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A sliding mode control (SMC) strategy using novel piecewise double power reaching law (PDPRL) for a class of fourth-order
nonlinear underactuated systems (USs) is proposed to realize simultaneous control of the unactuated and the actuated part. A
novel PDPRL is designed in the form of a piecewise function to reduce the chattering produced by SMC. +e fixed-time
convergence characteristic and the existence of maximum convergence time independent of the initial value of the sliding mode
surface for the PDPRL are analyzed. Considering the uncertainties of model parameters and external disturbance in the USs, a
supertwisting disturbance observer (STDO) is provided to accurately estimate the disturbance in real time, and the estimated value
is compensated to the controller. +e underactuated inverted pendulum system is taken to verify the effectiveness of the devised
strategy, and the simulation results show that the proposed strategy can reduce chattering, suppress the disturbance, and enhance
the robustness of the system.

1. Introduction

Underactuated systems (USs) are the systems in which the
spatial dimension of the control input vector is less than the
configuration dimension of the system, i.e., the control
inputs are less than the degrees of freedom of the system
[1–3]. USs require fewer drivers and can be built with some
of the drivers-related equipment removed in fully-actuated
systems, which have very important significance in reducing
volume, weight, energy consumption, and cost of the system.
+erefore, they are widely used in mobile robots [4], ma-
nipulators [5], WAcrobot [6], underwater vehicles [7], and
other control fields. Because of the wide application of USs
in practice and theoretical obstacles, the demand for these
systems has grown dramatically, and the demand for control
precision for USs is more and more accurate due to the
complexity of conditions in the practical application of these
fields. However, the research of the stabilization and tracking
control of USs has been studied by many scholars in the field
of control in recent decades [8–11]. +e lack of actuators in
USs still brings a lot of difficulties to design the controllers;
the control problem has always been the research subject

that the experts study diligently. +erefore, the research on
USs has important theoretical and practical significance.

Sliding mode control (SMC) [12–14] which has the
characteristics of independent of model parameters, easy
implementation, and strong robustness is widely used in
nonlinear systems. In practical applications, external dis-
turbances and model parameter uncertainty will affect the
control accuracy of the US and even cause system instability.
At this time, only relying on SMC cannot meet the practical
requirement. +us, there are control method based on
disturbance observer, adaptive SMC method, improved
second-order SMCmethod [15], etc.+e SMCmethod based
on disturbance observer can enhance the robustness of the
system by estimating the disturbance and compensating the
estimated value to the controller [16, 17]. +e adaptive
method can solve the problem of model parameters un-
certainty by designing adaptive law and eliminate the in-
fluence on the system [18, 19]. But, for the general form of
the state equation of the USs without any form of transition,
the traditional SMCmethod can only control the unactuated
or actuated part of the USs, but not both. In [20], a
decoupled SMC method was proposed to realize the
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simultaneous control of unactuated and actuated parts of the
USs. +e authors of [21] further designed a decoupled
nonsingular terminal SMC (DTSMC) strategy to improve
the dynamic response of the system and solve the singularity
problem of terminal SMC. In order to improve the con-
vergence performance of the system, a fast nonsingular
terminal SMCmethod was proposed in [22]. However, SMC
can cause chattering of the system which will cause the
system to consume unnecessary energy and affect the control
performance of the system. +erefore, chattering is still an
important problem to be solved.

