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In this research study, the generalized di�erential transform scheme has been applied to simulate impulsive di�erential equations
with the noninteger order. One speci�c tool of the implemented scheme is that it converts the problems into a recurrence equation
that �nally leads easily to the solution of the considered problem. e validity and reliability of this method have successfully been
accomplished by applying it to simulate the solution of some equations. It is shown that the consideredmethod is very suitable and
e�cient for solving classes of fractional-order initial value problems for impulsive di�erential equations and might �nd
wide applications.

1. Introduction

Present, impulsive di�erential equations are treated as a
basic system to explore the structures of various phenomena
that are subjected to unexpected variations in their states.
Many evolution processes which are simulated in applied
sciences are de�ned by di�erential equations with the im-
pulse e�ect.  e theory and applications addressing such
problems have been reported [1–6]. Recently, some inter-
esting solutions’ existence results for impulsive di�erential
equations have been explored largely; we suggest the reader
to [7–11] and the papers therein.

Over the last few years, the applications of fractional
derivatives are sharply increasing and a huge quantity of
mathematical systems has been explored by using these
operators in di�erent regions of science and engineering
[12–18]. In the theory of fractional calculus, we talk about
the noninteger orders of di�erential operators.  e frac-
tional calculus is just a generalization of classical calculus

and uses similar methods and features, but is more useful in
the application �eld.  e memory e�ects and hereditary
natures of di�erent types of processes and materials can be
studied by fractional-order operators much more accurately.
 ese operators involve the complete history of that function
in the given domain or span, which we say memory e�ects.
 at is why fractional-order operators are the best �t to
describe dynamical systems or various real-life problems.
Also, the nonlocal characteristic is one of the beauties of
fractional operators.  is justi�es that the future state of a
model depends not only upon the present stage but also
upon all past states. All features make the importance of
noninteger order systems and that is why an active area of
research.

Nowadays, impulsive fractional di�erential equations, as
generalizations of impulsive classical di�erential equations,
are applied to model various important dynamical phe-
nomena containing evolutionary structures speci�ed by
abrupt variations of the position at particular instants. Some
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recent developments in the stability, existence, and
uniqueness of solutions for classes of impulsive fractional
differential equations are investigated [19–27]. To date, a
number of computational methods have been proposed to
solve various types of noninteger order differential equa-
tions. Najafi and Allahviranloo [28] solved the linear and
nonlinear fuzzy impulsive fractional differential equations
by using the combination of reproducing kernel Hilbert
space and fractional differential transform methods. A
block-by-block numerical method is constructed for the
impulsive fractional ordinary differential equations by
carrying out a series of numerical examples in [29]. In [30],
the Adomian decomposition method was applied to solve
impulsive nonclassical type differential equations with the
Caputo fractional operator. Very recently, a number of
studies in the direction of efficiency and performance of
various computational methods have been given by re-
searchers [31–39]. In [40], authors have defined a novel
fractional-order Lagrangian to study the motion of a beam
on a nanowire. Some applications of noninteger order
numerical methods in epidemiology and ecology can be seen
[41, 42]. In the works presented in [20, 23, 26], we can
observe a conflict between the obtained solutions for a
particular impulsive fractional-order differential equation.
In fact, they use different definitions for the Caputo frac-
tional differential operators. However, to our knowledge,
analytical or numerical techniques for solving impulsive
fractional differential equations have not yet been suffi-
ciently established. ,erefore, the aim of this work is to
implement the generalized differential transform scheme for
analytically solving the initial value problem for the im-
pulsive fractional differential equations:

D
α
0F(t) � f(t, F(t)),

t ∈ [0, T]

t1, t2, . . . , tk􏼈 􏼉
,

ΔF tm( 􏼁 � F t
+
m( 􏼁 − F t

−
m( 􏼁 � Im F t

−
m( 􏼁( 􏼁, m � 1, 2, . . . , k,

F(0) � F0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Dα
0 is the Caputo fractional differential operator of

order α with 0< α≤ 1, described in Section 2, f: [0, T] ×

R⟶ R is the appropriate continuous function, and
Im: R⟶ R, tm satisfying 0 � t0 < t1 < · · · < tk < tk+1 � T

and F0 ∈ R. ,e numbers tm are called instants (or mo-
ments) of impulse, Im shows the jump of the state tm, and
F(t+

m) � limh⟶0+F(tm + h) and F(t−
m) � limh⟶0− F(tm + h)

specify the right and the left limits, respectively, of the state
tm.

