
Research Article
Multisensor and Multitarget Tracking Based on Generalized
Covariance Intersection Rule

Kuiwu Wang ,1,2 Qin Zhang,1 and Xiaolong Hu1

1School of Air Defense and Missile Defense, Air Force Engineering University, Xi’an 710051, China
2Graduate School of Air Force Engineering University, Xi’an 710051, China

Correspondence should be addressed to Kuiwu Wang; wkw19971997@163.com

Received 21 March 2022; Revised 9 July 2022; Accepted 16 July 2022; Published 18 August 2022

Academic Editor: Ahmed Zeeshan

Copyright © 2022 KuiwuWang et al. ­is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Distributed multitarget tracking (MTT) is suitable for sensors with limited �eld of view (FoV). Generalized covariance inter-
section (GCI) fusion is used to solve the MTTproblem based on label probability hypothesis density (PHD) �ltering in this paper.
Because the traditional GCI fusion only has good fusion performance for the targets in the intersection of each sensor’s FoV, and
the targets outside the intersection range would be lost, this paper redivides the Gaussian components according to the FoV and
distinguishes the Gaussian components of the targets inside and outside the intersection. GCI fusion is sensitive to label in-
consistency between di�erent sensors. For label fusion in the intersection region, the best match of labels is found by minimizing
label inconsistency index, and then GCI fusion is performed. Finally, the feasibility and e�ectiveness of the proposed fusion
method are veri�ed by simulation, and its robustness is proved. ­e proposed method is obviously superior to local sensor and
traditional GCI algorithm.

1. Introduction

MTT is a process of assigning the measurements to the
targets, �ltering them, and managing the tracks of multiple
targets according to the time step [1, 2]. Traditional tracking
algorithms, such as probabilistic data association (PDA),
multiple hypothesis tracking (MHT), and others [3–6],
transform the multitarget problem into a parallel single-
target tracking problem by allocation of measurements. ­e
core of its processing method is data correlation, but when
there are many targets and a large number of false alarm
clutter, correlation will bring combination explosion and
make the calculation amount increase exponentially. Cor-
relation error and state estimation error are coupled and
in�uence each other, which results in large estimation error.
­e random �nite set (RFS) provides a uni�ed and clear
framework for MTT. ­e �rst-order moment realization,
that is, PHD �ltering [7], avoids the complex data associ-
ation problem in the process of state estimation, which can
concentrate resources on tracking problems, and has good
potential in solving target tracking problems under the

conditions of insu¢cient prior knowledge and unknown
number of targets. At present, it has been widely used in
radar target tracking [8–10], computer vision [11], real-time
positioning andmap building [12], and group target tracking
[13]. Among them, Gaussian mixture (GM) and sequential
Monte Carlo (SMC) are two important methods of PHD
operation, which are called GM-PHD [14] and SMC-PHD
[15], respectively.

PHD �lter has rigorous mathematical theoretical basis
and can realize joint detection and tracking of targets. ­e
structure is complete and clear, and the amount of calcu-
lation is small. However, PHD �lter cannot identify the
tracks of di�erent targets in the tracking process. With the
increase of targets or the approach of distances, the wrong
judgment of tracks will lead to the inability of GM-PHD
�lter to track the targets that need attention. For PHD �lter,
accurate distinction of tracks is the key to ensure tracking
performance [16–18]. In MTT, it is the premise of estab-
lishing the track on determining the identity of the target.
­e data association algorithm [19] proposed by Panta et al.
provides a unique label for each target and obtains the track
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of a single target through the state at each time and the
association between the targets [20]. Vo et al. [21–23] also
proposed label CBMeMBer filter and label multitarget
Bayesian processing method, which effectively solved the
track formation problem of RFS processing multitarget and
belonged to the pioneering work of label RFS.

In many cases, combining the information collected by
multiple sensors can improve the tracking performance.
Distributed MTT algorithm has attracted a lot of attention
recently because of its advantages of strong fault tolerance,
high flexibility, and low computational burden compared
with centralized fusion framework [24–28]. +e latest
method of distributed multisensor MTT is GCI [29, 30], also
known as exponential mixed density (EMD) [31]. GCI fu-
sion is equivalent to calculating and minimizing the density
of Kullback-Leibler divergences [32, 33] (KLD) gains from
local and avoids the problem of double calculation of
common information [34]. In the past few years, many
distributed RFS filters based on GCI fusion rules have been
proposed [35–43], including PHD and CPHD filters [23],
and the fusion density can be calculated in closed form. On
the contrary, in the case of label-based RFS filter, the ap-
plication of GCI fusion is not simple, because GCI fusion of
label RFS density can only be calculated in a closed form
under special circumstances [39]. Even if the fusion density
can be calculated, its performance is very sensitive to the
inevitable label inconsistency between different sensors [44].

