as the final k. )en, there is k � 10λ, and
inverse solution can be obtained λ � lgk.

We solve according to the result of inverse solution
λ, k � kw � σwk0 � 1.344 × 1 � 103159 ≈ 100000, then

λ � lgk � 5. )e curve of penalty function about the pro-
portion of feasible solution [34] is shown in Figure 4. It can be
seen that k(z) is a subtractive function, and k first decreases
sharply with the increase of z and then decreases slowly so that
the search focus quickly shifts from the search for feasible
solutions to the search for good feasible solutions.

As the number of iterations increases, the expected value
increases, the variance decreases, the feasible solution be-
comes higher and higher, and the similarity in the pop-
ulation becomes higher, which leads to the decrease of
crossover probability and the increase of mutation proba-
bility. )erefore, when the proportion of feasible solutions
increases, the penalty function decreases, the crossover
probability decreases, and the mutation probability
increases.

4.2. Comparison of Optimization Algorithms. Traditional
genetic algorithm and adaptive genetic algorithm are used to
optimize the water supply network of Zongyang County, and
the results are shown in Figures 5 and 6.

Start End

Read pipe network information Output optimization results

Natural adjustment

Meet termination conditions

Yes

Yes

Calculation of pipe network
cost and adaptability

Selection, crossover, variation

Randomly generated parent population

Initial flow distribution

Adjustment of artificial pipe network

No

No

Meet the control flow rate

Figure 2: Flowchart of pipe network optimization.

Figure 3: Pipe network of Zongyang County.
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Using the traditional genetic algorithm, the initial cost is
about 13.6 million, the pipe network cost is reduced to about
12.4 million after about 13 iterations and becomes stable
after 63 iterations, and the pipe network cost finally con-
verges to 11.74 million.When the adaptive genetic algorithm
is adopted, the initial cost is 12.6 million, the pipe network
cost is reduced to 11.3 million after 10 iterations and

becomes stable after 44 iterations, and the pipe network cost
converges to 10.8 million. Compared with the traditional
genetic algorithm design scheme, the improved genetic al-
gorithm can save 7.8% of the engineering cost, which fully
proves that this method has obvious economic advantages.

)e final pipe network layout scheme is obtained by
improving the calculation of the genetic algorithm. )e
results are compared with the results of the simple genetic
algorithm, as shown in Table 2.

4.3. Algorithm of Cross Mutation Probability Change.
Figures 7 and 8 show the changes of crossover probability
and mutation probability in the first 50 iterations.

When the genetic algebra increases, the individual ex-
pectation EX will become larger, and the variance DX will
become smaller, the similarity coefficient [35] will become
larger, the similarity in the population will become higher,
and the difference will become smaller. When the similarity
coefficient increases, the crossover probability decreases and
the mutation probability increases. By observing the Fig-
ures 7 and 8, it is found that the crossover probability de-
creases gradually in a fluctuating manner, while the
mutation probability increases gradually in a fluctuating
manner. )erefore, the changes of crossover probability and
mutation probability during the operation of the algorithm
comply with the theoretical adjustment law.

Table 1: Price of ductile iron pipe.

Pipe diameter (mm) Unit price (yuan•m−1) Pipe diameter (mm) Unit price (yuan•m−1)
200 264 450 658
250 378 500 735
300 454 600 887
350 515 700 1028
400 592 800 1176
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Figure 4: Penalty function diagram.
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Figure 5: Traditional genetic algorithm.
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Figure 6: Adaptive genetic algorithm.
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Table 2: Comparison of results.

Number Tube length
Improved genetic algorithm Simple genetic algorithm
Pipe

diameter Current speed Pipe diameter Current speed

1 303.5 400 0.83 300 0.86
2 419.5 350 0.79 300 0.82
3 394.3 300 0.74 300 0.74
4 471 250 0.62 200 0.86
5 258.3 300 0.65 300 0.65
6 486.2 400 0.85 300 0.87
7 528.9 500 0.86 300 0.92
8 422.8 300 0.62 200 0.68
9 422.8 700 1.25 800 0.95
10 426.7 300 0.64 200 0.71
11 222.3 250 0.61 200 0.68
12 222.3 300 0.67 200 0.75
13 394.3 200 0.81 200 0.81
14 482.7 700 1.35 800 1.26
15 500.6 400 0.85 300 0.92
16 644.9 400 0.91 300 1.05
17 470.9 300 0.65 200 0.69
18 465.7 600 1.21 800 1.15
19 275.2 700 1.26 800 1.02
20 308.3 700 1.32 800 1.24
21 429.8 800 1.38 800 1.38
22 163.3 800 1.35 800 1.35
Annual conversion cost/Ten thousand yuan 1082.45 1174.26
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Figure 7: Variation of crossover probability.
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5. Conclusion

