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In this paper, we investigate two ideas in the context of the interpolation-based optimization paradigm tailored to derivative-free
black-box optimization problems. 'e proposed architecture maintains a radial basis function interpolation model of the actual
objective that is managed according to a trust-region globalization scheme. We focus on two distinctive ideas. Firstly, we explore
an original sampling strategy to adapt the interpolation set to the new trust region. A better-than-linear interpolation model is
guaranteed by maintaining a well-poised supporting subset that pursues a near regular simplex geometry of n + 1 points plus the
trust-region center. 'is strategy improves the geometric distribution of the interpolation points whilst also optimally exploiting
the existing interpolation set. On account of the associated minimal interpolation set size, the better-than-linear interpolation
model will exhibit curvature, which is a necessary condition for the second idea. 'erefore, we explore the generalization of the
classic spherical to an ellipsoidal trust-region geometry by matching the contour ellipses with the inverse of the local problem
hessian.'is strategy is enabled by the certainty of a curved interpolation model and is introduced to accounts for the local output
anisotropy of the objective function when generating new interpolation points. Instead of adapting the sampling strategy to an
ellipsoid, we carry out the sampling in an affine transformed space. 'e combination of both methods is validated on a set of
multivariate benchmark problems and compared with ORBIT.

1. Introduction

We consider the following optimization problem with the
objective function f: X ⊂ Rn⟶ R. We further assume
that f is continuously differentiable, smooth, and bounded
from below and that ∇f is Lipschitz continuous on the
subset X. We restrict the minimization to a convex subset
X ⊂ Rn, however, we assume that none of these constraints
are active at the minimum so that (1) can be considered
unconstrained in practice (the subset X is mainly intro-
duced to emphasize that the search is limited to a range of
practical interest. It may also be a means to delimit the
search space to the definition domain of the function).

min
x∈X⊂Rn

f(x). (1)

Such problems are common in engineering, and con-
sequently, a large family of search algorithms has been
tailored to solve such problems. To motivate the develop-
ment of derivative-free optimization methods, we premise
additional assumptions on the computational tractability of
the objective.

As is the case in many engineering design applications,
we assume that any evaluation of the objective is associated
with the execution of a complex simulation or legacy code.
Such evaluations are time-demanding and usually render
local derivative information inaccessible. 'ese assumptions
rule out the use of the members of the family of gradient-
based optimization algorithms that exploit the first- and
second-order derivative information to search for points
that satisfy the first- and second-order optimality conditions.
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Under these conditions, it is also intractable to approximate
derivative information indirectly using, for example, a finite
difference scheme, given the tight evaluation budget that is
available. In short, these assumptions imply that the search
algorithm has to rely exclusively on direct evaluations of the
objective function to probe the local geometry of the
problem. 'e denominator derivative-free optimization
(DFO) refers to any search algorithm that uses only the
direct evaluations of the objective function.

1.1. Overview of DFOMethods. In this family, there are two
main classes to be recognized, which are as follows: sto-
chastic search methods and deterministic search methods.
Either can be further subdivided into population-based and
evolutionary strategies and direct search methods and in-
terpolation-based search methods, respectively. 'e dis-
tinction between stochastic or deterministic here refers to
the property that, excluding the random initialization of the
algorithm, the execution and convergence history is the
same for deterministic algorithms whilst being subject to
variation for stochastic search algorithms.

Generally speaking, stochastic search algorithms main-
tain a belief over the solution space representing possible
candidate solutions. 'is belief is either represented with an
actual population or with a parametric distribution, e.g., the
multivariate normal distribution. Members of the latter class
are denoted as evolutionary strategies (ESs). Stochastic
search methods proceed with the evaluation of any new
members of the population and use stochastic operations to
generate a new population. In the past few decades, large
varieties of population-based algorithms have been invented
that are inspired by the swarm intelligence exhibited by
animal populations. Examples are monarch butterfly opti-
mization [1], earthworm optimization algorithm [2], ele-
phant herding optimization [3], moth search algorithm [4],
slime mould algorithm [5], Harris hawks optimization [6],
artificial bee colony optimization [7], and grey wolf opti-
mization [8], amongst others, which, in some way or an-
other, are all related to the classic particle swarm
optimization algorithm [9]. 'ese algorithms have found
applications in structural design optimization mostly and
are particularly appealing to find global solutions at the cost
of sampling the objective function abundantly. Instead of a
population, the class of evolutionary search algorithms
maintains a parametric distribution, which is used to spawn
a sample set, which, in turn, is evaluated and assessed to infer
the next parametric belief. 'e benefit of these evolutionary
strategies is that they may be derived from much more
principled arguments. Again, their main appeal is that they
solve for a global solution and are particularly well-equipped
to treat noisy or multi-global objective functions, where
other algorithms, even population-based algorithms, are
prone to get stuck in local minimal. Examples popular in the
machine learning and reinforcement learning communities
are the covariance-matrix adaption evolutionary strategy
[10–13], natural evolutionary strategies [14–17], and infor-
mation geometric optimization [18]. On account of their
inherent stochasticity, the execution of stochastic search

methods may be subject to excessive covariance, and their
actual performance may differ for each individual run.
Basically, they battle noise with noise.

Deterministic search methods eliminate that problem.
'e subclass of direct search methods encompasses the
historical Nelder-Mead simplex method [19] and modern
pattern search methods [20], such as mesh adaptive direct
search (MADS) methods and related variants [21–24]. 'ese
direct methods are characterized by the fact that they try to
satisfy the zeroth-order optimality criterion by comparing
the ordering of evaluated points but usually do not exploit
any directional preferences implied by them. 'e advantage
here is that they will not be misled by false positives or false
negatives (e.g., a strong objective slope that suddenly flat-
tens) but consequently can also not exploit, or at least to a
lesser extent, true negatives and true positives (e.g., a strong
objective slope that actually points into the direction of the
minimum). 'e other subclass of direct DFO methods can
be described as interpolation-based optimization (IBO)
methods. 'e basic idea here is to approximate the objective
function by fitting an interpolation model to the available
objective function evaluations. 'e hypothesis is that the
underlying objective function is subjected to tendencies that
are picked up by the interpolation model, which, in turn, can
be exploited to explore the potential regions of interest.
Within this scope, there are basically twomain branches that
can be classified based on the fact whether they maintain a
global or a local interpolation function. 'e global branch
was founded when the efficient global optimization (EGO)
algorithm was first published [25]. Members of this class
maintain a so-called acquisition function that can be opti-
mized to determine the next best point to be evaluated and
added to the interpolation set. A large family of methods has
been developed based on this idea. 'e other branch of
strictly deterministic interpolation-based methods is based
on the trust-region framework and will be discussed in the
following subsection.

In conclusion, we note that the principal idea of inter-
polation-based optimization, i.e., replacing the objective
function with an interpolation-based proxy, has been subject
to cross-fertilization with ideas from the population-based
stochastic search family and are commonly referred to as
surrogate-assisted stochastic search methods. As opposed to
the acquisition function used in EGO and related methods,
here, a so-called batch infill criterion is used that can
generate a whole set of points instead of a single point at
once. Examples are TLRBF [26], RBFBS [27], SATLBO [28],
SAGWO [29], DSCPSO-EMM [30], amongst others. Further
exposition is out of scope.