Although GCI fusion rule has the advantage of avoiding
double calculation, it has been observed that this fusion rule
may be sensitive to high missed detection rate [45]. In fact,
GCI fusion rules tend to keep only all tracks existing in local
posterior. When the sensor has different FoV, this defect will
be aggravated. Some new methods are proposed recently to
deal with the target missing problem caused by different FoV
in GCI fusion framework. For example, in [46], two possible
solutions based on SMC-PHD filter were proposed to solve
this problem. In the first method, particles from different
sensors were combined only if they were considered to
represent the same target. In the second method, particles
corresponding to the same target were hierarchically clus-
tered and used for state extraction. However, both methods
were prone to estimation errors and underestimated the
number of targets when adjacent targets appeared. In [47], a
distributed fusion algorithm based on SMC-PHD filter was
proposed, which abandoned the limitation of completely
overlapping FoV and divided the received particles into
ordinary particle set and external particle set. Based on GM-
PHD filter, [48] proposed a solution to deal with different
FoV under the background of simultaneous positioning and
mapping. Specifically, the method of [49] was based on the
idea of initializing all local PHD with uniform intensity in
the whole area and modeled the uncertainty of target po-
sition in the unexplored area. A different solution was
proposed in [49], which modified the traditional GCI fusion
algorithm by considering the distance between Gaussian
components. However, this method cannot solve the
problem of false positives, and the cardinality is over-
estimated. Recently, some scholars have extended the labeled
RFS filter to multisensors by using similar ideas [50–52], but

it is more challenging to develop effective solutions under
this filtering framework because possible label inconsis-
tencies need to be considered.

In order to solve the target omission problem of distributed
multisensor PHD filtering based on GCI fusion rules, a stable
and effective fusion method is proposed in this paper, which
makes the fusion results not affected by fusion mismatch in
GCI-PHD fusion generated by multisensors with limited FoV.
+e method includes two parts: Firstly, by analyzing the GCI
fusionmismatch caused by the limited field sensor, whether the
Gaussian component falls into the field intersection area is
divided and differentiated; secondly, the problem of label in-
consistency in GCI fusion is analyzed. For the fusion of labels
in the intersection area, the best match of labels is found by
minimizing the label inconsistency index, and then GCI fusion
is implemented.+e targets not in the intersection area of FoV
are directly added to the final multitarget state according to the
state provided by each sensor and the labels.

+e subsequent chapters are arranged as follows: the
second section introduces the traditional PHD filtering and
GCI fusion rules; the third section analyzes the problems in
the GCI fusion process, including fusion mismatch analysis
and label inconsistency analysis, and introduction, including
the distinction of Gaussian components and the improve-
ment of label fusion; Section 5 verifies the effectiveness of the
algorithm through linear simulation experiments; Section 6
is the conclusion. Table 1 lists the acronyms in the text.

2. Background

For MTT, under the condition of missing detection and
clutter, we focus on solving the problem of estimating the
unknown number of target states through the measurement
data provided by sensors. Assuming the location of the
sensors is known, each sensor s has a finite FoV, defined as

FoVs � x ∈ X: p
s
D(x)> 0􏼈 􏼉. (1)

Among them, ps
D represents the detection probability of

the sensor s in the limited field of view. And different sensors
have different FoV (usually depending on sensor type, lo-
cation, and orientation).

+e detection range of the sensor s is denoted by FoVs,
and R[·] denotes the detection range that can be sensed by all
sensors. Figure 1 below shows a sensing network consisting
of two sensors; then the detection range of the first sensor is

FoV1 � R[1]∪R[3], (2)

where R[i] denotes the ith region, which satisfies ∀i≠ j,
R[i]∩R[j] � ∅. +e whole detection region R can be
expressed as

R � 􏽛

3

i�1
R[i]. (3)

2.1. PHD Filtering. Consider the following MTT scenario,
where the target state set is Xk � x1

k, · · · , x
Nk

k􏽮 􏽯 and the
measurement set is Zk � z1

k, · · · , z
Mk

k􏽮 􏽯, where xn
k and zm

k
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represent the nth target state and the mth measurement at
time k, respectively. Nk and Mk are the number of targets
and the number of measurements at time k, respectively.
Assuming that the prior probability of multitarget ap-
proximately obeys Poisson distribution, with the help of

random �nite set statistics theory, the PHD recurrence
equation [7] is

Dk|k−1(x) � ∫ ps,k|k−1fk|k−1(x|ζ)( ) + βk|k−1(x|ζ)Dk−1|k−1(ζ)dζ + ck(x)

Dk|k(x) � 1 − PD,k[ ]Dk|k−1(x) + ∑
zk∈Zk

PD,kgk(z|x)Dk|k−1(x)
λc zk( ) + ∫PD,kgk(z|ζ)Dk|k−1(ζ)dζ

,

(4)

ck(x) and βk|k−1(x|ζ) represent the target intensity of
newborn and derived RFS, respectively [55], ps,k|k−1 repre-
sent the survival probability of target at time k− 1, and
ps,k|k−1 � ps,k−1, PD,k represent the detection probability of
target at time k, fk|k−1(x|ζ) represents the probability
density function of state transition, gk(z|x) is the likelihood
function of single target, λ is the average clutter number, and
c(zk) obeys Poisson distribution. Poisson’s RFSX multi-
target density π(X) takes the following form:

π(X) � exp −∫
X
D(x)dx( )∏

x∈X
D(x). (5)

Given a region χ ∈ X, the number of prediction targets in
the region can be calculated as ∫

x∈χD(x)dx, and the total
number of prediction targets in the whole state space is
∫
X
D(x)dx.
GM-PHD �lter expresses the prior PHD and the pos-

terior PHD of multiple targets as GM formation, and its
iterative recursion can be expressed as a prediction update
structure similar to Kalman �lter (KF).

Assume that the multitarget posterior PHD at time
k − 1 can be expressed as GM, and the equation is as
follows [53]:

Dk−1(x) � ∑
Jk−1

i�1
wik−1N x;mi

k−1, p
i
k−1( ), (6)

where Jk−1 is the number of Gaussian components at time
k− 1. wik−1 is the weight of the ith Gaussian component, and
mi
k−1 and pik−1 present the mean and covariance of the ith

Gaussian component.

