Research Article

Probabilistic Linguistic PROMETHEE I and II Methods for Evaluation of the Reform Scheme of Postgraduate Innovation and Entrepreneurship Education Talent Training Mode under the Big Data Environment

Wenshuai Wu

Lingnan College, Sun Yat-sen University, Guangzhou 510275, China

Correspondence should be addressed to Wenshuai Wu; wuwsh8@163.com

Received 11 April 2022; Revised 9 June 2022; Accepted 15 June 2022; Published 17 August 2022

Academic Editor: Zaoli Yang

Talent training quality is an important field within higher education research. Innovating the talent training mode and deepening educational reform programs are both of great significance for enhancing the quality of postgraduate innovation and entrepreneurship education in universities. In this study, Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) I and II methods are extended with the probability linguistic term set (PLTS) to accurately express and quantitatively evaluate the reform scheme of postgraduate innovation and entrepreneurship education talent training mode under the big data environment. First, probabilistic linguistic PROMETHEE I and II methods are presented for quantitatively evaluating the reform scheme of postgraduate innovation and entrepreneurship education talent training, which have the advantages of good effectiveness and feasibility. Second, the PLTS is imported into the evaluation methods and applied to accurately depict qualitative information about the index data of the reform scheme effect by the degree of probability. Third, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) with PLTS is proposed to perform a comparative study and conduct visual analysis to verify the effectiveness of the extended probabilistic linguistic PROMETHEE I and II methods. Fourth, an empirical example illustrates the specific evaluation process, verifies the feasibility of the extended methods, and explains the effectiveness of the results. The research findings indicate that the proposed method to reform scheme evaluation can lead to better decision quality, especially in a complex fuzzy and uncertain decision-making environment.

1. Introduction

Higher education is key to the success of three world-renowned bay areas, the New York Bay area, the San Francisco Bay area, and the Tokyo Bay area [1]. The development of a higher education cluster is not only one of the core contents of the study of the Guangdong-Hong Kong-Macao Greater Bay Area [2], but it is also an important source of support for the construction of a first-class bay area, which will become a new growth pole for China’s high-quality development. A survey from the innovation and entrepreneurship education alliance of China shows that Chinese graduate students are eager for innovation and entrepreneurship and hope that their universities will provide more opportunities to cultivate innovation and entrepreneurship.

In recent years, postgraduate innovation and entrepreneurship education have become a hot issue in the field of higher education. Many universities have put a lot of effort into improving their organizational systems, advancing their infrastructure, carrying out extracurricular activities, and increasing financial support for the talent training of postgraduate innovation and entrepreneurship education [3–6]. However, generally speaking, insufficient attention has been paid to the talent training mode of postgraduate innovation and entrepreneurship education, and the current understanding of the talent training effect is insufficient. Some studies think mechanical replication of the traditional
market with low technology as the achievements of post-
graduate innovation and entrepreneurship education. Some
simply understand talent training innovation as “science
and technology driven innovation,” while ignoring ideology
and consciousness innovation, which makes the talent training
mode separate from professional education and knowledge
education [7–9]. Therefore, research on the reform scheme
of postgraduate innovation and entrepreneurship education
talent-training mode is of great significance for universities
to transform educational ideas, enhance educational modes,
deepen educational reform, and improve the quality of talent
training.

The evaluation of the reform scheme of the talent-
training mode usually involves multiple criteria, such as
innovative knowledge cultivation, innovative consciousness
cultivation, and innovative ability cultivation, which can be
modeled as a multiple criteria decision-making (MCDM)
problem. MCDM, a very popular discipline of management
science and operations research [10–13], can address the
selection problem of optimal alternatives according to the
priority of all feasible schemes when multiple or a finite
number of decision criteria exist [14–16]. The Preference
Ranking Organization Method for Enrichment Evaluation
(PROMETHEE) method, one of the most important MCDM
methods, has a wide range of applications in many different
areas [17–21]. Albadvi [22] proposed a preference ranking
model based on the PROMETHEE method for developing
national information strategies. Cavalante et al. [23] pro-
posed a multicriteria model integrating PROMETHEE and
the Bayesian method to address the replacement problem in
service production systems. Karande and Chakraborty [24]
presented an integrated PROMETHEE and GAIA method to
solve four nontraditional machining process selection
problems. Pawe [25] presented a NEAT F-PROMETHEE to
improve the process of mapping fuzzy numbers by the
correction mechanism. Corrente et al. [26] developed and
applied a hierarchical SMAA-PROMETHEE model to
evaluate the sustainability of European cities. Bausys et al.
[27] proposed an m-Generalized q-Neutrosophic PROM-
ETHEE method to address path selection problems for an
inspection robot. PROMETHEE includes some family
methods, such as the PROMETHEE I and PROMETHEE II
method. Although the PROMETHEE method can be used to
process and evaluate numerical data, it is unable to address
qualitative data or fuzzy data. Thus, Akram and Shumaiza
[20] proposed a q-rung orthopair fuzzy PROMETHEE
approach to address the problems of MCDM. Akram et al.
[28] proposed a bipolar fuzzy PROMETHEE method for
multicriteria group decision-making to select the green
suppliers. In this paper, PROMETHEE I and PROMETHEE
II are extended with the probability linguistic term set
(PLTS) to accurately depict qualitative information or fuzzy
information for evaluation of the reform scheme.