1.2. Trust-Region IBOandContributions. 'is article focuses
on the particular deterministic DFO subclass of trust-region-
based IBO methods, or TRIBO for short [31–34]. As op-
posed to the global IBO methods surveyed above, TRIBOs
target a compact neighborhood in each iteration. Such a
strategy limits the required amount of sample points to
obtain a reliable surrogate in the compact neighborhood
considered during that iteration [35]. A standard gradient-
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based optimizer can then be used to solve the local sub-
problem confined to the compact neighborhood.

'is analysis allows one to identify three key components.
A framework is required to maintain a sequence of compact
neighborhoods. Secondly, a strategy should be present to
populate the new compact neighborhood with interpolation
points. In turn, this interpolation set can be used to determine a
new local interpolationmodel that is sufficiently accurate in the
compact neighborhood. In this work, we will make use of the
radial basis functions (RBF) interpolation framework [36–38].
'e first two components are discussed next.

'e trust-region globalization scheme offers a frame-
work to generate a sequence of compact neighborhoods that
will be referred to as trust-regions henceforth. When the
surrogate satisfies Taylor-like error bounds on its function
value and gradient for every iteration, convergence to first-
order optimality can be guaranteed [39]. In the context of
interpolation, such error bounds can be established,
depending on the geometry of the interpolation set used
[40]. 'e geometry of an interpolation set can be understood
as the distribution of points with respect to a certain region.
'e quality of geometry is quantified by a set-dependent
geometry metric. An arbitrary set of points is then said to be
well-poised for interpolation within the specified region if the
corresponding geometry measure is sufficiently large.

To guarantee a valid interpolation model suited for
optimization within a specified trust region, IBO methods
maintain a subset of the available interpolation set for which
the geometry constant is maximized. Consequently, the
well-poisedness of the subset geometry is assured, and so is
the model validity. In every iteration, this constant is
maximized by removing points from the interpolation set
and generating new ones according to the current size and
location of the trust region whilst limiting the overall ac-
cumulation of objective evaluations. 'is delicate mecha-
nism is referred to as interpolation set management.

In [32, 41, 42], such a geometry measure was described
using a basis of polynomials. Other authors have described this
constant in the function of the QR pivots of the Vandermonde
matrix determined by the interpolation points [31, 40]. 'e
mentioned methods consider a subset of n + 1 interpolation
points to guarantee a valid model. In any of these cases, the
interpolation set management pursues orthogonality between n

interpolation points relative to the current trust-region center.
'e center then serves as the (n + 1)th interpolation point.

'e contribution of this article is twofold. Firstly, in our
algorithm, we pursue a subset of n + 2 instead of n + 1 in-
terpolation points, as seen in [31, 32]. An original sampling
strategy is devised that is inspired by the volumetric ex-
tremity properties of the regular n-simplex. 'is strategy has
two benefits. For one, we achieve an improved interpolation
set distribution, which is heuristically justified for low-di-
mensional problems. 'en, considering that we use the RBF
framework to construct a local interpolation model, it is
guaranteed that the surrogate will exhibit curvature.

Secondly, we propose to leverage this curvature infor-
mation. We, therefore, generalize the traditional spherical
trust-regions to ellipsoidal trust regions. 'e motivation to
use an ellipsoidal geometry is again twofold. An ellipsoidal

trust-region will adapt to the geometry of the objective
function and will, therefore, allow larger steps toward more
promising regions compared to using spherical geometry,
i.e., the trust-region boundaries will align with the contours
of the objective function, and the objective will look like a
spherical problem. 'is idea is already leveraged in the
context of evolutionary computation [10, 43]. Secondly, our
interpolation set management is input-space oriented,
meaning it only takes into account the local distribution of
the interpolation points and does not consider the associated
output values. 'e introduction of an ellipsoidal trust-re-
gion, whose shape reflects the objective’s response behavior,
allows to account for the output-space when executing the
interpolation set management and will, therefore, benefit
interpolation-based metamodeling.

1.3.Outline. To keep this article self-contained, we provide a
brief review of the general trust-region framework for
surrogate management in Section 2. In Section 3, we discuss
the radial basis function interpolation framework and
provide details on the implementation. Section 4 motivates
our choice for using n + 2 interpolation points and intro-
duces our interpolation set management. In Section 5, we
discuss the transition toward ellipsoidal trust regions. In
Section 6, we validate our methods empirically on a number
of benchmark problems.

2. Trust-Region Methods

In this section, we give a brief review of the traditional trust-
region globalization scheme and its applications in IBO.
'erefore, we will introduce the so-called class of fully linear
surrogate models that generalize the characteristics of the
surrogate model used by the trust-region methodology from
gradient-based models (such as second-order Taylor
models) to more general model types (such as radial basis
interpolation models).

2.1. Generic Trust-Region Method. 'e trust-region frame-
work is a widely-used technique to attain the global con-
vergence of gradient-based optimization algorithms. At
every iteration k, a surrogate model, mk, is considered that
approximates the actual objective within a neighborhood of
iterate xk. Traditionally, this neighborhood, i.e., the trust-
region, is modeled as a sphere.

B xk,Δk( 􏼁 � x ∈ Rn
: x − xk

����
����≤Δk􏽮 􏽯, (2)

where xk is the current iterate and Δk is referred to as the
trust-region radius.

A trial step, sk, is obtained by minimizing the surrogate
model, mk, in the trust-region, B(xk,Δk). 'is minimiza-
tion problem is referred to as the trust-region subproblem.
'e resulting trial step, sk, gives rise to the trivial candidate
iterate, xk+1 � xk + sk.

sk � arg min
s∈B 0,Δk( )

mk xk + s( 􏼁. (3)

Mathematical Problems in Engineering 3



In every iteration, the size and position of the trust-
region are updated in such a way that the generated sequence
of iterates converges. 'e configuration of the trust-region,
which is determined by the couple, (xk,Δk), is updated
according to a fundamental scheme based on the ratio of
actual to predicted decrease, ρk. 'e ratio constitutes a
metric for the predictive quality of the surrogate with respect
to the current trust-radius [35].

ρk �
f xk( 􏼁 − f xk + sk( 􏼁

mk xk( 􏼁 − mk xk + sk( 􏼁
. (4)

Based on the value of ρk, the trust region is updated
according to the following general rules. If the prediction of
the surrogate is good, the radius is increased. In case of a bad
prediction, the radius is reduced. For other cases, the current
radius is simply maintained.

To regulate the expansion and contraction of the trust-
region, one takes values 0<Δm ≤ΔM, 0≤ η1 < η2 < 1 and
0< c1 < 1< c2, where Δm and ΔM represent the minimal and
maximal radii, respectively. 'e value of Δk is then updated
as follows:

Δk+1 �

max c1Δk,Δm􏼈 􏼉, ρk ≤ η1
Δk, η1 < ρk ≤ η2
min c2Δk,ΔM􏼈 􏼉, η2 < ρk

⎧⎪⎪⎨

⎪⎪⎩
(5)

To decide whether to accept or reject a trial step, sk, we
adopt the rules from [35]. If the candidate iterate, xk + sk, is
not accepted, then the trust-radius shrinks, given that ρk < 0.

xk+1 �
xk + sk, f xk + sk( 􏼁<f xk( 􏼁

xk, otherwise
􏼨 (6)

'e generic trust-region algorithm is presented in Al-
gorithm 1.