2. Preliminaries and Notations

In this portion, first, we write few important definitions of
fractional-order operators and generalized Taylor’s formula.
Next, we recall some relevant results which are applied in
this research.

Definition 1. ,e Caputo fractional derivative operator of
order α with α> 0 is specified by

D
α
af(t) � J

n− α
a D

n
f(t), (2)

where n − 1< α≤ n, n ∈ N, and Dn is the classical differential
operator of order n and Jμ is the Riemann-Liouville frac-
tional integral operator of order μ with μ> 0.

Definition 2. ,e definition of Riemann-Liouville fractional
integral operator of order μ with μ> 0 is given by

J
μ
af(t) �

1
Γ(μ)

􏽚
t

a
(t − τ)

μ− 1
f(τ)dτ, t> a. (3)

Brief discussion on the characteristics of the above given
fractional derivative operators can be learned from [12–18].

It is worth mentioning that there are some differences
between Caputo fractional differential operator Dα

a, given in
Definition 1, and the usual integer differential operator Dn

regarding the memory property. Caputo fractional operator
of function f, Dα

af(t), captures the complete history of the
function f starting from t � a, while the classical derivative
operator of the function f, Dnf(t), only considers the
nearby points. So, Caputo definition has long-term memory
and long-span spatial interactions. In [43], the authors in-
troduced the generalized Taylor’s formula. ,is general-
ization is a derivation of a function as an infinite sum of
terms that is simulated from the fractional derivative values
of a function at a single point.

Theorem 1. Assume that (Dα
a)mf(t) ∈ C(a, b] for

m � 0, 1, . . . , k + 1, where 0< α≤ 1; then, we have [43]

f(x) � 􏽘
k

i�0

(t − a)
αi

Γ(αi + 1)
D

α
a( 􏼁

i
f􏼐 􏼑(a+) + R

α
k(t, a), (4)

where

R
α
k(t, a) �

D
α
a( 􏼁

1+k
f􏼐 􏼑(ξ)

Γ((1 + k)α + 1)
(t − a)

(1+k)α
. (5)

With a≤ ξ ≤ t, for each t ∈ (a, b], and Dα
a is the Caputo

derivative operator of order α, with (Dα
a)k � Dα

a · Dα
a · · · Dα

a.
In some recent studies, number of results have been

proposed to find the sufficient conditions regarding the
solution existence for the Caputo-type IVPs for impulsive
differential equations [20–22, 24, 25]. One of the most
important results is given in the following theorem which
establishes the connection between the IVP for the Caputo-
type impulsive differential equation given in equation (1)
and a class of integral equations.

Theorem 2. Let 0< α≤ 1 and f: [0, T] × R⟶ R be Leb-
esgue measurable function with respect to t on [0, T]. A
function x(t) is a solution of IVP (1) if and only if x(t) is a
solution of the following integral equations [25]:
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x(t) �

x0 +
1
Γ(α)

􏽚
t

0
(t − v)f(v, x(v))dv, 0≤ t≤ t1,

x0 + I1 x t
−
1( 􏼁( 􏼁 +

1
Γ(α)

􏽚
t

0
(t − v)

1− α
f(v, x(v))dv, t1 < t≤ t2,

⋮

x0 + 􏽘
m

i�1
Ii x t

−
i( 􏼁( 􏼁 +

1
Γ(α)

􏽚
t

0
(t − v)