PLTS, provided by Pang et al. [29]; is a new type of
linguistic variable used to accurately express qualitative data
or fuzzy data. PLTS can express linguistic preference with
multiple linguistic terms by making decision-makers (DMs)
induce the weight of each language term in the form of a
probability, which can reflect preference degrees of all
possible linguistic information. For example, when DMs are
evaluating the reform scheme of the talent training mode,
based on the self-cognition and knowledge system of re-
search problems, the DMs may consider that they are 70%
sure the reform scheme effect is “very good,” 20% sure it is
“good,” and 10% sure it is “bad.” Because of the advantages
of accurate expression of PLTS, some MCDMs are extended
with probabilistic linguistic information to accurately ex-
press qualitative data or fuzzy data [30–36]. Liao et al. [37]
proposed a linear programming method with probabilistic
linguistic information for solving MCDM problems. Wang
et al. [38] investigated multicriteria group decision problems
with PLTSs. Chang et al. [39]; based on cumulative prob-
ability-based Hellinger distance, proposed a probabilistic
linguistic TODIM method for waste mobile phone recycling.
Darko and Liang [40] proposed a probabilistic linguistic
WASPAS method by designing and reconciling prioritized
Maclaurin symmetric mean aggregation operators for pa-
tients’ prioritization. In this study, PROMETHEE I and II
methods are extended with PLTS to accurately express and
quantitatively evaluating the reform scheme of postgraduate
innovation and entrepreneurship education talent training
mode.

At present, research on the reform scheme of post-
graduate innovation and entrepreneurship education talent
training mode is still in the stage of theoretical discussion,
meaning empirical research is lacking. Plus, there are few
evaluation studies on the reform effect. Moreover, since the
world has entered the era of big data, big data have become a
major focus of academia, industry, and government agencies
[41–43]. Big data technology is gradually promoting the
reform and innovation of talent training mode in univer-
sities. This study is of great significance since it explores and
evaluates the reform scheme of talent training mode of
postgraduate innovation and entrepreneurship education in
the big data environment.

The major of contributions in this paper are as follows:
First, the principal contribution is that the PROMETHEE I
and II methods are extended with the probabilistic linguistic
environment for quantitatively evaluating the reform scheme
of postgraduate innovation and entrepreneurship education
talent training mode in the era of big data, since the research
on the reform scheme is current in the stage of theoretical
discussion, lacking empirical research. Second, the PLTS is
shown to accurately depict qualitative information about the
index data of the reform scheme evaluation by the degree of
probability. Third, the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) with PLTS is presented
to conduct comparative analysis to verify the effectiveness of
the extended probabilistic linguistic PROMETHEE I and II
methods. The results demonstrate the advantages of good
effectiveness and feasibility of the extended methods for
evaluation of the reform scheme effect. Fourth, an empirical
demonstrates the specific evaluation process, proves the
feasibility of the methods, and reveals the effectiveness of
the results. The research findings on the reform scheme
evaluation indicate that the extended methods can improve
decision-making guidance and technical support for educa-
departments, universities, and relevant teachers to guide
2. Preliminaries

In this section, some basic concepts of the PLTS, normalization of PLTSs, comparison between PLTSs, and PROMETHEE I and II methods are introduced.