For the chattering problem caused by SMC, a large
number of effective studies have been done by a lot of ex-
perts; the boundary layer method [23], fast terminal SMC
[24, 25], high-order SMC [26, 27], the control method based
on reaching law [28, 29], and so on are presented. +e
boundary layer function was adopted in [20], the saturation
function in the boundary layer function was adopted instead
of the sign function, and the system states were kept on
sliding mode surfaces by setting the boundary coefficient to
reduce the chattering. Although it could effectively reduce
the chattering, the control precision of the controller would
be greatly affected. +e high-order SMC method could ef-
fectively reduce the chattering, but the selection of the
sliding mode surface depended on the system states and the
time derivative of the controller input, which were hard to
obtain. In addition, this method was difficult to apply to
first-order systems [30]. Terminal SMC could effectively
suppress chattering and reach the steady state of the system,
but it could not eliminate the chattering and the convergence
speed was slower than that of SMC with exponential
reaching law [31, 32]. +e terminal SMCmethod was similar
to the SMC method which adopts the reaching law in terms
of mathematical structure, except that the former was
concerned with the movement of the system on the sliding
mode surfaces and the latter was concerned with the motion
of the reaching stage [33]. Gao analyzed the causes of
chattering from various aspects and established exponential
reaching law, the power reaching law, constant reaching law,
and so on [34]. +ese reaching laws lay an important
foundation for the emergence of other reaching laws, and
various reaching laws for continuous and discrete-time
systems have recently been adopted [35, 36]. Although the
power reaching law could theoretically eliminate chattering,
when the distance between the sliding mode surfaces and the
system states is large, the approaching rate is small. In [37], a
double power reaching law (DPRL) was described; com-
pared with fast power reaching law (FPRL), it exhibited a
faster approaching speed even if the system was farther from
the sliding mode surface and a lower approaching rate as the
system near the surface; also, smooth dynamics was realized
on the basis of weakening chattering. In [29], based on the
exponential reaching law, a reaching law including the
system state variable and the sliding surface as a power term
was designed.

+erefore, on the basis of literature [37], a novel
piecewise DPRL (PDPRL) is proposed to reduce chattering
and increase the reaching speed of the system. +e PDPRL
which combines the advantages of piecewise function and

DPRL is used to separate the reaching process of the system
arrive at the sliding mode surface into two stages, |s|≥ 1 and
|s|< 1, with 1 as the demarcation point; then, the system can
have a large approaching speed nomatter which stage it is in.
+e characteristics of convergence in fixed time for proposed
PDPRL are analyzed, which shows that the reaching law has
maximum convergence time and the time is not concerned
with the initial value of the sliding mode variable. Mean-
while, considering the uncertainties of model parameters
and external disturbance on the system, a super twisting
disturbance observer (STDO) is adopted to estimate the
lump disturbance; also, the estimated value is compensated
to the controller to eliminate negative effects. +e devised
SMC strategy using novel PDPRL and STDO is applied to
the underactuated inverted pendulum system, and simula-
tion is carried out by comparing with the existing control
strategies.

2. System Description and Control Strategy

In this part, the system model is briefly described, and a
control strategy to ensure the stabilization of the whole
system with and without the lump disturbance is proposed.
+e stability of the system using the devised strategy is also
analyzed.

+e dynamic model of the fourth-order nonlinear
underactuated systems is constructed as [20]

_x1 � x2, (1)

_x2 � f1(x) + b1(x)u, (2)

_x3 � x4, (3)

_x4 � f2(x) + b2(x)u, (4)

where u is the control input, x � x1 x2 x3 x4􏼂 􏼃
T is the

state vector, and f1(x), f2(x), b1(x)≠ 0, and b2(x) ≠ 0 are
nonlinear functions that represent the dynamics of the
system. +e system described in equations (1)–(4) is a
general underactuated system, which appears in inverted
pendulum system, tower crane system, Pendubot system,
ball-beam system, and other systems.+e aim of control is to
make the system reach the desired position
(x0 � 0 0 0 0􏼂 􏼃

T) with one control input. But, it is obvious
that the control input u can only achieve the control of the
states x1 and x2 or x3 and x4, not both. As a result, a special
decoupled method is adopted in Section 2.1 to deal with the
coupling problem, and the unactuated and actuated parts of
the system can be controlled through a control input.

2.1. PDPRL-DTSMC without Disturbance

2.1.1. Decoupled Terminal SlidingMode Control. For the first
time, the decoupled SMCmethod is designed in 1998 to find
a solution to the natural coupling problem of the nonlinear
systems with fourth-order. +e contribution of the decou-
pled method is to decouple a class of nonlinear systems
similar to systems (1)–(4) into two subsystems A and B with
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second-order; subsystem A contains states x1 and x2;
subsystem B contains states x3 and x4. +us, realizing the
decoupled of states x1, x2 and x3, x4, subsystem A and
subsystem B are regarded as the primary target and the
secondary target (it depends on the question as to which
subsystem to choose as the primary or secondary target); s1
and s2 are the nonsingular terminal sliding mode surfaces of
them, respectively. Because the control of these two goals is
achieved by controlling the primary target, the information
of the secondary target must reflect the primary target by an
intermediate signal z; then, the sliding surface s2 � 0 of
subsystem B is embedded to the primary target and realized
DTSMC.