1− α
f(v, x(v))dv, tm < t≤T.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

3. Generalized Differential Transform Scheme

,e differential transformmethod (DTM), proposed by Zhou
[44] in 1986, was given for simulating ordinary and partial
differential equations. ,is scheme produces approximations
based on an iterative method for calculating power series
solutions in the form of initial value constraints of differential
equation.,e scheme, which is well addressed in [45, 46], can
be taken as an alternative method for constructing the so-
lution as formal Taylor series without linearization, dis-
cretization, perturbation, or large computational work. More
recently, for solving the noninteger order differential equa-
tions, the DTM was generalized by using generalized Taylor’s
formula ([47]) to calculate the solutions of such equations in
the terms of fractional power series.,e new extension, which
is known as the generalized differential transform method
(GDTM), gives a useful feature for getting fractional power
series expansions for the solutions of nonlinear systems
having nonclassical derivatives. For understanding of the
learners, we give a review on the GDTM. We define the
generalized differential transformation of themth derivative of
the function f(x) as follows [48]:

Fα(m) �
1

Γ(αm + 1)
D

α
x0

􏼐 􏼑f(x)􏽨 􏽩|x�x0′
, (7)

where 0< α≤ 1, (Dα
x0

)m � Dα
x0

· Dα
x0

· · · Dα
x0
, (m-times), and

the generalized differential inverse transform of Fα(m) is
defined as

f(x) � 􏽘
∞

m�0
Fα(m) x − x0( 􏼁

αm
. (8)

When we put (7) into (8), applying the generalized
Taylor’s formula, we receive

􏽘

∞

m�0
Fα(m) x − x0( 􏼁

αm
� 􏽘

∞

m�0

x − x0( 􏼁
αm

Γ(αm + 1)
D

α
x0

􏼐 􏼑
m

f(x)􏽨 􏽩|x�x0

� f(x).

(9)

So, (8) is the inverse transformation of the generalized
differential transform (7). ,e GDTM consisting of the
generalized differential transformation (7) and its inverse
transform (8) has increased the applications of the DTM to
fractional differential equations. ,e basic simulations done

by generalized differential transformation can be learned
from [48], and the mostly applicable characteristics are
specified by the following theorems.

Theorem 3. If Gα(k), Vα(k), and Wα(k) are the generalized
differential transformations of the functions g(x), v(x), and
w(x), respectively, then [48]

(i) If g(x) � v(x)∓w(x), then Gα(k) � Vα(k)∓Wα(k);
(ii) If g(x) � av(x), where a ∈ R, then Gα(k) � aVα(k);
(iii) If g(x) � v(x) · w(x), then

Gα(k) � 􏽐
k
l�0 Vα(l) · Wα(k − l);

(iv) If g(x) � Dα
x0

v(x), then
Gα(k) � (Γ(α(k + 1) + 1)/Γ(αk + 1))Vα(k + 1);

(v) If g(x) � (x − x0)
mα, then Gα(k) � δ(k − m), where

δ(k) �
1, k � 0
0, k≠ 0􏼨 .

Theorem 4. Suppose that Gα(n) and Vα(n) are the gener-
alized differential transforms of the functions g(x) and v(x),
simultaneously. Ien, if g(x) � D

β
x0v(x), m − 1< β≤m,

where Dαn
x0

D
β
x0v(x) � D

αn+β
x0 v(x), for n � 0, 1, 2, . . ., then [48]

Gα(n) �
Γ(αn + 1 + β)

Γ(αn + 1)
Vα

n + β
α

􏼠 􏼡. (10)

4. GDTM for Impulsive Fractional
Differential Equations

,is section presents the applications of GDTM to solve IVP
for the impulsive Caputo-type differential equations given in
(1). ,e obtained piecewise continuous solutions of such
IVPs demonstrate the performance and reliability of the
method. Initially, one can verify that, using Definition 1 and
,eorem 2, the solution of IVP (1) can be obtained as

y(t) �

y1(t), 0≤ t≤ t1,

y2(t), t1 < t≤ t2,

⋮

ym+1(t), tm < t≤T,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

where the solution component yk(t) satisfies IVP:
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D
α
0yk(t) � f t, yk(t)( 􏼁, t> 0, (12)