­e newborn and derived Gaussian components can be
represented by a Gaussian mixture term [53]:

ck(x) �∑
Jc,k

j�1
wjc,kN x;mj

c,k, p
j
c,k( ),

Dβk|k−1(x) �∑
Jβ,k

j�1
wjβ,kN x;mj

β,k−1, Q
j
β,k−1( ).

(7)

Among them, Jc,k and Jβ,k represent the number of
newborn and derived Gaussian components at time k, re-
spectively. wjc,k and w

j
β,k represent the weights of the new-

born and derived j-th Gaussian components at time k,
respectively. mj

c,k and pjc,k are the mean and covariance of
the j-th newborn Gaussian component, respectively.
mj

β,k−1 � F
j
β,k−1mk−1 + d

j
β,k−1 and Qjβ,k−1 are the mean and

covariance of the j-th derived Gaussian component,
respectively.

­en the multitarget prior PHD at time k can be
expressed as [53]

Dk|k−1(x) � ck(x) +Dβk|k−1(x) +Dsvk|k−1
(x), (8)

where Dβk|k−1(x) and Dsvk|k−1
(x) are the Gaussian mixture

intensity functions of the derived and surviving targets,
respectively, Jk|k−1 is the number of Gaussian components to
predict PHD, wikk−1, m

i
k|k−1, and p

i
k|k−1 are the weight, mean,

and covariance of the ith Gaussian component in the pre-
dicted intensity function, respectively,wjk,m

j
k, and p

j
k are the

update weights, mean, and covariance of the j-th component
in the intensity function.

R[3] R[2]R[1]

s1 s2

θ θ

Figure 1: Distributed sensor network with limited �eld of view.

Table 1: List of notation.
MTT Multitarget tracking
FoV Field of view
GCI Generalized covariance intersection
PHD Probability hypothesis density
PDA Probabilistic data association
MHT Multiple hypothesis tracking
RFS Random �nite set
SMC Sequential Monte Carlo
GM Gaussian mixture
EMD Exponential mixed density
KLD Kullback-Leibler divergences
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+e derived Gaussian component intensity can be
expressed as [53]

Dβk|k−1
(x) � 􏽘

Jk1|k−1

i�1
􏽘

Jβ,k

j�1
w

i
k−1|k−1w

j

β,kN x; m
i,j

β,k−1, Q
i,j

β,k−1􏼒 􏼓, (9)

where

m
i,j

β,k−1 � F
j

β,k−1m
i
k−1|k−1 + d

j

β,k−1,

Q
i,j

β,k−1 � F
j

β,k−1p
i
k F

j

β,k−1􏼒 􏼓
T

+ Q
j

β,k−1.
(10)

+e surviving Gaussian component intensity can be
expressed as [53]

Dsvk|k−1
(x) � ps,k|k−1 􏽘

Jk−1|k−1

i�1
w

i
k−1|k−1N x; m

i
sv,k|k−1, p

i
sv,k|k−1􏼐 􏼑, (11)

where

m
i
sv,k|k−1 � Fk−1m

i
k−1|k−1,

p
i
sv,k|k−1 � Fk−1p

i
k−1|k−1F

T
k−1 + Qk−1,

(12)

where Fk−1 is the state transition matrix and Qk−1 is the
process noise covariance. +en the k-time prior multitarget
PHD can be expressed as a Gaussian mixture form [53].

Dk|k−1(x) � 􏽘

Jk|k−1

i�1
w

i
k|k−1N x; m

i
k|k−1, p

i
k|k−1􏼐 􏼑. (13)

Among them, wi
k|k−1 � ps,k−1w

i
k−1|k−1 represents the prior

weight from the posterior weight at time k-1.
Jk|k−1 � Jk−1|k−1(1 + Jβ,k) + Jc,k represents the number of
prior Gaussian components at time k.

+en, the posterior intensity at time k is as follows [53]:

Dk(x) � 1 − PD,k􏽨 􏽩Dk|k−1(x)

+ 􏽘

mk

l�1
􏽘

Jk|k−1

i�1
w

i
k|k z

l
k􏼐 􏼑N x; m

i,l
k|k, p

i,l
k|k􏼐 􏼑,

(14)

where

w
i
k|k z

l
k􏼐 􏼑 �

PD,kw
i
k|k−1gk|k−1 z|m

i
k|k−1, p

i
k|k−1􏼐 􏼑

λc z
l
k􏼐 􏼑 + PD,k 􏽐

Jk|k−1
j�1 w

i
k|k−1gk|k−1 z|m

j

k|k−1, p
i
k|k−1􏼐 􏼑

, (15)

K
i
k � 􏽢p

i
k|k−1H

T
k Hk

􏽢p
i
k|k− 1H

T
k + Rk􏽨 􏽩

− 1
, (16)

􏽢m
i
k � 􏽢m

i
k|k−1 + K

i
k z

l
k − Hk 􏽢m

i
k|k−1􏼐 􏼑, (17)

􏽢p
i
k|k � I − K

i
kHk􏽨 􏽩􏽢p

i
k|k−1. (18)

Rk is the measurement noise covariance matrix, and I is the
identity matrix.