Now, with s1 � 0 and s2 � 0, the control goal is to achieve
the convergence of subsystems A and B to the desired
equilibrium points x10 x20􏼂 􏼃

T
� 0 0􏼂 􏼃

T and
x30 x40􏼂 􏼃

T
� 0 0􏼂 􏼃

T by one control input, respectively.
Here, s1 and s2 are chosen as

s1 � λ1 x1 − z
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
c1 sign x1 − z( 􏼁 + x2, (5)

s2 � λ2 x3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
c2 sign x3( 􏼁 + x4, (6)

where λ1 and λ2 are positive parameters, 1< c1 < 2, 1< c2 < 2.
Intermediate signal z is selected as

z � p sat
s2

ϕs

􏼠 􏼡, (7)

where p(0<p< 1) is a constant, ϕs is the boundary layer of
s2, and sat(s2/ϕs) is saturation function and expressed as

sat
s2

ϕs

􏼠 􏼡 �

sign
s2

ϕs

􏼠 􏼡,
s2

ϕs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ 1,

s2

ϕs

,
s2

ϕs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

Now, as s1 � 0 and s2 � 0, the previous control objective
x10 x20􏼂 􏼃

T
� 0 0􏼂 􏼃

T of subsystem A has been changed to
x10 x20􏼂 􏼃

T
� z 0􏼂 􏼃

T, and that of subsystem B is still
x30 x40􏼂 􏼃

T
� 0 0􏼂 􏼃

T. As can be seen from (7), z is an
attenuating oscillation signal that approaches zero and a
function of s2 that is transformed into an appropriate range
of x1. It can be understood that the condition s2 � 0 of
subsystem B can be integrated into s1 via z; therefore, the
two subsystems can be controlled simultaneously by one
control input.

+e time derivation of (5) is

_s1 � λ1c1 x1 − z
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
c1− 1

_x1 − _z( 􏼁 + _x2, (9)

and the following equation can be obtained by setting (9)
equal to zero

_x2 + λ1c1 x1 − z
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
c1− 1

x2 � λ1c1 x1 − z
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
c1− 1

_z. (10)

+e solution of (10) is as follows:

x2(t) � x2(0)e
− λ1c1 􏽚 x1 − z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c1− 1dt

+ λ1c1e
− λ1c1 􏽚 x1 − z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c1− 1dt

􏽚 e
λ1c1 􏽚 x1 − z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c1− 1dt

x1 − z
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
c1− 1

_zdt, (11)

where x2(0) is the initial value of x2(t). x2(t) converges to
zero when x1 � z and _z � 0 _z � 0; in other words, the control
objective x10 x20􏼂 􏼃

T
� z 0􏼂 􏼃

T can be achieved. Also, z

converges to zero which ensures that states x1 and x2
converge to the equilibrium points x10 x20􏼂 􏼃

T
� 0 0􏼂 􏼃

T.
In the following section, the control method is proposed to
guarantee that the sliding surfaces s1 and s2 converge to zero.

As we all know, the control input u in (2) and (4) consists
of the equivalent control law ueq and the switching control
law usw; in the next subsection, the extraction of usw will be
described. Here, according to the equivalent control method,
when (9) is equal to zero, i.e., _s1 � 0, substituting (2) , ueq can
be calculated.

ueq �
− λ1c1 x1 − z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c1− 1

_x1 − _z( 􏼁 − f1(x)

b1(x)
. (12)

2.1.2. Piecewise Double Power Reaching Law. On the chat-
tering caused by SMC, the DPRL can suppress the chat-
tering, but the convergence speed is slow.+erefore, in order
to improve the convergence speed of the system and reduce
the chattering, a novel PDPRL with the characteristics of
fixed-time convergence is designed, and different stages of

the reaching law can be chosen separately without affecting
each other.

+e PDPRL is devised as

s1
.