2.1. Probabilistic Linguistic Term Set. Based on the additive linguistic term set \(S = \{ S_\alpha | \alpha = -r, \ldots, -1, 0, 1, \ldots, r \} \) [44, 45], the definition of the PLTS is given by Pang et al. [29] as follows:

\[
\begin{align*}
L(p) &= \left\{ L^{(k)}(p^k) \mid L^{(k)} \in S, p^k \geq 0, k = 1, 2, \ldots, \#L(p), \sum_{k=1}^{\#L(p)} p^k \leq 1 \right\},
\end{align*}
\]

where \(L^{(k)}(p^k) \) represents the linguistic term \(L^{(k)} \) associated with probability \(p^k \), and \(\#L(p) \) is the number of all of the different linguistic terms in \(L(p) \).

Note that if \(\sum_{k=1}^{\#L(p)} p^k = 1 \), then the PLTS has the complete probabilistic information of all possible linguistic terms; if \(\sum_{k=1}^{\#L(p)} p^k < 1 \), then the PLTS has partial probabilistic information; if \(\sum_{k=1}^{\#L(p)} p^k = 0 \), then the PLTS has completely unknown probabilistic information.

In addition, the detailed process regarding the normalization of PLTS and the comparison between PLTSs can be obtained from the work of Pang et al. [29].

2.2. PROMETHEE I and II Methods. The PROMETHEE method, proposed by Brans [46], is a ranking decision analysis method that constructs “values outranking relations” to distinguish the best scheme. Based on pairwise comparisons of schemes, PROMETHEE uses the preference function, attribute value, and attribute weight given by the DMs to determine the rank of each scheme by the priority relationship. This method then uses the priority relationship to define the positive outranking flow and negative outranking flow of each scheme. The positive outranking flow shows that the chosen alternative outranks other alternatives, and the negative outranking flow shows that other alternatives outrank the chosen alternative [47]. According to the negative outranking flow and positive outranking flow, the best alternative can be determined [17]. The PROMETHEE I method can obtain a partial priority relationship, and the PROMETHEE II method can get the complete priority relationship. The specific steps are given as follows:

1. Get the standardized decision matrix \(A \), based on the original decision matrix \(R = (r_{ij})_{m \times n} \):

\[
A_{ij} = \begin{cases}
\frac{r_{ij} - \min r_{ij}}{\max r_{ij} - \min r_{ij}} & \text{for benefit criteria,} \\
\frac{\max r_{ij} - r_{ij}}{\max r_{ij} - \min r_{ij}} & \text{for cost criteria,}
\end{cases}
\]

where \(1 \leq i \leq m; 1 \leq j \leq n \).
The PROMETHEE I method can obtain a partial priority relationship according to the negative outranking flow and positive outranking flow. The larger the positive outranking flow and the smaller the negative outranking flow of a scheme, the better the scheme. Three conditions for judging the priority of the scheme are as follows:

1. \(A_a \) outranks \(A_b \), denoted as \(A_a \triangleright P A_b \), if
 \[
 \begin{align*}
 &\phi^+(A_a) > \phi^+(A_b), \\
 &\phi^-(A_a) > \phi^-(A_b); \text{or,} \\
 &\phi^+(A_a) > \phi^-(A_b), \\
 &\phi^+(A_a) < \phi^+(A_b), \\
 &\phi^-(A_a) < \phi^-(A_b).
 \end{align*}
 \]

2. \(A_a \) is indifferent to \(A_b \), denoted as \(A_a \triangleleft I A_b \), if
 \[
 \begin{align*}
 &\phi^+(A_a) = \phi^+(A_b), \\
 &\phi^-(A_a) = \phi^-(A_b).
 \end{align*}
 \]

3. \(A_a \) and \(A_b \) cannot be compared, which is called the incomparable situation and is denoted as \(A_a \equiv P A_b \), if
 \[
 \begin{align*}
 &\phi^+(A_a) > \phi^+(A_b), \\
 &\phi^-(A_a) > \phi^-(A_b); \text{or,} \\
 &\phi^+(A_a) < \phi^+(A_b), \\
 &\phi^-(A_a) < \phi^-(A_b).
 \end{align*}
 \]

The PROMETHEE II method can get the complete priority relationship according to the net outranking flow. The higher the net outranking flow \(\phi(a) \), the better the alternative. Two conditions for judging the priority of the scheme are as follows:

1. \(A_a \) outranks \(A_b \), if and only if \(\phi(A_a) > \phi(A_b) \).
2. \(A_a \) is indifferent to \(A_b \), if and only if \(\phi(A_a) = \phi(A_b) \).