+e number of predicted targets 􏽢Nk|k−1 and 􏽢Nk asso-
ciated with Dk|k−1 and Dk is obtained by the following
equation [54]:

􏽢Nk|k−1 � 􏽢Nk−1 ps,k + 􏽘

Jβ,k

j�1
w

j

β,k
⎛⎝ ⎞⎠ + 􏽘

Jc,k

j�1
w

j

c,k,

􏽢Nk � 􏽢Nk|k−1 1 − pD,k􏼐 􏼑 + 􏽘
z∈Zk

􏽘

Jk|k−1

j�1
w

j

k(z),

(19)

where Jβ,k and Jc,k represent the number of derived Gaussian
components and newborn Gaussian components at time k,
respectively. +erefore, at time k, the number of Gaussian
components of Dk is Jk � (Jk−1(1 + Jβ,k) + Jc,k)(1 + |Zk|).

2.2. GCI Fusion Rules. π1
k(X) and π2

k(X) of two multitarget
posterior probability density functions are considered based
on the measurement sets from two different sensors. When
the correlation between two measurement sets is unknown,
two multitarget posteriori can be fused by GCI fusion rule
[29]. Under GCI fusion rule, two multitarget posterior
probability density functions are fused to obtain

π1,2
k (X) �

π1k(X)
ω1π2k(X)

ω2

􏽒 π1
k(X)

ω1π2
k(X)

ω2δX
, (20)

where ω1 and ω2 are the weights that determine the relative
importance of each multitarget posteriori, satisfying
ω1 + ω2 � 1. One method of weight selection is the Me-
tropolis weight selection method [55]. It can guarantee
fusion convergence. Another method is to select the cost
function that minimizes the target weights according to the
optimization process [56]. +e fusion density provided by
the fusion rule (20) is a minimization of the weighted sum of
the KLD with respect to the density to be fused.

π1,2
k � arg inf

π
ω1DKL π‖π1k􏼐 􏼑 + ω2DKL π‖π2k􏼐 􏼑􏼐 􏼑. (21)

Among them

DKL π‖πi
k􏼐 􏼑�
Δ

􏽚 π(X)log
π(X)

πi
(X)

δX. (22)

+e density of Ns multitargets and their corresponding
fusion weights are paired into a set; that is, 􏽑 � (πs,ωs)s∈Ns

;
GCI divergence G(􏽑) is defined as [57]

G􏼒􏽙 􏼓 � min
π

􏽘
s∈N

ωsDKL π‖πs( 􏼁 � −log c􏼒􏽙 􏼓. (23)

Among them

c􏼒􏽙 􏼓 � 􏽚 􏽙
s ∈ N

πs(X)􏼂 􏼃
ωsδX, (24)

where the GCI coefficient c(􏽑) satisfies 0< c(􏽑)< 1.
For simplicity, only two sensors are considered.
According to GCI fusion rules, Poisson RFS with PHDs

D1
k(x) and D2

k(x) are fused to produce a Poisson RFS fused
with PHD

D
1,2
k (x) � D

1
k(x)􏽨 􏽩

ω1
D

2
k(x)􏽨 􏽩

ω2
. (25)
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When PHD is represented by GM, the above results
cannot be calculated in closed form because the exponent of
GM cannot be GM, so there is an approximation strategy to
approximate each power [Dl

k(x)]
ωl to a GM. For example,

Dl
k(x)[ ]

ωl �∑
Nl

i�1
α̃lk,iN x; m̃l

k,i, p̃
l
k,i( ), (26)

where m̃l
k,i is the mean of the ith Gaussian component of

sensor l at time k, p̃lk,i is the covariance of the ith Gaussian
component of sensor l at time k, and α̃lk,i is the weight of the
ith Gaussian component of sensor l at time k. ­en, compute
the fusion PHD

D1,2
k (x) �∑

N1

i�1
∑
N2

j�1
α1,2k,i,jN x;m1,2

k,i,j, p
1,2
k,i,j( ). (27)

Among them

p1,2k,i,j � p̃1k,i( )
− 1 + p̃2k,j( )

− 1
[ ]

− 1
, (28)

m1,2
k,i,j � p

1,2
k,i,j p̃1k,i( )

− 1
m̃1
k,i + p̃2k,j( )

− 1
m̃2
k,j[ ], (29)

α1,2k,i,j � α̃1k,iα̃
2
k,jN m̃1

k,i − m̃
2
k,j; 0, p̃

1
k,i + p̃

2
k,j( ). (30)

m1,2
k,i,j, p

1,2
k,i,j, and α1,2k,i,j are the mean, covariance, and

weight of the fused Gaussian components, respectively.

3. Problem Analysis

3.1. GCI Fusion Mismatch Analysis. ­is paper analyzes the
situation of GCI fusion when it is applied to di�erent FoV
sensors by actual scene and discusses the reasons why GCI
fusion may fail in this case.

Considering a distributed sensor network with two
sensors, GM-PHD �ltering is used for tracking. ­e ob-
servation area is [−2000, 2000] × [0, 2000](m2). For sim-
plicity, the two targets move in a circle. ­e survival
probability is ps,k � 0.99, and the positions of the two
sensors are p1 � [−1000, 0]T, p2 � [500, 0]T.

Each sensor has a limited FoV, which can only detect
targets with relative angles in the interval [−60°, 60°]. Detect
probability pD,k � 0.98 in FoV; otherwise it is 0. ­e true
trajectory is shown in Figure 2, and the cardinality esti-
mation is shown in Figure 3.