�
− k1 s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α1 sign s1( 􏼁 − k2 s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α2 sign s1( 􏼁 − ks1 s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ 1

− k3 s1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
β1 sign s1( 􏼁 − k4 s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β2 sign s1( 􏼁 s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< 1

⎧⎪⎨

⎪⎩
,

(13)

where k, k1, k2, k3, and k4 are positive constants,

k + k1 + k2 � k3 + k4, k3 �
ε1 1/e≤ |s1|< 1
0 |s1|< 1/e

􏼨 ,

k4 �
ε2 1/e≤ |s1|< 1
ε1 + ε2 |s1|< 1/e

􏼨 , e ≈ 2.71828, ε1 > 0, ε2 > 0,

0< α1 < 1, α2 > 1, β1 > 1, and 0< β2 < 1.
+e main idea of the PDPRL is as follows: taking 1 as the

demarcation point, the reaching process is divided into two
stages, far from the sliding mode surface, i.e., |s1|≥ 1, and
near the sliding mode surface, i.e., |s1|< 1. When the system
is far from the sliding mode surface, the reaching law is
dominated by the first term, and when it is near the sliding
mode surface, the reaching law is dominated by the second
term.+e property of the power function is used to make the
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system have a large approaching rate at both stages, and the
reaching law is equal to zero at the equilibrium point
(|s1| � 0). +e condition k + k1 + k2 � k3 + k4 must be sat-
isfied to ensure continuity of the reaching law. In addition,
the reaching law that dominates |s1|≥ 1 and |s1|< 1 can be
designed separately, and the two stages will not affect each
other.

(1) Fixed-Time Convergence. For the reaching law (13)
proposed above, assuming that s10 is the initial value of s1, if
the condition α1 + α2 � β1 + β2 � 2 is satisfied, in a fixed
time, s1 can converge to zero. +e maximum convergence
time T exists and is not concerned with the initial value s10.
+e convergence time of each stage is rough as follows.

Suppose s1 > 0; if s10 ≥ 1, the approaching process is
separated into two stages: s10⟶ 1 and 1⟶ 0. When
1≤ s1 < s10, (13) can be written as
s1
.

� − k1|s1|
α1 − k2|s1|

α2 − ks1. It is difficult to solve the
equation; then, divide it into two equations, _s1 + k2|s1|

α2 +

ks1 � 0 and _s1 + k1|s1|
α1 + ks1 � 0, and solve them

separately. Since the solutions of the two equations represent
the reaching time required under the influence of
− k2|s1|

α2 sign(s1) and − k1|s1|
α1 sign(s1), the approaching

time must be less than either of the two solutions. Here, the
convergence time required under the influence of
− k2|s1|

α2 sign(s1) can be calculated.

s1
.

+ k2s
α2
1 + ks1 � 0, (14)

with s1 � 1; the convergence time T1 of (14) can be obtained
as

T1 �
1

k α2 − 1( 􏼁
ln k + k2( 􏼁 − ln ks1− α2

10 + k2􏼐 􏼑􏽨 􏽩. (15)

When 1/e< s1 < 1, (13) can be written as

_s1 + k3s
2− β2
1 + k4s

β2
1 � 0, (16)

with s1 � 1/e; the convergence time T2 of (16) can be cal-
culated as

T2 �
arctan

�����
k3/k4

􏽰
s10

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1− β2 1 − e

β2− 1
􏼐 􏼑/ 1 + k3 /k4e

β2− 1
s10

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1− β2􏼒 􏼓􏼔 􏼕

����
k3k4

􏽰
1 − β2( 􏼁

. (17)

When 0< s1 < 1/e, (13) can be written as

_s1 + k4s
β2
1 � 0, (18)

with s1 � 0, the convergence time T3 is

T3 �
1
k4

1 − β2( 􏼁. (19)

When 0< s10 < 1, similar to the process 1/e< s1 < 1 and
0< s1 < 1/e described above, the convergence time T4 is as
follows

:

T4 � T2 + T3 �
arctan

�����
k3/k4

􏽰
s10

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1− β2 1 − e

β2− 1
􏼐 􏼑/ 1 + k3/k4e

β2− 1
s10

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1− β2􏼒 􏼓􏼔 􏼕

����
k3k4

􏽰
1 − β2( 􏼁 + 1/k4 1 − β2( 􏼁

. (20)