Comparedwith the traditional genetic algorithm, the improved
crossover operator proposed in this paper not only expands the
search space but also can effectively prevent the premature
problem and accelerate the convergence speed. )e offspring
generated by the general crossover operator directly replaces
the parent to enter the next iteration. )is paper adopts the
competition between the parent and the child, and selects the
optimal and suboptimal individuals to enter the next gener-
ation, which can make the population close to the region with
high fitness value, and the range ofmutation operator decreases
with the iterative process, which speeds up the search speed and
makes the convergence faster.

)e adaptive penalty function can speed up the search into
the feasible region and then automatically adjust the penalty
factor to search for a better feasible solution, which is par-
ticularly important for searching the global optimal solution,
and has high computational efficiency and better convergence.

Compared with the simple genetic algorithm design
scheme, the improved genetic algorithm can save 7.8% of the
engineering cost, which fully proves that this method has
obvious economic advantages and has good application
value and prospect in the optimal design of the water supply
network.

Data Availability

All the data used to support the findings of this study are
included within the article. Any other data are available from
the corresponding author upon request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is paper was supported by the National “13th Five Year
Plan” Water Special Support Project (2017zx07303), Key

Support Project for Provincial Natural Science Research of
Colleges and Universities in Anhui Province (kj2018a0508),
and Anhui Quality Engineering Support Project
(2018sjjd072).

References

[1] A. Pagano, I. Pluchinotta, and R. Giordano, “Dealing with
uncertainty in decision-making for drinking water supply
systems exposed to extreme events,” Water Resources Man-
agement, vol. 32, no. 1, pp. 1–15, 2018.

[2] W. Xiong, Y. Li, W. Zhang, Q. Ye, S. Zhang, and X. Hou,
“Integrated multi-objective optimization framework for ur-
ban water supply systems under alternative climates and
future policy,” Journal of Cleaner Production, vol. 195,
pp. 640–650, 2018.

[3] J. A. Caballero and M. A. S. S. Ravagnani, “Water distribution
networks optimization considering unknown flow directions
and pipe diameters,” Computers & Chemical Engineering,
vol. 127, no. 4, pp. 41–48, 2019.

[4] J. C. Steele, K. Mahoney, O. Karovic, and L. W. Mays,
“Heuristic optimizationmodel for the optimal layout and pipe
design of sewer systems,” Water Resources Management,
vol. 30, no. 5, pp. 1605–1620, 2016.

[5] I. Samora, M. J. Franca, A. J. Schleiss, and H. M. Ramos,
“Simulated annealing in optimization of energy production in
a water supply network,” Water Resources Management,
vol. 30, no. 4, pp. 1533–1547, 2016.

[6] F. Yu, X.-Y. Li, and X.-S. Han, “Risk response for urban water
supply network using case-based reasoning during a natural
disaster,” Safety Science, vol. 106, pp. 121–139, 2018.

[7] G. Meirelles Lima, B. M. Brentan, and E. Luvizotto, “Optimal
design of water supply networks using an energy recovery
approach,” Renewable Energy, vol. 117, pp. 404–413, 2018.

[8] J. Changklom and I. Stoianov, “Redundant flow estimation
methods for robust hydraulic control in water supply net-
works,” Journal of Hydroinformatics, vol. 21, no. 3/4,
pp. 571–592, 2019.

[9] Y. Zhang, Y. Zheng, and S. Li, “Enhancing cooperative dis-
tributed model predictive control for the water distribution
networks pressure optimization,” Journal of Process Control,
vol. 84, pp. 70–88, 2019.

V
ar

ia
tio

n 
pr

ob
ab

ili
ty

 (×
10

3 )

0 10 20 30 40 50

9.4

9.6

9.8

10.0

10.2

10.4

Number of iterations

Figure 8: Variation of mutation probability.

Mathematical Problems in Engineering 7



[10] A. M. Fathollahi-Fard, M. Hajiaghaei-Keshteli, G. Tian, and
Z. Li, “An adaptive Lagrangian relaxation-based algorithm for
a coordinated water supply and wastewater collection net-
work design problem,” Information Sciences, vol. 512,
pp. 1335–1359, 2020.

[11] G. V. Ramana and V. Chekka, “Validation and examination of
existing water distribution network for continuous supply of
water using EPANET,”Water Resources Management, vol. 32,
no. 6, pp. 1–19, 2018.

[12] K. Pietrucha-Urbanik and A. Studziński, “Qualitative analysis
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