As can be seen from Figure 2, Target 1 can only be
detected by Sensor 1, and Target 2 can only be detected by
Sensor 2. ­erefore, the PHD of Sensor 1 does not contain a
Gaussian component representing Target 2, whereas the
PHD of Sensor 2 does not contain a Gaussian component
representing Target 1, and the Gaussian component of
Sensor 1 and the Gaussian component of the Sensor 2 are far
apart.­e result is that the tracking performance after fusion
is obviously worse than that of a single sensor, and the
number of targets after fusion is 0.

­e essence of GCI fusion rule is the weighted multi-
plication between target densities. Only when both sensors
detect the same target can the fusion process proceed

normally. When a sensor does not detect a target, its PHD
would approach zero in the corresponding region of the state
space. Even if another sensor can detect the target and there
are Gaussian components with nonnegligible weights in this
region, the application of GCI fusion rules would signi�-
cantly reduce such weights. Targets may be lost in the fused
multitarget distribution, as happens in simulation. It can also
be seen from GCI fusion, implemented based on the GM
method (18), that large distances between Gaussian com-
ponents result in small fusion weights because N(m̃1

k,i −
m̃2
k,j; 0, p̃

1
k,i + p̃

2
k,j) tends to zero as m̃1

k,i − m̃2
k,j increases.

3.2. Label InconsistencyAnalysis. In addition to PHD fusion,
in order to form continuous tracks, Gaussian components
also carry corresponding label information [57], so it is also
necessary to fuse corresponding labels, and each Gaussian
component is assigned a unique label

Γ0 � τ10, . . . , τ
Jk
0{ }, (31)

τi0 represents the label of the ith Gaussian component.
Due to the inherent hypothesis of complete consistency

between labels of di�erent sensors, the parallelization of GCI
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is actually realized. However, as pointed out in [57], it is
precisely because of this inherent hypothesis that when
labels are inconsistent, the performance of GCI fusion would
drop sharply, which is called label inconsistency. Label in-
consistency means that the same target is assigned different
labels in different sensors.

In practice, even if the local filter works well, GCI fusion
may not produce accurate results because the hypothesis of
label consistency is difficult to guarantee. +ere are many
reasons for label inconsistency, such as uncertainty in
measurement, that is, noise, clutter, and low detection
probability; take local pruning operation, etc.

Consider a set of multitarget densities and corre-
sponding weights 􏽑 � (πs,ωs)􏼈 􏼉s∈N, where each πs is defined
in F(X × τs) and supports F(X × Γs). Each πs is an unla-
beled version of πs; given a set of unlabeled target states, and
x1, · · · , xn, the label information is described by the con-
ditional joint probability distribution of its corresponding
label τ1, · · · , τn.

ϖ τ1|x1( 􏼁, . . . , τn|xn( 􏼁􏼈 􏼉( 􏼁 �
π τ1|x1( 􏼁, . . . , τn|xn( 􏼁􏼈 􏼉( 􏼁

π x1, . . . , xn􏼈 􏼉( 􏼁
. (32)

Among them, π( x1, . . . , xn􏼈 􏼉) accords the following
marginal distribution [58].

π x1, . . . , xn􏼈 􏼉( 􏼁 � 􏽘

α1 ,...,αn( )∈Γn
π x1|α1( 􏼁, . . . , xn|αn( 􏼁􏼈 􏼉( 􏼁.

(33)

For n object states x1, . . . , xn, they are labeled as Γn, and
each marked mode can be expressed as a vector
(α1, . . . , αn) ∈ Γn; that is, xi is represented as αi, and
ϖ( (τ1|x1), . . . , (τn|xn)􏼈 􏼉) denotes the probability of the
possible hypothesis label (τ1, · · · , τn) for state x1, · · · , xn

Using the GCI coefficient
ϖs( (τ1|x1), · · · , (τn|xn)􏼈 􏼉), s ∈ N between multiple condi-
tional multilabel distributions, for a given set of unlabeled
state x1, · · · , xn, the label inconsistency can be described as

μΠ � x1, . . . , xn􏼈 􏼉( 􏼁

� 􏽘

τ1 ,...,τn( )∈Γn
􏽙
s∈N
ϖs τ1|x1( 􏼁, . . . , τn|xn( 􏼁􏼈 􏼉( 􏼁􏼂 􏼃

ωs . (34)

According to the distribution of X represented by the
fusion density πw(·) returned by the GCI fusion of
􏽑 � (πs,ωs)􏼈 􏼉s∈N, the statistical average of GCI coefficient
μΠ(X) in the state space is taken, where each πs is unlabeled.
+e following label inconsistencies are defined according to
[57].

Definition 1. +e label inconsistency index between the
multitarget densities of labels in Π is defined as

dG(Π) �
Δ

G(Π) − G(Π) � −logEπω μΠ(X)􏼂 􏼃, (35)

wherein Eπω(·) is an expectation with respect to the prob-
ability density πω, i.e., the fusion density returned from the
density in GCI fusion.

Introducing target probability and nontarget probability
into [23]

Py(π) � 1 − π(∅),

Pn(π) � π(∅),
(36)

where π denotes a posterior density. Only when the prob-
ability of the target is greater than the given threshold can the
target be recognized as existing. GCI fusion πω of matched
labels can be written as the target probability of GCI fusion
πω of corresponding unmatched labels [57]:

Py πω( 􏼁 � 1 − e
dG(Π) 1 − Py πω( 􏼁􏽨 􏽩. (37)

+e following inequality holds [57].

0≤Py πω( 􏼁≤Py πω( 􏼁. (38)

+ese results show that given that Py(πω) and Py(πω)

decrease exponentially with the increase of label inconsistency
index dG(Π), when the target probability Py(π) is lower than
a given threshold [59], the GCI fusion of Π cannot judge the
existence of the target, so the GCI fusion performance of label
multitarget density is very sensitive on dG(Π).