3. Probabilistic Linguistic PROMETHEE I and II Methods

In this section, the probabilistic linguistic PROMETHEE I and II methods are extended and presented to quantitatively evaluate the reform scheme of postgraduate innovation and entrepreneurship education talent training mode in the era of big data.

For the problem of talent training mode reform scheme evaluation with PLTS, suppose there are \(A_i (i = 1, 2, \ldots, m) \) alternatives and \(C_j (j = 1, 2, \ldots, n) \) criteria. Based on the additive linguistic term set \(S = \{ S_\alpha | \alpha = -r, \ldots, -1, 0, 1, \ldots, r \} \) [44, 45], the DMs can evaluate the alternatives \(A_i \) for criterion \(C_j \) by PLTSs to construct decision matrix \(R = (r_{ij})_{m \times n} \). The specific steps are detailed below:

Step 1: construct the original decision matrix \(R = (r_{ij})_{m \times n} \).

The original decision matrix can be constructed according to \(r_{ij} = L_{ij}(p) = \{ L_{ij}^{(k)}(p) \} \ | i \in [1, m], j \in [1, n], k \in [1, \#L^{(p)}], p^{(k)} \leq 1 \} \), where \(r_{ij} \) is the \(j \)th criteria value with respect to the \(i \)th alternative by DMs. \(L^{(k)}(p^{(k)}) \) represents the linguistic term \(L^{(k)} \) associated with probability \(p^{(k)} \), and \(\#L^{(p)} \) is the number of all of the different linguistic terms in \(L^{(p)} \).

Then, the original decision matrix \(R = (r_{ij})_{m \times n} \) can be constructed:

\[
R = \begin{bmatrix}
L_{11}(p) & L_{12}(p) & \cdots & L_{1n}(p) \\
L_{21}(p) & L_{22}(p) & \cdots & L_{2n}(p) \\
\vdots & \vdots & \ddots & \vdots \\
L_{m1}(p) & L_{m2}(p) & \cdots & L_{mn}(p)
\end{bmatrix}
\]

Step 2: transform the original decision matrix \(R \) into decision matrix \(X \).

\[
X = \begin{bmatrix}
x_{11} & x_{12} & \cdots & x_{1n} \\
x_{21} & x_{22} & \cdots & x_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m1} & x_{m2} & \cdots & x_{mn}
\end{bmatrix}
\]

where \(x_{ij} = \sum_{k=1}^{\#L^{(p)}} L_{ij}^{(k)}(p^{(k)}) \sum_{k=1}^{\#L^{(p)}} p^{(k)} \) according to Pang et al. [29]; \(r^{(k)} \) is the subscript of linguistic term \(L^{(k)} \), and \(1 \leq i \leq m, 1 \leq j \leq n \).

Step 3: get the standardized decision matrix \(A \), based on the decision matrix \(X \):

\[
\begin{align*}
A_{ij} &= \frac{x_{ij} - \min x_{ij}}{\max x_{ij} - \min x_{ij}}, & \text{for benefit criteria}, \\
A_{ij} &= \frac{\max x_{ij} - x_{ij}}{\max x_{ij} - \min x_{ij}}, & \text{for cost criteria},
\end{align*}
\]

where \(1 \leq i \leq m, 1 \leq j \leq n \).

Step 4: compute the preference index:

\[
\begin{align*}
p(A_a, A_b) &= \sum_{j=1}^{k} p_j(A_a, A_b) w_j, \\
p(A_b, A_a) &= \sum_{j=1}^{k} p_j(A_b, A_a) w_j,
\end{align*}
\]

where \(A \) is a finite number of alternatives \(A_1, A_2, \ldots, A_m \), \(j, k (1 \leq j, k \leq n) \) is the number of the criteria, \(w_j \) is the weight of criterion \(j \), and \(\sum_{j=1}^{k} w_j = 1 \), where \(1 \leq j \leq n \). \(p_j(A_a, A_b) \) and \(p_j(A_b, A_a) \) are the preference functions of the alternative \(A_a \) and \(A_b \). In this paper, the weight of each criterion can be obtained by analytic hierarchy process [48], proposed by Saaty [49, 50]. Furthermore, this study employs the linear priority relation function, presented by Hu and Jiang [51], as the preference function to induce the preference index.
Step 5: calculate the positive outranking flow \(\phi^+(A_a) \) and the negative outranking flow \(\phi^-(A_a) \):

\[
\phi^+(A_a) = \frac{1}{n-1} \sum_{A_b \in A \setminus A_a} \pi(A_a, A_b),
\]