Because T1 in (15) has a maximum value as follows:

T1 �
1

k α2 − 1( 􏼁
ln k + k2( 􏼁 − ln ks1− α2

10 + k2􏼐 􏼑􏽨 􏽩≤
1

k α2 − 1( 􏼁

k + k2

ks1− α2
10 + k2

− 1􏼠 􏼡 �
1 − s

1− α2
10

α2 − 1( 􏼁 ks1− α2
10 + k2􏼐 􏼑

<
1

k2 α2 − 1( 􏼁
, (21)

arctan(·)< π/2. +us, the convergence time is

T �

T1 + T2 + T3 <
1
k4

1 − β2( 􏼁 +
1
k2

α2 − 1( 􏼁 +
π
2

����

k3k4

􏽱

1 − β2( 􏼁, s10
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ 1,

T3 + T4 <
2
k4

1 − β2( 􏼁 +
π
2

����

k3k4

􏽱

1 − β2( 􏼁, s10
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(22)
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+e result above is obtained in the case of s1 > 0, and the
result of s1 < 0 is similar to the above, which is not repeated
here.

+en, the switching control law usw is

usw �

−
1

b1(x)
k1 s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α1 sign s1( 􏼁 + k2 s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α2 sign s1( 􏼁 + ks1􏼐 􏼑, s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ 1,

−
1

b1(x)
k3 s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β1 sign s1( 􏼁 + k4 s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β2 sign s1( 􏼁􏼒 􏼓, s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(23)

and the control strategy u of the whole system without
disturbance can be obtained as

u � ueq + usw. (24)

2.2. PDPRL-DTSMC with Disturbance. Most control
methods are based on the accurate system model, but it is
difficult to achieve in practical industrial applications, and
the actual situation may be more complex [38]; there are
many unknown external disturbances in the system, and the
parameters of the system may change with the change of
time and environment, which requires the robustness of the
control method. +erefore, the ubiquitous external distur-
bances and model parameter uncertainties of the system are
considered as lumped disturbances, and the disturbance
observer is designed.

Here, only the lump disturbance in subsystem A is
considered, and the nonlinear underactuated system (1)–(4)
can be reformulated as

_x1 � x2,

_x2 � f1(x) + b1(x)u + d,

_x3 � x4,

_x4 � f2(x) + b2(x)u,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(25)

where d is the lump disturbance and the time derivative of
the lump disturbance is supposed to be bounded, and
| _d|≤D, D is a positive constant.

Considering the lack of the ability of DTSMC to suppress
the disturbance, an STDO is adopted to estimate the lump
disturbance, also an estimated value is compensated to the
controller to weaken the influence of disturbance on the
system. Figure 1 presents the control method diagram.

+e STDO is constructed for subsystem A as follows
[17]:

_􏽢x2 � f1(x) + b1(x)u + 􏽢d,􏽮

􏽢d � a 􏽥x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1/2 sign 􏽥x2( 􏼁 − ε,

ε
.

� − b sign 􏽥x2( 􏼁, (26)

where _􏽢x2 is the time derivative of 􏽢x2 which is the estimate of
state x2. 􏽢d is the estimate of disturbance d. a and b are
positive numbers that need to be designed. 􏽥x2 is the error,
which is defined as 􏽥x2 � x2 − 􏽢x2. ε

.
is the time derivative of

internal variable ε.
Substitute _􏽢x2 into (9):

_s1 � λ1c1 x1 − z
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
c1− 1

_x1 − _z( 􏼁 + _􏽢x2. (27)

Let the above equation be equal to zero, and using (26),
ueq can be recalculated as

ueq �
− λ1c1 x1 − z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c1− 1

x2 − _z( 􏼁 − f1(x) − 􏽢d

b1(x)
. (28)

+e control input u of the system is

u �

−
1

b1(x)
λ1c1 x1 − z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c1− 1

x2 − _z( 􏼁 + f1(x) + 􏽢d + k1 s1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α1 sign s1( 􏼁 + k2 s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α2 sign s1( 􏼁 + ks1􏼐 􏼑, s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ 1,