4. Solutions

4.1.DistinguishGaussianComponents. Based on the analysis
in Section 3.1, Gaussian components need to be treated
differently. +e specific measure is to divide Gaussian
components according to whether they only enter the FoV of
one sensor but not the intersection of the FoV of the sensor.

Suppose gm
s � wm

s , mm
s , pm

s􏼈 􏼉, s � i, j, so Gi � gm
i􏼈 􏼉m�1,···,Ji

and Gj � gn
j􏽮 􏽯

n�1,···,Jj

represent the Gaussian components
obtained by sensors i and j, respectively. +e Gaussian
component from the sensor i but not in the FoV intersection
range is obtained by the following equation:

G
D
i � g

m
i ∈ Gi|m

m
i ∉ FoVj􏽮 􏽯. (39)

+e remaining components are given by the following
equation:

G
C
i � Gi − G

D
i . (40)

Similarly, the Gaussian component from the sensor j but
not in the FoV intersection range is obtained by the fol-
lowing equation:

G
D
j � g

m
j ∈ Gj|m

m
j ∉ FoVi􏽮 􏽯. (41)

+e remaining components are given by the following
equation:

G
C
j � Gj − G

D
j . (42)

After obtaining the segmented Gaussian component, GC
i

and GC
j are fused according to equation (17), and the

resulting fused PHD is expressed as D
C

∗ . In addition, the
remaining GD

i and GD
j corresponding PHD are represented

DD
j by DD

i and DD
j , and the final PHD fusion can be

expressed as

D0 � D
C

∗ + D
D
i + D

D
j . (43)
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+is means that the PHD fuses only for the Gaussian
components from GC

i and GC
j , while the Gaussian compo-

nents corresponding to the GC
i and GC

j are added directly to
the fused PHD.

4.2. Improved Label Fusion. In the range of multisensor FoV
intersection, besides PHD fusion, label inconsistency in the
fusion process should also be considered. As mentioned
earlier, when labels are inconsistent between different
sensors, the traditional GCI fusion performance of label
multitarget density would deteriorate. An effective solution
to solve label inconsistency is to match labels with different
posterior PHD when fusing posterior PHD from different
sensors at every moment, so that the same label corresponds
to the same target when fusing labels.

Fusion of two label multitarget posterior PHD from
sensor a and sensor b is considered, respectively. Two PHD
posteriors are paired with their corresponding fusion
weights and are collected into a set, which is represented by
(ωa, πa), (ωb, πb)􏼈 􏼉. +e definition of label matching de-
scribing the corresponding hypothesis between two node
labels is given below.

A label matched from a label in La to a label in Lb is
defined as bijective ς: La⟶ Lb, where La and Lb represent
the label space of sensor a and sensor b, respectively. +e set
of all these label matches, denoted as Γ(La, Lb), is called the
label match space for La and Lb. For any subset I⊆La, define
ς(I)�
Δ ∪ l∈Iς(l) and ς(l) as images of l.
Label matching should be defined over the entire label

space because a nonzero probability label of one sensor may
correspond to a zero probability label of another sensor. For
example, due to random error detection by one sensor, a
label with a probability less than the threshold can be
trimmed or truncated, while it may have a high probability
in the corresponding label of another sensor because the
other sensor can detect it well.

Each label matching hypothesis is the hypothesis that ς
represents each label l of sensor a corresponding to a label
ς(l) of sensor b, which represent the same target. In order to
ensure the consistency of labels between sensor a and sensor
b, a feasible method is to relabel the label multitarget state X
of one sensor by using the labeling method of another
sensor.

Sensor a is used as a reference point and sensor b is used
as a relabeled sensor. Under the hypothesis ς of label
matching, the label multitarget state (x1, l1), . . . , (xn, ln)􏼈 􏼉 of
sensor b is relabeled by the labelingmode of sensor a, and the
labeled multitarget state can be expressed as
(x1, l1), . . . , (xn, ln)􏼈 􏼉. +erefore, the label multitarget pos-
terior representation of the relabeled sensor b is expressed as
π(ς)

b (X), and the function is

π(ς)
b x1, l1( 􏼁, . . . , xn, ln( 􏼁􏼈 􏼉( 􏼁

� πb x1, ς l1( 􏼁( 􏼁, . . . , xn, ς ln( 􏼁( 􏼁􏼈 􏼉( 􏼁.
(44)

+e statistical data of the state of the unlabeled object
before and after the relabeling remains unchanged because
the unlabeled data of πb(X) and π(ς)

b (X) are identical

according to equation (33); i.e., the relabeling process
changes only the label information described by the con-
ditional multilabel distribution.

In order to evaluate the quality of label matching, the
label inconsistency index in equation (29) is used to measure
the difference of label information in πa(X) and π(ς)

b (X).
+en, the best label matching with ς is selected as the index
of minimizing label inconsistency dG( πa,ωa􏼈 􏼉, π(ς)

b ,ωb􏽮 􏽯),
that is,

ς∗ � arg min
ς∈Γ La,Lb( )

dG πa,ωa􏼈 􏼉, π(ς)
b ,ωb􏽮 􏽯􏼐 􏼑. (45)

Minimization (35) is equivalent to reducing the adverse
effects of label inconsistencies on GCI fusion. Once an
optimal match ς∗ is obtained, GCI fusion of πa(X) and
π(ς∗)

b (X) is performed on the label state space, thereby
returning the fusion density πω(X).