2.2. Trust-Regions and Fully Linear Models. In the gradient-
based trust-region method, the surrogate, mk, is provided by
a quadratic model of the following form:

mk(x) � f xk( 􏼁 + g⊤k x − xk( 􏼁,

+
1
2
x − xk( 􏼁

⊤Hk x − xk( 􏼁,

(7)

where gk andHk are the evaluations of the first- and second-
order derivatives of the objective function f in the iterate xk,
respectively. According to Taylor’s theorem, a region exists
within the vicinity of xk, where the assumption that model
mk is a reliable approximation of f is true. A region of
reliable approximation can be defined as a region where the
surrogate modeling approximation error, reflected by ρk, is
small enough such that the descend in the surrogate model,
mk, restricted to this region corresponds to the descend of
the objective function f. It is apparent that the strength of
the trust-region method thus depends on the capacity of the
updating rules to maintain a region, where the surrogate
modeling approximation error is sufficiently bounded so
that mk is suited for optimization purposes [44, 45].

From that perspective, the trust-region method can be
decomposed into two crucial mechanisms that interact to
generate the sequence of iterates. A procedure must be
provided that can generate a quadratic approximationmodel
mk of the goal function f for any given iterate xk. 'e
updating rules will then maintain a series of regions, where
the corresponding and consecutive models, mk, are suited to
generate the descending sequence of iterates as the solution
of subproblem (3). 'e latter mechanism is in that aspect
generic and can be employed to maintain a series of trust-
regions given any type of model. 'erefore the mechanism
extends from quadratic models to the interpolation based
and thus derivative-free models that will be used here.

In this work, we are interested in the class of so-called
fully linear models. 'e definition of a fully linear model
establishes Taylor-like bounds on arbitrary models, and
therefore, it generalizes the notion of a reliable approxi-
mation. As a consequence, the trust-region framework can
be generalized to include such fully linear models.

We adopt the definition from [39, 40] with
􏽢X � x ∈ X: B(x,ΔM)⊆X􏼈 􏼉.

Definition 1. For given κf > 0, κg > 0, and for given xk ∈ 􏽢X,
Δk ∈ (0,ΔM], defining Bk � B(xk,Δk), surrogate model mk

is said to be fully linear on Bk, if for all x ∈Bk,

f(x) − mk(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ κfΔ
2
k,

∇f(x) − ∇mk(x)
����

����≤ κgΔk.
(8)

Let us assume two different procedures that can generate
a fully linear surrogate model mk on B(xk,Δk) or that are
able to verify whether the surrogate model, mk, is fully linear
onB(xk,Δk) and that for any given xk ∈ 􏽢X, Δk ∈ (0,ΔM]. If
two such procedures are available, (1) can be modified to
construct a trust-region algorithm with fully linear models
that will converge to a first-order critical point of the
function f [39]. Algorithm 2 presents such a trust-region
algorithm using fully linear models.

'e main modification is the introduction of the ter-
mination criteria, ‖∇mk(xk)‖εg/2. 'is condition is a
reformulation of the first-order optimality condition on the
objective function, ‖∇f(xk)‖ϵg. Assuming that mk is fully
linear on B(xk,Δg

k ), we have the following:

∇f xk( 􏼁
����

����≤ ∇mk xk( 􏼁
����

���� + ∇f xk( 􏼁 − ∇mk xk( 􏼁
����

����

≤
ϵg
2

+ κgΔ
g

k .
(9)

Algorithm 2 assures that upon termination, model mk

will be fully linear onB(xk, ϵg/2κg). Substituting ϵg/2κg for
Δg

k in (9) reveals that this is equivalent to satisfying the first-
order optimality criterion, ‖∇f(xk)‖≤ ϵg. We remark that it
is thus fundamental to provide procedures that can guar-
antee the tightest possible bound on κf and κg. In Section 4,
such procedures are developed, considering that model mk is
an interpolation model.

2.3. Interpolation Models. When first-order derivative in-
formation, gk, is not directly available, it is possible to
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construct a surrogate model based on strategically generated
data, i.e., the direct evaluations of the objective function. A
model mk denotes an interpolation model if it satisfies the
interpolation conditions in (10) for a given input set,
Z � z1, . . . , zq􏽮 􏽯, with interpolation points, zi ∈ Rn, and a
corresponding output set, F � f(z1), . . . , f(zq)􏽮 􏽯.

mk zi( 􏼁 � f zi( 􏼁, i � 1, . . . , q. (10)

A quadratic model, as in (7), is capable of modeling the
curvature of the underlying function f and allows, therefore,
to proof global convergence to second-order critical points
[39]. Correspondingly, several DFO methods have been
developed that operate with quadratic interpolation models
[34, 46, 47]. To determine a quadratic model, the number of
interpolation points, q, must either equal or exceed
q � 1/2(n + 1)(n + 2), thus requiring at least that number of
objective function evaluations. 'is requirement contradicts
with our intention to limit the number of objective function
evaluations.

A linear model can be constructed with as few as n + 1
interpolation points. Algorithms that operate with minimal
interpolation sets of q � n + 1 are described by [31, 32, 48].
However, the drawback, in this case, is that a linear model is
not capable of representing any curvature present in the
objective.

In this work, we impose the additional requirement that the
minimal number of interpolation points must equal q � n + 2
because it is then guaranteed that the resulting model can
represent a curvature, given a proper interpolation framework
(see Section 3). We will refer to such models as better-than-
linear models, noting that these models classify as fully linear
models but are constructed with at least onemore interpolation
point than the minimum for exact linear models q � n + 1.

2.4. Interpolation-Based Optimization. Anticipating that a
procedure is available that can generate an interpolation
model, mk, that classifies as a fully linear model, an inter-
polation framework is trivially embedded in Algorithm 2.

In Section 3, we will discuss a multivariate interpolation
method that can model curvature and is flexible in the sense
that it does not impose strict requirements on the number of
interpolation points. Within the context of this framework, it
will be shown that an interpolation model can be classified as a
fully linear model if the set, Z, satisfies conditions on the
geometry of the points with respect to the trust-region [40].'e
geometry can be understood as the scattering of interpolation
points inside a specified region. In Section 4, the geometry of an
interpolation set is quantified using a novel geometry metric.

'e procedures of verifying and generating fully linear
interpolation models thus boil down to verifying whether

(1) choose x0 ∈ X ⊂ Rn, 0<Δm ≤Δ0 ≤ΔM, 0≤ η1 < η2 < 1 and 0< c1 < 1< c2
(2) for k � 0, 1, . . . until convergence do
(3) obtain model mk

(4) solve sub-problem (3) to obtain sk

(5) evaluate f(xk + sk) and compute ρk through (4)
(6) update Δk+1 and xk+1 according to (5) and (6)
(7) end for
(8) return xk

ALGORITHM 1: Generic trust-region algorithm.