−
1

b1(x)
λ1c1 x1 − z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c1− 1

x2 − _z( 􏼁 + f1(x) + 􏽢d + k3 s1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
β1 sign s1( 􏼁 + k4 s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β2 sign s1( 􏼁􏼒 􏼓, s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(29)

2.3. StabilityAnalysis. +rough the analysis of the fixed-time
convergence characteristics of the PDPRL in Section 2.1.2, it
can be seen that the reaching law can slide to the sliding
mode surfaces in fixed time and the convergence time is not
concerned with the initial value s10.+erefore, it ensures that

the system using PDPRL can slide to the surfaces in fixed
time no matter how far away it is from the surfaces.

Proposition 1. For the nonlinear underactuated system
defined in equation (25) with s1 and s2 in equations (5) and

Mathematical Problems in Engineering 5



(6), if the control input u is devised as equation (29), then the
system is ensured to be asymptotically stable.

Proof. +e Lyapunov function is chosen as

V(t) �
1
2
s
2
1. (30)

Taking the time derivative of V(t) and using (25) and
(27), the following equation can be obtained:

_V(t) � s1 _s1 � s1 λ1c1 x1 − z
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
c1− 1

x2 − _z( 􏼁􏼐

+ f1(x) + b1(x)u + 􏽢d􏼑.
(31)

For the sake of proving conveniently, the control law of
|s1|≥ 1 is adopted, and substituting it into (31), then (31) can
be written as follows:

_V(t) � − k1s1 s1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α1 sign s1( 􏼁 + k2s1 s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α2 sign s1( 􏼁 + ks21􏼐 􏼑< 0.

(32)

Since k> 0, k1 > 0, k2 > 0, 0< α1 < 1, and α2 > 1, whether
the sign of s1 is positive or negative, _V(t) is always negative.
In other words, system (25) is ensured to be asymptotically
stable, and s1 and s2 can be reached. When s1 � 0, i.e.,
subsystem A is on s1, x1 � z and x2 � 0 can be obtained.
According to equation (11), x2⟶ 0 if and only if z⟶ 0;
from equation (7), s2⟶ 0 is ensured. +erefore, the two
subsystems can be stabilized with one control input. □

3. Example and Result Analysis

+e proposed control strategy, i.e., DTSMC strategy based
on novel reaching law and disturbance observer, is simulated
to verify the effectiveness in this section. +e simulation
verification and comparison are implemented on Matlab/
Simulink platform.

+e inverted pendulum system is a typical under-
actuated system with strong nonlinearity, strong coupling,

and natural instability, which is widely used in the fields of
a rocket launch, satellite attitude control, and biped robots.
Many typical problems in control theory, such as tracking
control problems, robust control problems, and nonlinear
control problems, are included in the inverted pendulum
system. +erefore, the inverted pendulum system is taken
as an example to illustrate that the control strategy is
correct.

+e physical model of the inverted pendulum system is
exhibited in Figure 2, its dynamic equation can be expressed
by (25), and f1(x(t)), f2(x(t)), b1(x(t)), and b2(x(t)) are
as follows.

f1(x(t)) �
m1 + m2( 􏼁g sin x1( 􏼁 − m1L sin x1( 􏼁cos x1( 􏼁x

2
2

L (4/3) m1 + m2( 􏼁 − m1cos
2

x1( 􏼁􏼐 􏼑
,

b1(x(t)) �
cos x1( 􏼁

L (4/3) m1 + m2( 􏼁 − m1cos
2

x1( 􏼁􏼐 􏼑
,

f2(x(t)) �
− (4/3)m1Lx

2
2 sin x1( 􏼁 + m1g sin x1( 􏼁cos x1( 􏼁

(4/3) m1 + m2( 􏼁 − m1cos
2

x1( 􏼁
,

b2(x(t)) �
4

3 (4/3) m1 + m2( 􏼁 − m1cos
2

x1( 􏼁􏼐 􏼑
,

(33)

where x1 is the angle between the pendulum and upright
direction; x2 and x4 are the angular velocity of the pendulum
and velocity of the cart, respectively. x3 is the distance from
the cart to the origin. L is the length from the center point of
the pendulum to the cart. m1 and m2 are the mass of the
pendulum and the cart, respectively. u is the force to the cart.
x1 and x2 are selected as the primary target, subsystem A,
and x3 and x4 as subsystem B, the secondary target. x(0) �

− 60° 0 0 0􏼂 􏼃
T is selected as the initial state, and the pa-

rameters adopted here are the same as those in [20],
g � 9.8ms2, L � 0.5m, m1 � 0.05 kg, and m2 � 1 kg.