+is means that the target labels and states are fused by
GCI in the intersection range of sensors’ FoV, while the
targets outside the intersection range are directly added to
the final fused multitarget states according to the states and
labels provided by each sensor.

5. Simulation Verification

5.1. Experimental Parameter Setting. In the simulation, GM-
PHD filter is used to verify the tracking performance of the
proposed fusion algorithm, and the proposed fusion algo-
rithm FoV is carried out in a finite linear sensor. In order to
verify the effectiveness of the proposed algorithm in MTT
scene, the improved GCI-GM-PHD algorithm is compared
with the traditional GCI-GM-PHD algorithm, and the finite
FoV Sensor 1 using GM-PHD filter and the finite FoV
Sensor 2 by GM-PHD filter are compared. +e experimental
parameters are set as follows.

+e tracking scene is set to multiple targets in four
possible locations or derived from other targets, and the
observation area is [−1000, 1000] × [−1000, 1000](m2).
+ere are six targets in the scene. For simplicity, it is as-
sumed that each target moves in a straight line at a uniform
speed.

+e state vector of the target consists of position and
velocity components: xk � [px,kpy,kvx,kvy,k], and its state
equation is

xk �

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xk−1 +

T
2

2
0

0

T

T
2

2

0

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

wk−1. (46)
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­e sampling interval T is 1 s, the total tracking time is
100 s, and the process noise is wk ∼ N(0, 5). ­e intensity of
new target is as follows:

ck(x) �∑
4

i�1
ωic,kN x;mi

c,k, p
i
c,k( ). (47)

Among them, m1
c,k � [0; 0; 0;−10]

T,
m2

c,k � [0; 400; 3;−7]
T, m3

c,k � [−800;−800; 3; 15]
T, and

m4
c,k � [600; 100; 15;−5]

T. ­e weights of new target
ωic,k � 0.03, the process noise of new targets obeys Gaussian
distribution, and the mean value is zero. ­e covariance is
Qisp,k � diag([100, 100, 100, 100]).

In the Gaussian component pruning andmerging section,
the truncation threshold of the Gaussian component is set to
10− 5. ­e state extraction threshold is set to 0.5, the merging
threshold is set to 10, and the maximum number of Gaussian
components is 100. ­e number of Monte Carlo simulations
is 100. Evaluating tracking quality by OSPA distance:

OSPAp,c xk, x̂k( ) �





































min∑ xk| |
i�1 dc x

i
k, x̂

π(i)
k( )( )

p
+ cp x̂k

∣∣∣∣
∣∣∣∣ − xk
∣∣∣∣
∣∣∣∣( )

x̂k
∣∣∣∣
∣∣∣∣

p

√√

.

(48)

xk is the target state vector; the two parameters of OSPA
distance are set to p � 1 and c � 200, respectively. ­e
smaller the OSPA distance, the higher the accuracy of target
state estimation.

Two sensors are located at (−500m,−1000m) and
(500m,−1000m), respectively, which provide measure-
ments of unknown targets. Each sensor has a limited FoV
with a detection radius of 2000m, which can only detect
targets with relative angles in the interval [−60°, 60°]. In
FoV, the detection probability is constant; that is,

psD �
0.95, x ∈ FoVs,

0, x ∉ FoVs.
{ (49)

For s � 1, 2, the measurement vector is position infor-
mation: zk � [pzx,k pzy,k]; the measurement equation is given
by the following equation:

zk �
1 0 0 0

0 1 0 0
[ ]xk + vk, (50)

where noise is measured as vk ∼ N(0, 5). Clutter follows
uniform Poisson RFS, with an average of 60 clutter points
per scan (λ � 60).

5.2. Simulation Results. Figure 4 shows a simulated multi-
target motion scene in which the target has cross motion,
Target 1 is in the detection �eld of Sensor 1 but not in the
detection �eld of Sensor 2, and Target 2 is in the detection
�eld of Sensor 2 but not in the detection �eld of Sensor 1.

Figure 5 shows the tracking results of Sensor 1 in a
limited FoV. ­e black solid line in the �gure is the real
trajectory of the target, the colored points are the estimation
of the target trajectory by the sensor, and the dense gray
points are the measurements. It can be clearly seen that

Target 2 is completely lost by Sensor 1, because the esti-
mation of the sensor does not appear on its true trajectory.
Sensor 1 and Sensor 2 use traditional GM-PHD �lters. Due
to the in�uence of clutter, clutter points will be regarded as
real targets, and label allocation will become blurred and
unclear when targets move across. Figure 6 shows the
tracking result of Sensor 2 under limited FoV. Its tracking
result is similar to that of Sensor 1, and the tracking of Target
1 is lost. When the target moves across, the estimated value
will become uncertain, and the trajectory of the target will be
temporarily lost.

Figure 7 shows the tracking results of two sensors fused
by traditional GCI algorithm. It can be seen that the target
tracking performance in the intersection of two sensors’ FoV
will be improved by using traditional GCI algorithm, but
there will be a phenomenon of wrong label allocation.
Traditional GCI fusion algorithm will directly lose Target 1
and Target 2 outside the intersection of two sensors’ FoV.
­e reason is that Sensor 1 loses tracking Target 2 and Sensor
2 loses tracking Target 1, which directly leads to the loss of
Target 1 and Target 2 in the fusion process.