For k � 1, 2, . . . , m + 1, respect to the initial constraints,

y1(0) � y0,

y2(0) � y0 + I1 y t
−
i( 􏼁( 􏼁,

y3(0) � y0 + I1 y t
−
i( 􏼁( 􏼁 + I2 y t

−
2( 􏼁( 􏼁,

⋮

ym+1(0) � y0 + 􏽘
m

i�1
Ii y t

−
i( 􏼁( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

,e main steps of the GDTM for simulating the non-
classical differential equations are as follows: first, we employ
the generalized differential transformation, specified in (7),
to IVP (1); then, the output is a recurrence relation. Second,
simulating this relation by applying the inverse generalized
differential transformation, given in (8), we get the solution
component yj(t) of IVP (1) as

yj(t) � 􏽘
∞

k�0
Yj(k) · t

αk
, (14)

where Yj(k) stratifies the recurrence relation:

Γ((1 + k)α + 1)

Γ(kα + 1)
Yj(1 + k) � F k, Yj(k)􏼐 􏼑, (15)

where Y1(0) � y0, Yj+1(0) � y0 + 􏽐
j
i�1 Ii(y(t−

i )), j �

1, 2, . . . , m, and F(k, Yj(k)) is the generalized differential
transformation of the function f(t, yj(t)). Now, by
implementing the above analysis, piecewise continuous
solutions of some illustrative IVPs for impulsive fractional-
order differential equations are derived.

Furthermore, we will investigate the sufficient condition
for the convergence of the series solution, given in (11).
Based on these simulations, maximum absolute truncated
error estimations for the solutions will also be addressed.
Following the work presented in [49], we can establish the
following results.

Theorem 5. Let the solution of IVP (1) is obtained as given in
(11), where the components yj(t) of the solution are evaluated
as given in (14), and let Ij � [tj− 1, tj].

(a) ,e series 􏽐
∞
k�0 Yj(k) · tαk, given in (14), converges if

∃0< cj < 1, such that ‖Yj(k + 1) · tα/Yj(k)‖< cj,
∀ k≥ k0, for some k0 ∈ N and t ∈ Ij, where
‖f(t)‖ � max

t∈Ij

|f(t)|, that is, the solution component

yj(t) converges if lim
k⟶∞

|Yj(k + 1)/
Yj(k)| · max

t∈Ij

tα < 1.
(b) Let the series 􏽐

∞
k�0 Yj(k) · tαk converges to the so-

lution component yj(t). If the truncated series
􏽐

n
k�0 Yj(k) · tαk is considered as an approximation to

the solutions yj(t), then the maximum absolute
truncated error is calculated as ‖yj(t) −

􏽐
n
k�0 Yj(k) · tαk‖< c

n− n0+1
j /1 − cj max

t∈Ij

|Yj(n0) · tαn0 |,
for any n0 ≥ 0, where Yj(n0)≠ 0.

Another way, we derive, for each i≥ k0 and t ∈ Ij, the
parameters cj(i) as

cj(i + 1) �

Yj(i + 1) · t
α

Yj(i)

���������

���������
, Yj(i)

�����

�����≠ 0,

0, Yj(i)
�����

����� � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

i ∈ N∪ 0{ }; then, the series 􏽐
∞
k�0 Yj(k) · tαk converges to

an exact solution, yj(t), when 0≤ cj(i)< 1, ∀ i≥ k0.
To show the reliability, applicability, and performance of

this scheme as an efficient tool in obtaining series solutions,
some initial value problems for impulsive Caputo-type
differential equations will be examined in the following
examples.