(15)

\[
\phi^-(A_a) = \frac{1}{n-1} \sum_{A_b \in A \setminus A_a} \pi(A_b, A_a).
\]

(16)

Step 6: determine the net outranking flow \(\phi(A_a) \):

\[
\phi(A_a) = \phi^+(A_a) - \phi^-(A_a).
\]

(17)

The probabilistic linguistic PROMETHEE I method can obtain a partial priority relationship according to the negative outranking flow and positive outranking flow. Three conditions for judging the priority of the scheme in the probabilistic linguistic environment are as follows:

(1) \(A_a \) outranks \(A_b \), denoted as \(A_a PA_b \), if

\[
\begin{align*}
\phi^+(A_a) &> \phi^+(A_b), \\
\phi^-(A_a) &< \phi^-(A_b); \text{or,} \\
\phi^+(A_a) &= \phi^+(A_b), \\
\phi^-(A_a) &< \phi^-(A_b) \quad \text{or,} \\
\phi^+(A_a) &< \phi^+(A_b), \\
\phi^-(A_a) &> \phi^-(A_b).
\end{align*}
\]

(18)

(2) \(A_a \) is indifferent to \(A_b \), denoted as \(A_a IA_b \), if

\[
\begin{align*}
\phi^+(A_a) &= \phi^+(A_b), \\
\phi^-(A_a) &= \phi^-(A_b).
\end{align*}
\]

(19)

(3) \(A_a \) and \(A_b \) cannot be compared, which is called the incomparable situation and is denoted as \(A_a RA_b \), if

\[
\begin{align*}
\phi^+(A_a) &> \phi^+(A_b), \\
\phi^-(A_a) &> \phi^-(A_b); \text{or,} \\
\phi^+(A_a) &= \phi^+(A_b), \\
\phi^-(A_a) &< \phi^-(A_b), \\
\phi^+(A_a) &< \phi^+(A_b), \\
\phi^-(A_a) &< \phi^-(A_b).
\end{align*}
\]

(20)

The probabilistic linguistic PROMETHEE II method can get the complete priority relationship according to the net outranking flow. The higher the net outranking flow \(\phi(A_a) \), the better the alternative. Two conditions for judging the priority of the scheme in the probabilistic linguistic environment are as follows:

(1) \(A_a \) outranks \(A_b \), if and only if \(\phi(A_a) > \phi(A_b) \),

(21)

(2) \(A_a \) is indifferent to \(A_b \), if and only if \(\phi(A_a) = \phi(A_b) \).

(22)

4. Empirical Analysis

4.1. Datasets. Mass entrepreneurship and innovation have become a national development strategy for China’s economy. Simultaneously, China’s higher education has gradually entered the stage of “popular education” from “elite education.” In the big data environment, big data gives graduate students new opportunities and challenges for innovation and entrepreneurship. Moreover, big data have become increasingly used in the field of education, which not only brings greater development space but also poses unprecedented challenges to educational researchers. Talent training quality is a key index of education quality in universities, and it is an important field of higher education research. Transforming the educational concept, innovating the talent-training mode, and deepening the educational reform are of great significance for improving the talent training quality of postgraduate innovation and entrepreneurship education in universities. Furthermore, due to the uncertainty and fuzziness of the information environment, the decision-making process becomes more and more complex, which brings great difficulties and challenges to scientific decision-making. In this study, based on PLTS, the probabilistic linguistic PROMETHEE I and II methods are extended to accurately depict the uncertainty and fuzziness of the information involved in the reform scheme evaluation under the big data environment.

An example is given to verify the effectiveness of the extended probabilistic linguistic PROMETHEE I and II methods for reform scheme evaluation. Eight reform schemes \(A_i (i = 1, 2, 3, 4, 5, 6, 7, 8) \) are selected and combined with literature research and questionnaire survey in the era of big data, the evaluation problems of the reform scheme of postgraduate innovation and entrepreneurship education talent training mode are assessed based on PLTS according to the following five criteria: (1) \(C_1 \): innovative knowledge cultivation; (2) \(C_2 \): innovative consciousness cultivation; (3) \(C_3 \): innovative ability cultivation; (4) \(C_4 \): innovative quality cultivation; and (5) \(C_5 \): innovative talent cultivation. Obviously, \(C_1, C_2, C_3, C_4, \) and \(C_5 \) are all benefit criteria for the reform scheme evaluation. The detailed processes are given.