(1) choose x0 ∈ X ⊂ Rn, 0<Δm ≤Δ0 ≤ΔM, 0≤ η1 < η2 < 1 and 0< c1 < 1< c2
(2) for k � 0, 1, . . . do
(3) construct fully linear model mk valid in B(xk,Δk)

(4) if ‖∇mk(xk)‖≤ ϵg/2 then
(5) if mk is fully linear in B(xk, ϵg/2κg) then
(6) stop
(7) else
(8) set xk+1 � xk and Δk+1 � ϵg/2κg

(9) end if
(10) else
(11) solve sub-problem (3) to obtain sk

(12) evaluate f(xk + sk) and compute ρk through (4)
(13) update Δk+1 and xk+1 according to (5) and (6)
(14) end if
(15) end for
(16) return xk

ALGORITHM 2: Trust-region algorithm with fully linear property.
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the geometric conditions are satisfied with respect to having
a fully-linear model for a given interpolation set and to
complementing an existing or possibly empty set so that the
condition is satisfied by construction. In the context of IBO,
these two mechanisms are provided by a single procedure
that is referred to as the interpolation set management or the
sampling strategy. A sampling strategy for minimal inter-
polation sets of q � n + 2 is proposed in Section 4.

3. Radial Basis Functions

Algorithm 2 allows to engage the trust-region globalization
scheme whilst substituting interpolation models (10) for the
surrogate model, mk. It requires a flexible, multivariate
interpolation modeling framework that can capture curva-
ture and does not impose strict conditions on the number of
interpolation points since we will recycle interpolation
points from previous iterations. 'e radial basis function
(RBF) interpolation framework has readily shown its utility
within IBO [31–33]. 'e traditional RBF framework decides
arbitrarily on the shape of the modeling RBFs by fixing a
shape parameter a priori. Alternatively, one can determine
the shape parameter based on the interpolation data. In that
case, the RBF framework coincides with universal kriging
[36], where the shape parameter is referred to as a hyper-
parameter.'emodeling assumptions of the framework and
the determination of the model parameters and hyper-
parameters are discussed next.

3.1. Interpolation Framework. Consider a given set of in-
terpolation points Z and corresponding objective func-
tion evaluations F. 'e RBF multivariate interpolation
framework then presumes a function model of the fol-
lowing form:

m(x) � 􏽘
zi∈Z

αiϕ x − zi

����
����􏼐 􏼑 + p(x),

(11)

where ϕ: R+⟶ R is an element of the class of RBFs
and p(x) is an element of an n-variate polynomial space Pn

d

of at most degree d, referred to as the polynomial tail. Let
􏽢P

n

d � π1(x), . . . , π􏽢d
(x)􏼚 􏼛 be an n-variate basis for Pn

d with
􏽢dbeing the size of this n-variate basis. 'en, the polynomial
tail can be represented by a linear combination of this basis,
i.e., p(x) � 􏽐

πj∈􏽢P
n

d

βjπj(x), with βj being the expansion
coefficient. Some popular choices for RBF are listed in
Table 1. Notice that the function ϕ(‖x‖) has isosurfaces
coinciding with hyperspheres in Rn, i.e., the functions ra-
diate out isotropically.

By introducing vectors, ϕ(x) and α, ∈Rq and, π(x) and β,
∈∈R􏽢d, which entries are given by ϕ(‖x − zi‖), αi, πj(x)andβj,
respectively-, we can reformulate the RBF model as

m(x) � 􏽘
zi∈Z

αiϕ x − zi

����
����􏼐 􏼑 + 􏽘

πj∈􏽢P
n

d

βjπj(x)

� ϕ(x)
⊤

· α + π(x)
⊤

· β.

(12)

3.2. Determination of Model Parameters. 'e RBF function
model (12) is uniquely defined by the parameters α and β.
'ese parameters can be determined as follows:

Let the VandermondematricesΦ ∈ Rq×q andΠ ∈ Rq×􏽢d be
defined as Φik � ϕ(‖zi − zk‖) and Πij � πj(zi). 'e set of q

interpolation conditions in (10) can then be written as follows:

Φ Π􏼂 􏼃 ·
α

β
􏼢 􏼣 � f , (13)

where the entries of f are defined as the function evaluations
contained in F.

'ese conditions do not render unique α and β.
'erefore, 􏽢d additional conditions are required to com-
plement (13) so that the assembled system matrix is non-
singular. To this end, we require that the model m(x) is the
smoothest model of the form described by (12) that complies
with the interpolation condition (10). For RBFs, function
smoothness can be defined in relation with the concept of
conditional positive definiteness (CPD) [37]. RBFs have the
specific property that to any RBF, ϕ, one can associate a value
d0 such that if the maximum degree d of the polynomial tail
satisfies d≥ d0, the matrix Φ will be positive definite with
respect to all vectors α ∈ null(Π). Equivalently, we have that
if d≥ d0 and Π⊤α � 0, it holds that (− 1)d0+1α⊤Φα> 0. In
conclusion, when CPD is satisfied, i.e., α⊤Φα> 0, it can be
shown that the corresponding interpolator is the smoothest
function of form (12) satisfying (10). For an elaborate proof
and additional details on CPD, we refer to [37].

Formally, the matrix representation of the interpolation
condition can be complemented as such by the function
smoothness condition to obtain the linear system of
equations.

Φ Π

Π⊤ 0
􏼢 􏼣 ·

α

β
􏼢 􏼣 �

f

0
􏼢 􏼣. (14)

'e model parameters are determined uniquely if the
system matrix is nonsingular. It is easily verified that if
d≥d0, it is then sufficient that Π⊤ has a full column rank. If
so, the interpolation set is said to be well-poised for inter-
polation. In Section 4, how the well-posedness corresponds
with the geometrical properties of the points in Z is dis-
cussed. [4]

Based on the previous observation, the explicit solution
of the model parameters is as follows:

β � Π⊤Φ− 1Π􏼐 􏼑
− 1
Π⊤Φ− 1f ,

α � Φ− 1
(f − Πβ),

(15)

'is result may also be obtained using the universal kriging
(UK) framework. Here, a linear predictor of the form
m(x) � η(x)⊤f is considered. 'e objective function is
modeled as the realization of a polynomial tail and a random
process, f(x) � p(x) + w(x). 'e process’ stochasticity is
quantified by a spatial correlation function that models the
output correlation as a function of the spatial distance be-
tween the input values. 'e correlation is thus expressed in
terms of RBF as corr(w(zi)w(zj)) � ϕ(‖zi − zj‖). It can be
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shown, e.g., [36, 38], that the optimal linear unbiased pre-
dictor, η, is then determined by the following system of
equations, where ξ can be interpreted as a Lagrangian
multiplier.

Φ Π

Π⊤ 0
􏼢 􏼣 ·

η

ξ
􏼢 􏼣 �

ϕ

π
􏼢 􏼣. (16)

For additional details, we refer to appendix A.

3.3. Hyperparameters. 'e value of the shape parameter c

(see Table 1) is arbitrary and affects the receding radial effect
of RBF contribution in (12). Heuristics may be provided,
however, they usually lack proper theoretical foundation. A
suitable value is mostly determined by trial-and-error.
Furthermore, we emphasize that each component of the
interpolation points zi contributes equally to the distance
metric, ‖ · ‖, i.e., the model presumes the isotropic depen-
dence of the objective function on all of its variables. Such
isotropic behavior can be achieved by normalizing the
optimization space by performing a linear transformation of
the input space. Nonetheless, such measure cannot account
for any local deviations on the global trend. Since we are to
construct local interpolation models whose validity is not to
stretch beyond the limits of the trust-region boundary, we
could redefine this linear transformation locally.

To account for local anisotropy in the principal direc-
tions of the input space, one may define the distance metric
as (17).'e RBFs in (12) are then redefined as ϕ(‖x − zi‖c). It
is clear that in this case, the univariate hyperparameter c has
become redundant. In practical implementations of the UK
framework, the determination of hyperparameters ci is
automated using a maximum log likelihood estimate based
on the observations, F.