Example 1. First, we recall the following IVP for the im-
pulsive differential equation in the sense of Caputo deriv-
ative [50, 51]:

D
(1/4)
0 g(t) � t,

t ∈ (0, 2]

1{ }
,

g 1+
( 􏼁 � g 1−

( ) + 1,

g(0) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Using generalized differential transformation along with
its properties, on both sides of (17), we get

Gj(k + 1) �
Γ(k/4 + 1)

Γ(k/(4 + 5)/4)
[δ(k − 4)], j � 1, 2, (18)

where G1(0) � 0 and G2(0) � 1. Using the recurrence re-
lation (18) and the transformed initial conditions, some
initial components of the generalized differential transform
solution for equation (17) can be written as follows:

4 Mathematical Problems in Engineering



G1(0) � G1(1)

� G1(2)

� G1(3)

� G1(4)

� 0,

G1(5) �
1
Γ(9/4)

,

G2(0) � 1,

G2(1) � G2(2)

� G2(3)

� G2(4)

� 0,

G2(5) �
1
Γ(9/4)

,

(19)

where G1(k) � G2(k) � 0, for k> 5. So, the solution to the
IVP for the impulsive Caputo-type differential equation
given in (17) can be obtained as

g(t) �

16
5Γ(1/4)

t
(5/4)

, 0≤ t≤ 1,

1 +
16

5Γ(1/4)
t
(5/4)

, 1< t≤ 2,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

which is the same solution of the initial value problem for the
impulsive fractional differential (17) obtained in [50].

Example 2. We next adopt IVP for the impulsive Caputo-
type differential equation:

D
α
0y(t) � 1 − y

2
(t),

t ∈ (0, 2]

1{ }
,

y 1+
( 􏼁 � y 1−

( ) + 2,

y(0) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

where 0< α≤ 1. Using the generalized differential trans-
formation to both sides of (21) and applying the features of
the given transform, we obtain

Yj(1 + k) �
Γ(kα + 1)

Γ(α(1 + k) + 1)
δ(k) − 􏽘

k

l�0
Yj(l)Yj(k − l)

⎧⎨

⎩

⎫⎬

⎭, j � 1, 2,

(22)

where Y1(0) � 0 and Y2(0) � 1. Using the recurrence re-
lation (22) and the transformed initial conditions, the

approximate solution to IVP for the impulsive equation
given in equation (21) can be derived as

y(t) �
y1(t), 0≤ t≤ 1,

y2(t), 1< t≤ 2.
􏼨 (23)

Here,

y1(t) �
1
Γ(α + 1)

t
α

−
1

Γ(α + 1)
2
Γ(2α + 1)

Γ(3α + 1)
t
3α

+
2

Γ(α + 1)
3
Γ(2α + 1)

Γ(3α + 1)

Γ(4α + 1)

Γ(5α + 1)
t
5α

− · · · ,

y2(t) � 1.

(24)

Since Y2(0) � 1 and Y2(k) � 0, for k≥ 2. ,e exact
solution of the Caputo-type differential equation Dα

0y(t) �

1 − y2(t) with respect to the initial constraint y(0) � 0 when
α � 1 is y(t) � ((e2t − 1)/(e2t + 1)). In Table 1, the obtained
numerical solutions 􏽐

n
k�0 Y1(k) · tαk, when n � 21, for the

solution component y1(t) of the initial value problems given
in (21), over the interval 0< t< 1, are compared with those
obtained in [50] using the second kind Chebyshev wavelet
scheme, the numerical solutions obtained in [51] using the
double perturbation collocation method, and the exact so-
lutions when α � 1. It is clear from Table 1 that our ap-
proximate solutions are very close in favor with the exact
solutions and are much accurate as compared to the solu-
tions given in [50, 51]. Definitely, the accuracy of our ap-
proach can be dramatically improved by simulating further
terms of y1(t).