4.2. Empirical Evaluation

Step 1. Construct the original decision matrix \(R \) with PLTSs.

In this subsection, the first step is to obtain evaluation information for the eight selected reform schemes \(A_i (i = 1, 2, 3, 4, 5, 6, 7, 8) \) from the DMs, which can be expressed by the following additive linguistic term set: \(S = (S_{3}, S_{2}, S_{1}) \) = (extremely good, very good, good, very bad, extremely bad) = (good, bad, very bad, extremely bad), \(S_{0} \) = general, \(S_{3} \) = good, \(S_{2} \) = very good, \(S_{1} \) = extremely good). Then, the original decision matrix can be constructed, as given in Table 1, provided by the DMs.

Step 2. Transform the original decision matrix \(R \) into decision matrix \(X \). The transformed decision matrix \(X \) can be obtained according to (12):
Get the standardized decision matrix

Step 3. Get the standardized decision matrix \(A \), based on the decision matrix \(X \). Because \(C_1, C_2, C_3, C_4, \) and \(C_5 \) are all benefit criteria for the reform scheme evaluation, the standardized decision matrix \(A \) can be easily obtained according to (13):

\[
A = \begin{bmatrix}
0.7320 & 0.6905 & 1.0000 & 0.0000 & 0.8456 \\
0.9320 & 0.7691 & 0.8350 & 1.0000 & 1.0000 \\
0.6640 & 0.8476 & 0.7500 & 0.2863 & 0.7696 \\
0.9320 & 0.0762 & 0.3350 & 0.1453 & 0.0000 \\
1.0000 & 1.0000 & 0.0000 & 0.2863 & 0.6129 \\
0.0000 & 0.0000 & 0.8350 & 1.0000 & 0.6912 \\
0.2000 & 0.5381 & 0.1700 & 0.8547 & 0.6935 \\
0.8000 & 0.4619 & 0.8350 & 1.0000 & 0.6129 \\
\end{bmatrix}
\]

Step 4. Compute the weight of each criterion, which can be obtained by the analytic hierarchy process [48].

\[
W = (w_1, w_2, w_3, w_4, w_5) = (0.1251, 0.1092, 0.2293, 0.2625, 0.2739).
\]

Step 5. Compute the preference index. The preference index can be computed according to (14), given in Table 2.

Step 6. Calculate the positive outranking flow \(\phi^+(A_n) \) and the negative outranking flow \(\phi^-(A_n) \). The positive outranking flow \(\phi^+(A_n) \) and the negative outranking flow \(\phi^-(A_n) \) can be obtained according to (15) and (16). The results are given in Table 3.

4.3. Empirical Results

4.3.1. Probabilistic Linguistic PROMETHEE I Method. According to the three conditions for judging the priority of the scheme in the probabilistic linguistic environment, given in (18)–(20), the probabilistic linguistic PROMETHEE I method can obtain a partial priority relationship according to the negative outranking flow and positive outranking flow. The priority rank of all the schemes, produced by the probabilistic linguistic PROMETHEE I method, is given in Table 4.

In order to facilitate intuitive analysis, the results for visual analysis, produced by the probabilistic linguistic PROMETHEE I method, are shown in Figure 1.

From Figure 1, it is obvious that the ranking results of the eight schemes are \(A_2 > A_6 > A_8 > A_4 > A_1 > A_5 > A_3 > A_7 \) and \(A_2 > A_6 > A_8 > A_4 > A_1 > A_5 > A_3 > A_7 \). However, \(A_6 \) and \(A_1 \) cannot be compared with \(A_3 \). These are incomparable situations, denoted as \(A_6 RA_3 \) and \(A_1 RA_3 \), respectively, which further illustrates that the probabilistic linguistic PROMETHEE I method can obtain a partial priority relationship.