‖x‖
2
γ � 􏽘

n

i�1
cix

2
i . (17)

We refer to appendix A and [49] for elaborate details.

4. Interpolation set Management

In Section 2, we described a trust-region method with fully
linear models. It was demonstrated how a sequence of fully
linear models mk can be utilized to converge to a first-order
critical point of the objective function f. When considering
interpolation models satisfying (10), the question whether
mk is a fully linear model boils down to a proper man-
agement of the interpolation set Z used to construct mk.
'is so-called sampling strategy should maintain a proper
geometry of the interpolation set.

In [40], the geometry of an arbitrary interpolation set,Z,
was quantified by a single set-dependent constant directly
related to the conditions in (8) to define a fully linear model.
'e lemma in [40], however, only applies to interpolation
models for which the set size equals q � n + 1 exactly. On
this basis, the authors in [31] devised an IBO algorithm,
employing RBF interpolation models, given at least n + 1
interpolation points to construct a fully linear model. By
applying a QR pivoting strategy directly related to the
measure described by [40], their sampling strategy assures
that a subset of n + 1 interpolation points (amongst the
entire available data set) exhibits the required geometry to
guarantee a fully linear interpolation model. Possibly, ad-
ditional samples need to be generated to have the verification
of the full linearity of the interpolation model. We,
henceforth, refer to these points to verify that mk is fully
linear as the affine subset. Additional points from the entire
data set are subsequently recycled to enhance the modeling
capabilities of the RBF model as long as the well-poisedness
of (14) is not corrupted.

Having an interpolation model mk representing the
curvature requires an affine subset of q≥ n + 2 (see Section
3.2) that is adequately embedded in an interpolation-based
trust-region algorithm. In other words, we aim to ensure the
convergence of Algorithm 2 to second-order critical points
whilst only adding a single point to the affine subset with
respect to [31, 32]. Since an estimate of the curvature is now
always available, the remark on the RBF hyperparameters in
Section 3.3 can be generalized to arbitrary directions. 'e
latter is investigated in Section 5.

In Section 4.1, we introduce a generalized version of the
theorem in [40] for interpolation sets with size exceeding
n + 1. On that basis, we identify the optimal affine subset
geometry that corresponds with n + 2 interpolation points in
4.2. Finally, in 4.3, we propose a procedure capable to
maintain an interpolation set with an affine subset of n + 2
points so that the interpolation model, mk, is fully linear and
exhibits curvature.

4.1. Better-:an-Linear Models. 'e uniqueness of the RBF
interpolation model parameters implied well-poisedness,
i.e., full column rank, of the matrix Π⊤. 'us, the size of the
interpolation set must equal or exceed the size of the
polynomial basis. Given that we address a minimal inter-
polation set size n + 2 and thus 􏽢d≤ n + 2, the polynomial tail
will be linear or equivalently p(x) ∈ Pn

1. A convenient choice
for the basis 􏽢P

n

1 is then clearly π(x)⊤ � x⊤ 1􏽨 􏽩. Since we will
embed the interpolation framework in a trust-region
framework, the current iterate xk is always available for
interpolation since f(xk) is evaluated for calculating the

Table 1: Radial basis functions, c> 0, where d0 is the minimal polynomial degree to have CPD.

Type ϕ(r) d0

Cubic r3 1
'in plate spline r2log(r) 1
Linear max 0, 1 − c|r|􏼈 􏼉 0
Multiquadratic

������
r2 + c2

􏽰
0

Gaussian exp(− crβ) − 1
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predictive quality of the interpolation model (4). Hence-
forth, we will consider a trust-region centered at the origin,
0, by performing a shift of coordinates each time. Fur-
thermore, we require that 0 is always an element of Z, i.e.,
Z � 0, z1, . . . , zq− 1􏽮 􏽯.

Introducing the interpolation set Vandermonde matrix,
Z, matrix Π⊤ can be written as follows:

Π⊤ �
0 z1 · · · zq− 1

1 1 · · · 1
􏼢 􏼣 �

0 Z

1 1⊤
􏼢 􏼣. (18)

As mentioned in [40], the conditions (8) were related to
the interpolation set geometry, and more specifically, they
were related to matrix Z. Here, a generalized lemma is
presented, establishing similar Taylor-like conditions for
better-than-linear models, i.e., when q≥ n + 2. A derivation
is included in appendix B.

Lemma 1. Suppose that m is an RBF model with linear tail
and RBF contribution α⊤ϕ that satisfies the interpolation
condition, m(zi) � f(zi), for the interpolation set
Z: � 0, z1, . . . , zq− 1􏽮 􏽯 ⊂B(0,Δ), where q≥ n + 2 and sat-
isfies ‖Z‖01Δ≤ΛZ. Furthermore, suppose that f and m are
continuously differentiable in the hypersphere B(0,Δ) and
that ∇f and ∇ϕ⊤α are Lipschitz continuous inB(0,Δ), with
Lipschitz constants cf and cϕ, respectively, then the following
two inequalities are satisfied for any x ∈B(0,Δ):

|m(x) − f(x)|≤
5
2
ΛZ

����
q − 1

􏽰
+
1
2

􏼒 􏼓 cf + cϕ􏼐 􏼑Δ2

‖∇m(x) − ∇f(x)‖ ≤
5
2
ΛZ

������������

q − 1 cf + cϕ􏼐 􏼑

􏽱

Δ

. (19)

'ese conditions are similar to (8). 'e lemma provides,
therefore, an admittedly conservative estimate of the con-
stants κf and κg, however, foremost it reveals the crucial role
of the interpolation set geometry, which is reflected by the
value of ‖Z‖.

It follows that our interpolation set management must
ensure the boundedness of Δ01k ‖Zk‖ from below by the a
priori fixed value Λ01Z at each iteration.

4.2. Optimal Critical Set Geometry. 'e value of Δ01‖Z‖ is
understood as a measure for the algebraic well-poisedness of
a given setZ ⊂B(0,Δ) withinB(0,Δ) [40]. For any given
number of interpolation points q, we can define the optimal
critical set geometry that corresponds with the largest value
of ‖Z‖ corresponding to the tightest bounds on κf and κg.
Hence, assuring the set’s well-poisedness reduces to gen-
erating an affine subset that resembles the optimal set ge-
ometry as closely as possible whilst recycling as many points
as possible. 'is strategy balances the requirement to
minimize the total amount of function evaluations without
corrupting the model quality. Figure 1 depicts optimal ge-
ometries for n � 2 dimensions, maximizing the measure ‖Z‖

for affine subsets of size q � n + 1, q � n + 2, and q � 2n + 1,
respectively. 'e optimal set geometry for q � n + 1

complies with the normalized set Δ01Z, 0{ } being ortho-
normal with respect to the origin, or equivalently when Z

coincides with a standard simplex. 'is set geometry is
pursued by QR pivoting strategies as elaborated in [31] and
Lagrange or Newton polynomials-based strategies as elab-
orated in [32, 40]. 'e optimal set geometry for q � n + 2
corresponds with the regular simplex geometry (plus the
origin) [19, 50] and that for q � 2n + 1 with that of an
orthoplex (plus the origin) [51]. Orthoplex geometry has
been recommended by Powell in [34]. 'is geometry also
determines the fixed search directions in many pattern
search optimization methods.