Example 3. Now, we consider the following initial value
impulsive Caputo-type differential equation:

D
α
0y(t) � − y(t) + 0.5y

2
(t) + 1,

t ∈ (0, 2]

1{ }
,

y 1+
( 􏼁 � y 1−

( ) + 1.25,

y(0) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

where 0< α≤ 1. Using the generalized differential trans-
formation on both the sides of (25) with the characteristics of
the generalized differential transformation, we obtain

Yj(k + 1) �
Γ(αk + 1)

Γ(α(k + 1) + 1)
− Yj(k) + 0.5􏽘

k

l�0
Yj(l)Yj(k − l) + δ(k)

⎧⎨

⎩

⎫⎬

⎭, j � 1, 2,

(26)

where Y1(0) � 0 and Y2(0) � 1.25. Applying the recurrence
relation (27) and the transformed initial values, the ap-
proximate solution to the initial value impulsive fractional-
order (25) can be derived by

y(t) �
y1(t), 0≤ t≤ 1,

y2(t), 1< t≤ 2,
􏼨 (27)

where
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y1(t) �
1
Γ(α + 1)

t
α

−
1

Γ(2α + 1)
t
2α

+
1

Γ(3α + 1)
1 +
Γ(2α + 1)

2Γ(α + 1)
2􏼠 􏼡 t

3α
+ · · · ,

y2(t) � 1.25 +
17
32

1
Γ(α + 1)

t
α

+
17
128

1
Γ(2α + 1)

t
2α

+ · · · .

(28)

In Figures 1 and 2, we compute c1(i)’s and c2(i)’s
(defined in (16)), for different values of α, that correspond to
the solution components y1(t) and y2(t), respectively, of
(25) where x-axis shows the index i and y-axis shows the
parameter ci. From Figures 1 and 2, since c1(i)< 1 and
c2(i)< 1 for i≥ 1, we observe that the components y1(t) and
y2(t) of the series solution converge to the exact solution for
(25), at α � 1, 0.90 and 0.80. Also, we conclude that c1(i)’s
and c2(i)’s are not less than 1, if α � 0.7, and so, the series
solution components may diverge when α � 0.7. In the same
way, we can perform the numerical simulations to show that
the nonclassical type power series solution of (25) may
diverge at the fractional-order.

For big value of n, if the truncated series 􏽐
n
k�0 Y1(k) · tαk

and 􏽐
n
k�0 Y2(k) · tαk are used as approximations to the exact

solution components y1(t) and y2(t) over 0< t≤ 1 and
1< t≤ 2, respectively, according to Figures 1 and 2, the max.
absolute truncation error can be estimated as

y1(t) − 􏽘
n

k�0
Y1(k) · t

αk

���������

���������
≤

1
1 − 0.6368

(0.6368)
n
, α � 1,

1
Γ(1.9)

1
1 − 0.7659

(0.7659)
n
, α � 0.9,

1
Γ(1.8)

1
1 − 0.9145

(0.9145)
n
, α � 0.8,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

and

y2(t) − 􏽘
n

k�0
Y2(k) · t

αk

���������

���������
≤

1.25
1 − 0.7545

(0.7545)
n
, α � 1,

1.25
1 − 0.8389

(0.8389)
n
, α � 0.9,

1.25
1 − 0.9257

(0.9257)
n
, α � 0.8.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

As a result, we can observe that the domain of con-
vergence becomes large as the order of the fractional de-
rivative increases. ,e performed numerical simulations
justify that the series solutions of given impulsive fractional-
order differential equation may diverge when the fractional
derivative order is α≪ 1.

Example 4. Finally, we adopt the initial value problem for
the impulsive Caputo-type differential equation.