Figure 8 shows the tracking result of fusing two sensors
with the improved GCI algorithm. It can be seen that not
only is the tracking e�ect of the target in the intersection
range of the two sensors’ FoV better, but also the phe-
nomenon of inconsistent labels does not appear when the
target crosses, and the tracking e�ect of the improved GCI
fusion algorithm for Target 1 and Target 2 is still preserved
outside the intersection range of the two sensors’ FoV.

Figures 9 and 10 show OSPA distance comparisons and
position comparisons for Sensor 1, Sensor 2, the traditional
GCI-GM-PHD algorithm, and the improved GCI-GM-PHD
algorithm, respectively. Target 1 starts to move from 60
seconds, and Target 2 starts to move from 80 seconds. From
the OSPA distance comparison in Figure 8, it can be seen
that the error of Sensor 1 increases sharply at 80 seconds,
Sensor 2 increases sharply at 60 seconds, and GCI fusion
algorithm also increases sharply at 60 seconds, because the
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Figure 4: Real target trajectory.
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Figure 5: Tracking result of Sensor 1.
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Figure 6: Sensor 2 tracking results.
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Figure 7: GCI-GM-PHD tracking results.
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Figure 8: Improved GCI-GM-PHD tracking results.
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Figure 10: OSPA location comparison chart.
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target information of the two sensors is inconsistent. ­e
improved GCI fusion algorithm avoids this problem and still
keeps a low error after 60 seconds. Due to the clutter, the
error of the traditional GM-PHD �lter will still increase
sharply. In the follow-up research, we can consider im-
proving the �lter used in the sensor. It can be seen from
Figure 10 that the position error of the improved GCI fusion
algorithm is the lowest, which also directly proves the im-
provement of tracking performance of the improved fusion
algorithm.

Figure 11 shows a comparison of target number esti-
mates for Sensor 1, Sensor 2, the traditional GCI-GM-PHD
algorithm, and the improved GCI-GM-PHD algorithm. It
can be seen from the results in Figure 10 that the target
number estimation results are consistent with the OSPA
distance comparison results. Sensor 1 has a decrease in the
target number estimation at 80 seconds, Sensor 2 has a
decrease in the estimated number at 60 seconds, and tra-
ditional GCI fusion algorithm has a decrease in the number
estimation at 60 seconds, while two targets are missed at 80
seconds. However, the improved GCI fusion algorithm
performs well in target estimation, and there is no target
loss. Figure 12 shows the potential estimation error com-
parison diagram of Sensor 1, Sensor 2, traditional GCI-
GM-PHD algorithm, and improved GCI-GM-PHD algo-
rithm, which also re�ects the error of target number es-
timation result from another angle and veri�es the
improvement of tracking performance of improved GCI
fusion algorithm.

5.3. Algorithm Performance Comparison Simulation after the
Number of Targets Increases. In order to verify whether the
proposed algorithm in this paper can be adapted to the case
of more targets, 12 targets are added in scenario three, and
the maximum number of targets surviving at the same time
is 10. ­e clutter rate λ � 30, a set of single-sensor experi-
ments are added to the simulation, assuming that it has an
in�nite �eld of view, and GM-PHD �ltering is used to
compare the performance of di�erent algorithms, and other
parameters settings are the same as 5.1. ­e simulation
results are shown in Figures 13 and 14.

As shown in Figure 13(b), in the case of the increasing
number of targets, the algorithm in this paper as a whole
achieves well the target tracking e�ect after increasing the
number of targets, despite the occurrence of mistakenly
treating the clutter points as targets.

From Figures 14(a) and 14(b), it can be seen that the
algorithm proposed in this paper can be well adapted to the
situation where the number of targets increases. In terms of
OSPA error, the algorithm in this paper shows the best
performance. From Figures 14(c) and 14(d), it can be seen
that the algorithm in this paper is signi�cantly better than
the remaining two algorithms in terms of target number
estimation, which indirectly proves the stability of the al-
gorithm in this paper in the case of the increasing number of
targets.

­e stability of each algorithm is added in this scenario
for di�erent clutter rates and di�erent detection probabil-
ities. From Figures 15(a) and 15(b), it can be seen that the
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Figure 11: Comparison of target number estimation.
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Figure 13: ­e true trajectory and tracking results of the target when the number of targets increases: (a) true target trajectory; (b) tracking
results.
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Figure 14: Tracking simulation e�ect of each algorithm in scene three: (a) OSPA distance comparison; (b) OSPA location comparison; (c)
target cardinalities estimation error; (d) estimated cardinalities of targets.
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improved GCI-GM-PHD algorithm in this paper has the
best stability, which indirectly proves the e�ectiveness and
robustness of the algorithm in the multitarget tracking
environment.

6. Conclusion

­is paper presents an e�ective and robust method for
multitarget and multisensor fusion with limited FoV in
distributed environment. Beginning with the analysis of GCI
fusion defects of multisensor limited FoV, it puts forward a
solution of dividing local Gaussian components into regions
and theoretically analyzes the label inconsistency in the
process of sensor fusion. What is more, it proposes to �nd
the best match between labels of di�erent sensors by
minimizing the label inconsistency index and fuses the
Gaussian components corresponding to the matched labels
accordingly. ­e e�ectiveness of the proposed method is
veri�ed by simulation experiments.

In future work, the distributed multisensor fusion
method can be applied to more �elds. As the air tra¢c
problem mentioned in [60–62], in order to avoid air acci-
dents, this method can be used to install several sensors on
the aircraft to avoid collisions, classify the objects, and track
them.
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