In this context, it is relevant to inspect the spatial dis-
tribution of the 2D geometries in Figure 1. 'e optimal set
geometries for q � n + 2 and q � 2n + 1 are unoriented: the
center of mass of the corresponding sets coincide with the
origin. It does not apply for q � n + 1, where the set is biased.
Note that the above is valid for arbitrary n. To quantify this
more rigorously, we introduce the metric, ϑ∗(Z), defined as
follows:

ϑ∗(Z) � max
x∈B(0,Δ)

ϑ(x;Z) �
1
q

􏽘
zi∈Z

x − zi

����
����. (20)

Its value is equal to themaximummean distance that any
test point in the trust-region can be removed from the
modelling setZ (including 0). 'e value gives an indication
for the worst-case contribution that the radial basis term
(that is directly related to the distance between the test point
and the interpolation points) has compared to the linear tail.
In Table 2, we compare ϑ∗(Z) values for different optimal
set geometries. It can be observed that ϑ∗(Z) values can be
improved by only adding a single point, referring to the shift
from the standard to the regular simplex geometry. 'e
contours of ϑ(x;Z) are presented in Figure 1 that allow one
to visualize the regions that are not represented well by the
optimal set geometries. For n⟶∞, ϑ∗(Z) tends to

�
2

√
for

all three given configurations, implying that all are as good,
or as worse, for infinite dimensional problems.

'e discussion based on ϑ∗(Z) provides an additional
argument to choose the regular simplex over the configu-
ration in Figure 1(a), certainly for low-dimensional
problems.

4.3. Regular Simplex Affine Subsets. According to the pre-
vious subsection, the optimal affine subset (without the
origin) for q � n + 2 is a regular simplex. 0 remains an el-
ement of the affine subset that affects the definition of a
regular simplex affine subset based on the n + 1 remaining
interpolation points.

Formally, the set of all regular simplices lying on the surface
zB(0, 1) is given by (21). ln(·) (see appendix C) is a scaling
factor depending on the radius of the n-sphere (here 1).

R
n
(0, 1) � s0, . . . , sn􏼈 􏼉|si ∈zB(0, 1)􏼈 ,

and si − sj

�����

����� � ln(1), i≠ j􏼛.
(21)
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'e geometry of the regular simplex can be related to the
matrix norm, ‖Z‖, by examining the hypervolume spanned
by the convex hull of the affine subset, Z, 0{ }. Consider,
therefore, the hypervolume, V(Z), of an arbitrary set,
Z � z1, . . . , zn+1􏼈 􏼉, defined in (22) with spanning vectors,
z2 − z1, . . . , zn+1 − z1􏼈 􏼉. As outlined in [50, 52], the regular
simplex has volumetric extremity properties and maximizes
the set well-poisedness metric, ‖Z‖.

V(Z) �
det z2 − z1 · · · zn+1 − z1􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

n!
. (22)

Hence, the algebraic problem of maximizing ‖Z‖ coin-
cides with the geometric problem of maximizing the volume
of the convex hull ofZ. Approaching the problem from this
point of view helps to devise an intuitive interpolation set
management, resulting in a critical subset that is (close to) an
element of the set Rn(xk,Δk), whilst recycling the inter-
polation points was evaluated in previous iterations.

Based on the hypervolume V(Z) of the subsetZ, a metric
can be construed whether Z matches a regular simplex suf-
ficiently.'e principal idea is that V(Z) should be close to the
theoreticalmaximal hypervolume of the regular simplex,V∗. In
particular, we require the hypervolume that is not smaller than
the maximal hypervolume multiplied with some predefined
relative error factor 0≤ μ1 ≤ 1. If V(Z)≥ μ1V∗ is not satisfied,
new interpolation points need to be generated. 'is procedure
guarantees Δ01‖Z‖≥Λ01Z .

Before we elaborate the particularities of our set man-
agement, we mention that each set of pointsR ∈Rn

m(0, 1), is
a lower order regular simplex itself, where m is the dimension
of the regular subsimplex considered, and therefore, m≤ n.
Rn

m(0, 1) is defined in (23). 'is statement holds since any
subset of a setR ∈Rn(0, 1) simply inherits the property that
the distance between every two points is the same.

R
n
m(0, 1) � s0, . . . , sm􏼈 􏼉,􏼈

Vert∃ sm+1, . . . , sn􏼈 􏼉: s0, . . . , sn􏼈 􏼉 ∈Rn
(0, 1)􏼉.

(23)

4.3.1. Algorithm Expand2volume. Based on the previous
idea, Algorithm 3 constructs an affine subset in a systematic
manner so that mk classifies as a fully linear model for given
ΛZ. 'e goal is to attain an affine subset with hypervolume
V(Z)≥ μ1V∗ whilst adding as few points as possible to the
available set of interpolation points.'e input is the set of all
interpolations points available, scaled with respect to the
trust radius, Δk, and unbiased with respect to the center, xk,
i.e., Zk � zi � Δ01k (si − xk)|si ∈ Sk, xk􏼈 􏼉􏼈 􏼉. Sk is the set in-
corporating every point evaluated so far. 'e current origin
is excluded such that we remain with only the candidate
interpolation points to form the affine subset.

'e algorithm embarks on removing all points that are
outside a certain periphery, parametrized by the variable
θ1 ≥ 1. Note that we artificially enlarge the trust-region
since we allow parameter θ1 to be greater than 1. We can
always assure that the interpolation model is fully linear
by redefining κf and κg. It ensures that in practice, the
number of interpolation points actually accepted to be
part of the affine subset is slightly increased, improving
the overall convergence. Otherwise, the algorithm might
end up expanding an empty set too regularly (certainly for
larger n). If this operation yields a subset, Z1, that is still
larger than the required affine subset size of n + 1 (which,
in practice, will almost never occur), all points that are
furthest away from the trust-surface are additionally
removed.

If the size of the resulting subset, Z1, is smaller than
n + 1, it is expanded by calling Simexpand Algorithm 4. 'e
procedure described by Simexpand exploits the idea that if
the set Z1 were to be an element of Rn

n− m(0, 1), we can
expand it with an element of Rn

m− 1(0, 1) so that their union
would then constitute an element from Rn

n(0, 1). 'e ex-
pansion element can be generated by rotating and trans-
lating a properly sized lower-order regular simplex.

Our numerical implementation proceeds as follows: a
set, X is determined to be an element of Rm− 1(0, 1)
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Figure 1: Optimally poised interpolation sets for varying q and n � 2 next to a contour of ϑ(x;Z). Note that the center point, 0, is each time
incorporated in the interpolation sets. (a) q � n + 1. (b) q � n + 2. (c) q � 2n + 1.

Table 2: ϑ(Z) for different optimal set geometries contained within B(0, 1).

q n + 1 n + 2 2n + 2
n≥ 2 1 +

�
2

√ ��������
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√􏽰
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√ �����
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√
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�
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√􏽰
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�
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√􏽰
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5 1.5844 1.3321 1.2513
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embedded in the n-dimensional workspace. 'e direction e
is determined as the orthogonal projection direction of the
origin on the subspace spanned by the vertices of Z1.
Subsequently, a rotation matrix Q is determined so that the
basis spanned by the rotated element QX is orthogonal to
the union of the basis spanned byZ1 and the direction e. In
a final step, the rotated element QX is scaled according to
rn

m(1) and translated along the direction e over a distance
dn

m(1). 'e factors rn
m(.) and dn

m(.) are explained in ap-
pendix C and will only maximize the volume in the occa-
sional coincidence, where Z1 ∈R

n
n− m(0, 1). Nonetheless,

this same reasoning can be applied when Z1 ∉R
n
n− m(0, 1).