D
β
0y(t) � − t − y − t

2
y
2

+
te

− t
+ t

2
e

− 3t
􏼐 􏼑

y
,

t ∈ (0, 3]

1, 2{ }
, 0< β≤ 1,

y 1+
( 􏼁 � 1 + y 1−

( ),

y 2+
( 􏼁 � 1 + y 2−

( ),

y(0) � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

,e exact solution of the system,

D
β
0y(t) � − t − y − t

2
y
2

+
te

− t
+ t

2
e

− 3t
􏼐 􏼑

y
, t ∈ [0, 1], 0< β≤ 1,

y(0) � 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)

is given in [52, 53] by y(t) � e− t when β � 1. Using the
characteristics of the generalized differential transformation
of order α, (30) can be transformed to the following re-
currence relation:

Yj

k + β
α

􏼠 􏼡 �
Γ(αk + 1)

Γ(αk + β + 1)
− δ

k − 1
α

􏼠 􏼡 − Yj(k)􏼢

− 􏽘
k

k2�0
􏽘

k2

k1�0
δ

k1 − 2
α

􏼠 􏼡Yj k2 − k1( 􏼁Yj k − k2( 􏼁 + F(k)⎤⎥⎥⎥⎦,

(33)

for j � 1, 2, 3, F(k) � ([H(k) − 􏽐
k− 1
λ�0F(λ)(k − λ)]/(0)),

H(k) � P(k) + S(k), P(k) � 􏽐
k
p�0 E1(p)δ(k − p − (1/α)),

and S(k) � 􏽐
k
p�0 E2(p)δ(k − p − (2/α)). Moreover, E1(k)

and E2(k) represent the generalized transformations of e− t

and e− 3t that can be expressed, respectively, as follows:

E1(k) �

(− 1)
αk

(αk)!
, αk ∈ Z+

,

0, αk ∉ Z+
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E2(k) �

(− 3)
αk

(αk)!
, αk ∈ Z+

,

0, αk ∉ Z+
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(34)

Table 1: Numerical outputs for equation (21) over 0< t< 1, when
α � 1.

t Exact solution Present method Ref. [50] Ref. [50]
0.1 0.099668 0.099668 0.099667 0.099694
0.2 0.197375 0.197375 0.197358 0.197437
0.3 0.291312 0.291313 0.291289 0.291345
0.4 0.379949 0.379949 0.379946 0.379928
0.5 0.462117 0.462117 0.462172 0.462074
0.6 0.537050 0.537050 0.537048 0.537033
0.7 0.604368 0.604368 0.604338 0.604397
0.8 0.664037 0.664037 0.664009 0.664082
0.9 0.716298 0.716300 0.716300 0.716314
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Figure 2: Numerical outputs of c1(i)’s for y2(t) of equation (26). (a) α � 1. (b) α � 0.9. (c) α � 0.8. (d) α � 0.7.
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Figure 1: Numerical results of c1(i)’s for y1(t) of problem (26). (a) α � 1. (b) α � 0.9. (c) α � 0.8. (d) α � 0.7.
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,e initial condition and the jumps of the states of (30)
are transformed as

Y1(0) � 1, Y1(k) � 0, for k � 1, 2, . . . ,
β

α − 1
􏼠 􏼡,

Y2(0) � 2, Y2(k) � 0, for k � 1, 2, . . . ,
β

α − 1
􏼠 􏼡,

Y3(0) � 3, Y3(k) � 0, for k � 1, 2, . . . ,
β

α − 1
􏼠 􏼡.

(35)

For β � 0.8, solving the recurrence relation (33) using
the transformed conditions given in equation (35) up to
k � 18, the approximate solution to IVP for the impulsive
Caputo-type differential given in equation (31) can be de-
rived as

y(t) �

y1(t), 0≤ t≤ 1,

y2(t), 1< t≤ 2,

y3(t), 2< t≤ 3,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ (36)

where

y1(t) � 1 − 1.0737t
(4/5)

+ 0.69948t
(8/5)

− 0.33543t
(12/5)

+ 0.48426t
(13/5)

− 0.4261t
(14/5)

+ 0.12892t
(16/5)

− 0.011358t
(17/5)

+ 0.90275t
(18/5)

+ · · · ,

y2(t) � 2 − 2.14734t
(4/5)

+ 1.39897t
(8/5)

− 0.298242t
9/5

− 0.670869t
(12/5)

+ 0.376645t
(13/5)

− 1.70424t
(14/5)

+ 0.257842t
(16/5)

− 0.0550077t
(17/5)

+

+ 3.63717t
(18/5)

+ · · · ,

y3(t) � 3 − 3.22101t
(4/5)

+ 2.09845t
(8/5)

− 0.397656t
9/5

− 1.0063t
(12/5)

+ 0.340774t
(13/5)

− 3.83454t
(14/5)

+ 0.386763t
(16/5)

− 0.0695575t
(17/5)

+ 8.14028t
(18/5)

+ · · · .