Nonlinear underactuated
system

PDPRL-DTSMC with
STDO

STDO

Sliding mode surface of
subsystem B S2

Sliding mode surface of
subsystem A S1

Equation
(7)

Lump
disturbance

u

Z

x1 and x2

y = [x1 x3]T

x1 and x2

x3 and x4

d̂

Figure 1: System control structure diagram.

6 Mathematical Problems in Engineering



When the system states are far from the sliding mode
surface |s1|≥ 1, increasing k, k1, k2, α1, and α2 can increase
the reaching speed and shorten the time to reach the desired
position. When the system states are close to the sliding
mode surface |s1|< 1, increasing k3, k4, β1, and β2 can also
increase the reaching speed, but the too large parameter
values will increase the chattering and steady-state error of
the system. +rough the empirical trial and error method
and a large number of simulations, the specific parameters
are determined. As shown in Figure 3, with the decrease of
λ1, the reaching speed of the system will be accelerated, the
time to reach the sliding mode surface will be shortened, but
the chattering of the system will be increased; with the
increase of λ2, the reaching speed of the system will not
change significantly, but it will increase the overshoot of the
system. +e parameters are chosen as follows: k � 2, k1 � 2,
k2 � 6, ε1 � ε2 � 5, r � 2, r1 � β2 � 0.4, α1 � 0.3, α2 � 1.7,
β1 � 1.6, λ1 � 5, λ2 � 0.8, a � 0.6, and b � 1.

3.1. Characteristic Simulation of PDPRL. +e characteristic
of PDPRL is simulated in a system with single input single
output.

_s � u, (34)

where s and u are the output and control input, respectively.
_s is the time derivative of the sliding mode variable s. s0 � 50,
s0 � 5, and s0 � 1 are defined as the three initial values of the
sliding mode variable. Compared with FPRL and DPRL, the
proposed PDPRL is simulated to test the fixed-time con-
vergence characteristic. +e expression for the reaching law
used above is as follows.

(1) FPRL

u1 � − ks − k2|s|
r1 sign(s). (35)

(2) DPRL

u2 � − k1|s|
r sign(s) − k2|s|

r1 sign(s). (36)

(3) PDPRL

u3 �
− k1|s|

α1 sign(s) − k2|s|
α2 sign(s) − ks, |s|≥ 1,

− k3|s|
β1 sign(s) − k4|s|

β2 sign(s), |s|< 1.

⎧⎨

⎩

(37)

Under the condition of s0 � 50, s0 � 5, and s0 � 1,
Figure 4 presents the simulation results of the three reaching
laws.

As shown in Figure 4, when s0 � 1, the speed for the
proposed reaching law to slide to the sliding surface is
relatively slow, but still fast. When s0 � 5 and s0 � 50, its
approaching speed is the fastest and the time to the equi-
librium point is the shortest. It is also obvious that with the
increase of s0, the convergence time of FPRL and DPRL is
prolonged; when s0 � 1, s0 � 5, and s0 � 50, the convergence
time of FPRL and DPRL is 0.18 s, 0.41 s, and 1.3 s and 0.18 s,
0.37 s, and 0.51 s, respectively, while the convergence time of
PDPRL is 0.24 s, 0.32 s, and 0.5 s. +erefore, the three
reaching laws achieve the convergence of the sliding mode
variable to the equilibrium point under different initial
conditions. But the rate of convergence is different, clearly,
the rate of convergence for the devised PDPRL is the fastest,
and the maximum convergence time is not affected by s0,
which corresponds to the fixed-time convergence in Section
2.1.2.

3.2. Simulation Results andAnalysis of the Inverted Pendulum
System. In this section, the proposed control strategy is
applied to the inverted pendulum system with or without the
lump disturbance, and the simulation and analysis are
carried out, respectively.