4.3.2. Probabilistic Linguistic PROMETHEE II Method. According to the two conditions for judging the priority of the scheme in the probabilistic linguistic environment, given in (21) and (22), the probabilistic linguistic PROMETHEE II method can get the complete priority relationship according to the net outranking flow. The results of \(\phi(A_n) \), computed by (17), are given in Table 3. The higher the net outranking flow \(\phi(A_n) \), the better the alternative. Finally, the priority rank of all the schemes, produced by the probabilistic linguistic PROMETHEE II method, is given in Table 5.

In order to facilitate intuitive analysis, the results for visual analysis, produced by the probabilistic linguistic PROMETHEE II method, are shown in Figure 2. From Figure 2, it is obvious that the ranking results of the eight schemes are \(A_2 > A_6 > A_8 > A_4 > A_1 > A_5 > A_3 > A_7 \), which further illustrates that the probabilistic linguistic PROMETHEE II method can get the complete priority relationship according to the net outranking flow.
From Figures 1 and 2, we can see that the best ranking scheme is A_2, the worst ranking scheme is A_4, and the overall ranking trend is not much different, between the PROMETHEE I and II methods, which verifies the effectiveness and feasibility of probabilistic linguistic PROMETHEE I and II methods for the reform scheme evaluation of postgraduate innovation and entrepreneurship education talent training mode under the big data environment.

4.4. Further Discussion and Comparative Analysis. For the purpose of comparative analysis to further illustrate the effectiveness of the extended methods, the TOPSIS method [52], one of the classic MCDM methods, with the PLTSs is utilized for a comparative study. The specific processes are as follows:

Step 1: construct the original decision matrix R with PLTSs
Step 2: transform the original decision matrix R into decision matrix X
Step 3: get the standardized decision matrix A, based on the decision matrix X
Step 4: compute the weight of each criterion by AHP
Step 5: calculate the weighted standardized decision matrix
Step 6: calculate the distance from each scheme to the positive ideal solution and the negative ideal solution

Table 2: The preference index.

<table>
<thead>
<tr>
<th>A_a</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>—</td>
<td>0.0378</td>
<td>0.0867</td>
<td>0.4512</td>
<td>0.2930</td>
<td>0.2471</td>
<td>0.3152</td>
<td>0.1265</td>
</tr>
<tr>
<td>A_2</td>
<td>0.3384</td>
<td>—</td>
<td>0.3035</td>
<td>0.6886</td>
<td>0.4848</td>
<td>0.2851</td>
<td>0.3914</td>
<td>0.1561</td>
</tr>
<tr>
<td>A_3</td>
<td>0.0923</td>
<td>0.0086</td>
<td>—</td>
<td>0.4272</td>
<td>0.2149</td>
<td>0.1971</td>
<td>0.2457</td>
<td>0.0850</td>
</tr>
<tr>
<td>A_4</td>
<td>0.0632</td>
<td>0.0000</td>
<td>0.0335</td>
<td>—</td>
<td>0.0768</td>
<td>0.1249</td>
<td>0.1294</td>
<td>0.0165</td>
</tr>
<tr>
<td>A_5</td>
<td>0.1425</td>
<td>0.0337</td>
<td>0.0587</td>
<td>0.3143</td>
<td>—</td>
<td>0.2343</td>
<td>0.1505</td>
<td>0.0838</td>
</tr>
<tr>
<td>A_6</td>
<td>0.2625</td>
<td>0.0000</td>
<td>0.2068</td>
<td>0.5283</td>
<td>0.4003</td>
<td>—</td>
<td>0.1906</td>
<td>0.0215</td>
</tr>
<tr>
<td>A_7</td>
<td>0.2244</td>
<td>0.0000</td>
<td>0.1492</td>
<td>0.4676</td>
<td>0.2103</td>
<td>0.0844</td>
<td>—</td>
<td>0.0304</td>
</tr>
<tr>
<td>A_8</td>
<td>0.2710</td>
<td>0.0000</td>
<td>0.2238</td>
<td>0.5490</td>
<td>0.1378</td>
<td>0.1505</td>
<td>0.2657</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 3: The positive outranking flow, the negative outranking flow, and the net outranking flow.