(37)

For β � 0.85, the approximate solutions y1(t), y2(t), and
y3(t) can be evaluated as

y1(t) � 1 − 1.0575t
(17/20)

+ 0.64738t
(17/10)

− 0.28464t
(51/20)

+ 0.44357t
(27/10)

− 0.40114t
(57/20)

+ 0.098657t
(17/5)

+ 0.0091578t
(71/20)

+ 0.81295t
(37/10)

+ · · · ,

y2(t) � 2 − 2.11503t
(17/20)

+ 1.29476t
(17/10)

− 0.285815t
(37/20)

− 0.569273t
(51/20)

+ 0.341673t
(27/10)

− 1.60458t
(57/20)

+ 0.197315t
(17/5)

− 0.0355107t
(71/20)

+ 3.27489t
(37/10)

+ · · · ,

y3(t) � 3 − 3.17255t
(17/20)

+ 1.94214t
(17/10)

− 0.381087t
(37/20)

− 0.85391t
(51/20)

+ 0.307706t
(27/10)

− 3.610t
(57/20)

+ 0.295972t
(17/5)

− 0.0504003t
(71/20)

+ 7.33025t
(37/10)

+ · · · .

(38)

While when β � 1, the approximate solutions y1(t),
y2(t), and y3(t) can be evaluated as

y1(t) � 1 − t +
t
2

2
−

t
3

6
+

t
4

24
−

t
5

120
+

t
6

720
−

t
7

5040
+

tx
8

40320
−

t
9

362880
+

t
10

3628800
− · · · ,

y2(t) � 2 − 2t + 0.75 t
2

− 1.41667t
3

+ 2.11979 t
4

− 1.54479 t
5

+ 1.59232 t
6

− 2.3723 t
7

+ 2.50693 t
8

− 2.35509t
9

+ 2.73001t
10

− · · · ,

y3(t) � 3 − 3t + 1.16667t
2 3.27778t

3
+ 5.16204t

4
− 4.02253t

5

+ 5.04799t
6

+ 8.22138t
7

+ 9.0091t
8

− 9.70313t
9

+ 13.3388t
10

− · · · .

(39)
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Table 2 provides the exact solution and the absolute
errors for the approximate solutions of y1(t), over 0< t< 1,
obtained using the GDTM, Chebyshev method [52], and
Padé approximation method [53] when β � 1. From Table 2,
we can conclude that the absolute errors are so small, and the
approximate solutions simulated from GDTM are so closed
to the exact solutions. Here, the comparison is made in the
first subinterval because, to our knowledge, techniques for
solving IVPs for impulsive Caputo-type differential equa-
tions have not yet been sufficiently introduced.

5. Conclusion

In this research, the application and performance of the
generalized differential transform scheme to simulate initial
value problems for Caputo-type differential equations are
addressed. ,e reliability of the given technique has been
demonstrated through some illustrative examples, and the
obtained results show perfect agreements with other methods
over the first subinterval. ,e sufficient condition for con-
vergence of the scheme is presented. ,e main property of the
method, as shown in this study, is that it deforms the impulsive
differential equations of fractional order into a set of recurrence
equations which gives several successive approximations, and
hence, the procedure is direct and straightforward. ,is work
illustrates the flexibility of the method as a tool to solve the
classes of nonlinear problems containing fractional derivatives,
effectively, easily, and accurately.
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