In that case, an additional subproblem must be solved to
identify the optimal value of σ to maximize the volume of
their union. Here, σ is a scaling factor related to rn

m(.) and
dn

m(.). In the description of the algorithm, we make no
distinction between a set X and its matrix column vector
representation X.

We also use the following operators: operator [.] con-
structs a matrix containing a set of column vectors that span
the space determined by the vertices inZ � z0, . . . , zq􏽮 􏽯, i.e.,
[Z] � z1 − z0 . . . zq − z0􏽨 􏽩. 'e function regsim(n, m)

outputs a set of vertices X � x0, . . . , xm􏼈 􏼉 that constitutes a
regular m-simplex in an n-dimensional coordinate space.
'ematrix function QR(.) constructs orthonormal bases for
span N and kernel K, determined by the columns of the
input matrix, respectively. 'e mechanics of Simexpand are
illustrated in Figure 2. Each subfigure depicts a set Z1 that
differs in size from the previous set, the corresponding
expansion setZ2, the two bases N, and NX and the vector e.

If the union Z1 ∪Z2 does not satisfy the criticality
condition V(Z1 ∪Z2)≥ μ1V∗, an iterative procedure is
initiated, where points are removed from the set Z1 sys-
tematically. 'en, the contracted set can be expanded by
applying Simexpand again. To avoid that, expansion points
are generated too close to a point that was removed in an
earlier iteration. Information from the removed point is
transferred to the contracted set Z1. Information about a
point that gets removed is stored by transferring it to a
memory set Z′. 'e mean of this memory set is used to
complement the points inZ1 that remain before expanding
the set with a new regular m + 1-simplex. In this fashion, the
added simplex is generated away from the mass center of the
original set Z1.

'e algorithm ends after at most n + 1 iterations, i.e.,
when the entire original setZ1 is transferred to the memory
set Z′. We remark that in this case, the mass center is
expanded with an (n − 1)-regular simplex that is, however,
not necessarily an element of Rn

n− 1(0, 1). As a consequence,
the eventual affine subset needs to not be an element of
Rn(0, 1). As this does not ensure that the sufficiency con-
dition is satisfied, the algorithm closes with a final verifi-
cation of the hypervolume and possible expansion of the set
Z2.

4.4. Remarks. With respect to algorithms 3 and 4 described
above, we add the following: during the initialization of
Expand2-volume, all points that are furthest away from the

trust-surface are removed. It is a heuristic. Alternatively, one
might run through a more complex scheme, where every
possible n + 1 size set is verified with respect to their
hypervolume, and the largest set is selected. 'ese points
could also be added to the memory set. However, it is a
situation that will almost never occur in practice, partially
because the optimization algorithm will guide the iterations
to unexplored regions of the parameter space. It is also
because the trust region will contract when the sequence of
iterates starts to converge. Hence, by proper choice of μ1 and
θ1, it can be avoided that the complete interpolation set of
the previous iteration is within the current periphery.

Furthermore, we remark that the alignment of the kernel
associated with the space spanned by the union Z1 ∪ 0 and
the space spanned by the regular simplex X is under-
determined. Here, this additional degree of freedom remains
unexploited. Alternatively, this degree of freedom could be
employed by orienting the simplex that is addedso that the
generated points are located furthest away from the available
set of interpolation points or such that the added points
correspond to a mean minimal predicted objective function
value.

5. Ellipsoidal Trust-Regions

'eprocedures described in the previous two sections can be
employed to verify and construct a model, mk, that satisfies
Definition 1 for a fully linear model in a given trust-region,
B(xk,Δk). Hence, these procedures can be used to embed
an interpolation framework in the trust-region algorithm
with fully linear models described by Algorithm 2, factually
realizing the IBO algorithm.

As for now, the geometry of the interpolation points is
considered only with regard to the input space and with
respect to the trust-region defined in it. Given a spherical
trust-region, our input space-oriented sampling strategy will
treat every direction equally in the function of a well-con-
ditioned system matrix Z. However, from the perspective of
optimization, it might be of interest to account for the
geometry of the objective function as well.

'e gradient of the objective function will be more
sensitive to certain search directions than to others as de-
termined by the local curvature of the objective function.
Currently, the set management, however, treats all directions
equally (as a result of the spherical shape of the trust-region)
and will try to homogenize the distance from the trust-re-
gion center and in between the interpolation points. Now, as
a result of the local curvature, the corresponding function
values may vary either faster or slower than that can be
expected when solely considering the local objective gra-
dient. Hence, the geometry of the objective function with
respect to the arbitrary choice of the optimization space
coordinates is reflected by its local curvature.

'erefore, we propose to execute the set management in
a transformed space by introducing an auxiliary optimiza-
tion parameter, u. 'e goal of this transformation is to
obtain a normalized curvature of the objective function in
the transformed optimization space. We propose to use an
adaptive affine mapping from the transformed space to the
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original space that changes with the trust-region iterations.
Notice that the origin in the auxiliary space corresponds with
the trust-region center in the original space.

x(u) � Akz + bk � Aku + xk. (24)

'e trust-region will be stretched along those directions,
where the local gradient is varying slowly and is shrunk in
those directions, where the local gradient is varying rapidly.
As a consequence, the objective function values evaluated
along the trust-region boundary will increase or decrease in
equal amounts with respect to the objective function value at
the trust-region center. It will have a positive effect on the
hyperparameter tuning described in 3.3 since the principal
directions are now homogenized.

Another consequence is that a spherical trust-region
in the auxiliary space u will now have an ellipsoidal shape
in the original optimization space illustrated by figures
3(a) and 3(b). As a result, a step of length 1 taken in the
auxiliary space represented in the original space may
exceed the original spherical trust-region radius. Two
situations can be distinguished when inspecting the di-
rectional curvature. When having a large directional
curvature on the one hand, the ellipsoidal geometry will
have a stabilizing effect, considering that the set of ad-
missible steps (i.e., the trust-region) becomes less ag-
gressive in terms of large jumps in the objective function,
which will also have an indirect effect on the modelling
procedure. On the other hand, when having a small
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Figure 2: Illustration of the expansion mechanism of Simexpand for varying m and n � 3. (a) m� 1, (b) m� 2, and (c) m� 3.