3.2.1. System without Disturbance. When the disturbance of
the system is not considered, i.e., d � 0, the simulation
results are demonstrated in Figures 5–7.

By comparing FPRL, DPRL, and the proposed PDPRL
with DTSMC, the angular position response curves of the

L

u

m1

m2

x1

x3

Figure 2: Inverted pendulum system.
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pendulum are exhibited in Figure 5(a). Obviously, the
proposed strategy shows a shorter convergence time to the
equilibrium point than DTSMC with FPRL and DPRL, the
time is 6.2 s, 6.5 s, and 6.4 s, respectively, and it has a minor
overshoot. Similarly, this feature can be seen from the re-
sponse curves of z shown in Figure 5(b).+e angular velocity
response curves of the pendulum and the position response
curves of the cart are shown in Figures 5(c) and 5(d), re-
spectively. Clearly, the proposed control method can quickly
stabilize the cart in the equilibrium position of about 6.5 s

and the control method using FPRL and DPRL takes 6.7 s
and 6.9 s, respectively. +e sliding mode surface s1 of sub-
system A is shown in Figure 6(a); the response speed of the
system with the proposed control strategy reach sliding
mode surface is fast; as can be seen in the sliding mode
surface of subsystem B shown in Figure 6(b), about 0.34 s
and the chattering that occurs in the system can be effectively
reduced, which proves that the devised strategy can reduce
chattering. Although the response speed of the control
method with FPRL and DPRL is also fast, about 0.34 s and
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Figure 6: Simulation of DTSMC based on FPRL, DPRL, and PDPRL. (a) Sliding mode surface for subsystem A. (b) Sliding mode surface for
subsystem B.
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0.37 s, respectively; the chattering is large. +e control input
is presented in Figure 7; clearly, the proposed strategy
produces a faster input and smaller chattering.

3.2.2. System with Disturbance. Considering a lump dis-
turbance in the subsystem A of system (25) and the dis-
turbance is set to d � 0.2 sin(t), Figures 8–10 exhibit the
simulation results.

+e angular position and angular velocity response
curves of the pendulum are demonstrated in Figures 8(a)
and 8(b), respectively. Figure 8(c) reveals the position curves
of the cart. +e response curves of s1 are shown in Figure 9,
the sliding mode surface has an overshoot, but the chattering

is small. As can be seen from Figure 10, the STDO can
accurately estimate the disturbance. +ose show that the
estimated value can be compensated to the controller; the
proposed method with STDO can reduce the disturbance
effectively and have a shorter settling time.

+rough the simulation and comparative analysis above,
it can be seen that the proposed control strategy can reduce
system chattering, increase the reaching speed of the system,
shorten the time for the system to reach the desired position,
and enhance the antidisturbance ability of the system.

4. Conclusions

A composite SMC strategy combining novel PDPRL and
disturbance observer for a class of fourth-order nonlinear
underactuated systems is proposed. A novel PDPRL based
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Figure 8: Simulation of DTSMC based on FPRL, DPRL, and PDPRLwith STDO. (a) Angular position of the pendulum. (b) Angular velocity
of the pendulum. (c) Position of the cart.
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on piecewise function is devised to suppress the chattering of
the system caused by SMC, and the fixed-time convergence
characteristic and the maximum convergence time inde-
pendent of initial value are analyzed. In addition, an STDO,
which can accurately estimate the disturbance, is adopted to
weaken the effect of the lump disturbance on the system.+e
proposed strategy is validated and easy to implement in the
inverted pendulum system, and the controller parameters
have certain regularity and are easy to adjust. By comparing
with the control method using FPRL and DPRL, the sim-
ulation results show that the designed control strategy can
improve the response speed, effectively reduce chattering,
and enhance the robustness of the system.

4.1. Future Research Work. In this paper, the lump distur-
bance of subsystem A of the fourth-order nonlinear
underactuated system is considered. On this basis, the lump
disturbances of the whole nonlinear underactuated system
will be considered and a more general disturbance sup-
pression control method will be devised in the future. At the
same time, the underactuated system with higher order will
be considered, and a universal control strategy will be
designed.
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