<table>
<thead>
<tr>
<th>$\phi^+(A_a)$</th>
<th>$\phi^-(A_a)$</th>
<th>$\phi(A_a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5575</td>
<td>1.3942</td>
<td>0.1633</td>
</tr>
<tr>
<td>2.6478</td>
<td>0.0801</td>
<td>2.5677</td>
</tr>
<tr>
<td>1.2707</td>
<td>1.0622</td>
<td>0.2085</td>
</tr>
<tr>
<td>0.4443</td>
<td>3.852</td>
<td>-2.9409</td>
</tr>
<tr>
<td>1.0178</td>
<td>2.0589</td>
<td>-1.0412</td>
</tr>
<tr>
<td>1.6100</td>
<td>1.3235</td>
<td>0.2866</td>
</tr>
<tr>
<td>1.1253</td>
<td>1.6884</td>
<td>-0.5632</td>
</tr>
<tr>
<td>1.8389</td>
<td>0.5198</td>
<td>1.3190</td>
</tr>
</tbody>
</table>

Table 4: The priority rank produced by probabilistic linguistic PROMETHEE I.

<table>
<thead>
<tr>
<th>Priority rank</th>
<th>A_1PA_4</th>
<th>A_2PA_1</th>
<th>A_3PA_4</th>
<th>A_4PA_1</th>
<th>A_5PA_4</th>
<th>A_6PA_1</th>
<th>A_7PA_4</th>
<th>A_8PA_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>A_2</td>
<td>A_3</td>
<td>A_4</td>
<td>A_5</td>
<td>A_6</td>
<td>A_7</td>
<td>A_8</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: The priority rank produced by probabilistic linguistic PROMETHEE II.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>$\phi(A_a)$</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>0.1633</td>
<td>5</td>
</tr>
<tr>
<td>A_2</td>
<td>2.5677</td>
<td>1</td>
</tr>
<tr>
<td>A_3</td>
<td>0.2085</td>
<td>4</td>
</tr>
<tr>
<td>A_4</td>
<td>-2.9409</td>
<td>8</td>
</tr>
<tr>
<td>A_5</td>
<td>-1.0412</td>
<td>7</td>
</tr>
<tr>
<td>A_6</td>
<td>0.2866</td>
<td>3</td>
</tr>
<tr>
<td>A_7</td>
<td>-0.5632</td>
<td>6</td>
</tr>
<tr>
<td>A_8</td>
<td>1.3190</td>
<td>2</td>
</tr>
</tbody>
</table>

From Figures 1 and 2, we can see that the best ranking scheme is A_2, the worst ranking scheme is A_4, and the overall ranking trend is not much different, between the PROMETHEE I and II methods, which verifies the effectiveness and feasibility of probabilistic linguistic PROMETHEE I and II methods for the reform scheme evaluation of postgraduate innovation and entrepreneurship education talent training mode under the big data environment.
Studies on the reform scheme of talent training mode of postgraduate innovation and entrepreneurship education are largely theoretical and lacking empirical research. Evaluation research on the effect of the talent training mode reform scheme is relatively limited. Therefore, this paper aims to propose effective methods for the reform scheme evaluation of postgraduate innovation and entrepreneurship education talent training mode under the big data environment. The main work of the paper is as follows:

1. Two effective evaluation methods, the probabilistic linguistic PROMETHEE I and II methods, are presented to assess the reform scheme of postgraduate innovation and entrepreneurship education talent training mode under the big data environment.
2. The PROMETHEE I and II methods are extended with PLTS for reform scheme evaluation and are shown to the advantages of good effectiveness and feasibility.
3. PLTS is imported into the evaluation methods, which can accurately express and quantitatively evaluating the reform scheme effect.
4. A case study is carried out and comparative analysis is conducted to verify the extended methods.
5. According to the comparative study and visual analysis, the extended methods to reform scheme evaluation can improve decision quality for education departments, universities, and relevant teachers to guide the reform of postgraduate innovation and entrepreneurship education talent training model, especially in the complex fuzzy and uncertain decision-making environment.

In future work, the reform strategy and countermeasure implementation of postgraduate innovation and entrepreneurship education talent training mode under the big data environment will be further developed by using technology of hesitant fuzzy sets [53], probabilistic hesitant fuzzy sets [54], MCDM, machine learning, data mining, artificial intelligence, and big data to reduce the constraints of small samples for large-scale real data analysis in the complex fuzzy and uncertain decision-making environment.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The author declares that there are no conflicts of interest.

Acknowledgments

The author deeply acknowledges the financial support by Grants from Education Science “13th Five-Year Plan” Research Project of Guangdong Province (2020GXJK384).
References