Input: Z0 � Z/0, θ1, μ1
Output: Z2
(1) obtain Z1 with elements zi ∈Z0 such that ‖zi‖≤ θ1
(2) define Z2 � ∅
(3) if |Z1|> n + 1 then
(4) order zi such that |1 − ‖z1‖|≤ . . . ≤ |1 − ‖zq‖|

(5) obtain Z1 � Z1/ zn+2, . . . , zq􏽮 􏽯

(6) else if |Z1|< n + 1 then
(7) get Z2 � Simexpand(Z1)

(8) end if
(9) find initial memory z′ � zi ∈Z1: ‖zi‖≤ ‖zj‖,∀j
(10) define memory set Z′ � z′
(11) while V(Z1 ∪Z2)< μ1V∗ or |Z1|> 0 do
(12) find zi ∈ Z1: ‖zi − z′‖≤ ‖zj − z′‖,∀j
(13) contract Z1 � Z1/zi

(14) redefine memory set Z′ � Z′ ∪ zi

(15) expand Z2 � Simexpand(Z1 ∪mean(Z′))
(16) end while
(17) if V(Z1 ∪Z2)< μ1V∗ then
(18) Z2 � Z2 ∪ Simexpand(Z2)

(19) end if
(20) return Z2

ALGORITHM 3: Expand2volume.
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directional curvature, the ellipsoidal trust region will
allow the optimization procedure to take large steps in the
direction of a slowly varying gradient. In this manner, the
original optimization space will be explored more rapidly.
For instance, in figure 3(b), the trust-region in the aux-
iliary space encloses a larger part of the inner contour that
contains the actual minimum. Similar ideas to exploit the
curvature information have been used in the context of
pattern search algorithms [?], however, to the extent of
our knowledge, not to reshape the trust-region geometry
in the context of IBO.

5.1. Curvature Normalization. 'e goal of the coordinate
transformation is to normalize the local curvature of the
problem in the new coordinate space. 'is condition can be
expressed mathematically as given. For reasons that will
become apparent, we introduce an additional scaling factor
λ2k.

∇2uf xk( 􏼁 � A⊤k∇
2
xf xk( 􏼁Ak � λ2kIn. (25)

Assume that we now have an estimate Bk for the Hessian
∇2xf(xk). We can formulate an expression for Ak by
considering the singular value decomposition (SVD)
of matrix Bk. 'e SVD decomposition of the positive
definite matrix Bk is given by UkΛkU⊤k . Here, Uk is an
orthonormal matrix and Λk is a diagonal matrix with the
singular values σ1, . . . , σn on its main diagonal. It is then
easily verified that,

Ak � λkUkΛ
01/2
k . (26)

Finally, we will utilize the scaling factor λk to keep
subproblem (3) as it manifests in the auxiliary coordinate space
proportional to its manifestation in the original coordinate space.
Mathematically, this proportionality can be realized by deter-
mining a measure that remains invariant under the transfor-
mation. Recall that as a result of the affine coordinate
transformation, a spherical trust-region in the auxiliary optimi-
zation space will adopt an ellipsoidal geometry in the original
optimization space. We propose the following measure of pro-
portionality: the value of λk is determined such that the spherical
and ellipsoidal trust-region representations remain isovolumetric.

Consider that the volume of an n-dimensional hyper-
sphere with radius Δk is equal to η(n) · Δn

k and that the

volume of an n-dimensional ellipsoid with the given half
principal axis lengths, a1, . . . , an, is equal to η(n) · 􏽑

i

ai,
where ηn is a mutual scaling factor. We also have that by the
construction of Ak, half the principal axis lengths can be
written in the function of the singular values as ai � λkσ01/2i .
An isovolumetric relation between the trust-region repre-
sentations in both the original as well as the auxiliary co-
ordinate space can be maintained by proper choice of the
scaling factor λk, i.e.,

λk � Δk 􏽙

n

i�1
σ1/2n

i . (27)

'e exact coordinate transformation of (24) can then be
written explicitly as follows:

x(u) � Δk 􏽙

n

i�1
σ1/2n

i UkΛ
01/2
k u + xk. (28)

5.2. Exponential Smoothing. Several methods can be devised
to provide an estimate of the Hessian, Bk. Since our sample
strategy ensures that the local interpolation model is curved,
we can calculate an approximation of the Hessian at the next
iterate in the auxiliary coordinate space directly from the
model, i.e., ∇2umk(uk+1).

'is estimate can be calculated back to the original
coordinate space to provide an estimate for the actual
Hessian, 􏽢Bk+1 � Ak∇2umk(uk+1)A⊤k . To get a smooth ap-
proximation, we propose to use exponential smoothing.
Note that if μ2 � 1, this framework reduces to the original
spherical trust-region framework.

Bk+1 � μ2Bk + 1 − μ2( 􏼁􏽢Bk+1,B0 � In. (29)

6. Numerical Results

In this section, we present the numerical results of the
presented derivative-free optimization algorithm applied on
a set of unconstrained problems from the CUTEst test
environment [53]. As indicated by the neighborhood rep-
resentation metric, ϑ(Z), the method should be especially
suited for low-dimensional problems and was developed
from this point of view. We have applied the algorithm on a
set of test functions with a maximum problem dimension

Input: Z1
Output: Z2

(1) m � n − |Z1|

(2) X � regsim(n, m − 1)

(3) [N, ∼ ] � QR([Z1]), [N0,K0] � QR([Z1 ∪ 0]), [NX,KX] � QR([X∪ 0])

(4) [ ∼ , e] � QR([NK0])

(5) Q � [K0N0] · [NXKX]⊤

(6) σ∗ � argmin
σ

V(σ · 1⊤m · e +
�����
1 − σ2

√
· Q · X)

(7) Z2 � [z1 . . . zn− |Z|] � σ∗ · 1⊤m · e +
������
1 − σ∗2

√
· Q · X

(8) return Z2

ALGORITHM 4: Simexpand.
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n � 8. All tested algorithms were initialized from the tra-
ditional starting point [54] and are run once provided that
theirexecution is otherwise entirely deterministic. 'e fol-
lowing benchmark procedure has been adopted, and the
results are presented in Table 3. 'e results as obtained with
4 different versions of the present algorithm have been
compared with those obtained with its closest competitors in
the context of derivative-free optimization, being ORBIT [31]
and NMSMAX. Since ORBIT outperforms the NEWUOA
algorithm (at least for small scale problems [31]), we did not
compare our algorithm with NEWUOA [34]. 'e details of
ORBIT are elaborated in the associated paper and are essen-
tially similar to the details of the presented algorithm when the
spherical trust-region framework is used and are apart from the
novel regular simplex-based sampling strategy. We used the
implementation made available at [55]. 'e NMSMAX algo-
rithm is a frequently practiced implementation of the Nelder-
Mead simplex method [19] and is made available in the matrix
computation toolbox [56]. 'e NMSMAX algorithm was
initialized with a regular simplex in accordance with the
present algorithm and is included as a benchmark.

Each algorithm was given a budget of 1000 function
evaluations. Since every test function has a known global
minimum, f∗, the tolerance of having a convergence of an
algorithm was 10− 6, i.e., f(xk) − f∗ < 10− 6. 'e internal
stopping conditions of each of the algorithms were set to 0 so
that an algorithm only stops when this benchmark condition
was satisfied or when it exceeded its evaluation budget.'ese
internal stopping conditions include the gradient condition
(9) and the minimal simplex size for NMSMAX. Only the
total number of function evaluations and the difference
between the final objective function value and the known
minimum are recorded. We did not consider the CPU time
and performance and data profiles that are gaining currency
in the optimization community [57, 58]. Since the focus of
the paper is primarily on the novelty of the sampling strategy
and the ellipsoidal trust-region framework, we reason that
the adopted approach was best-suited to illustrate the
elaborated methods.

Each algorithm was applied using its standard settings to
mimic the realistic practical usage. 'e only parameter that
was varied was the initial trust-region radius, or in case of the
NMSMAX algorithm, the size of the initial simplex. It
corresponds with an arbitrary uniform scaling of the original
optimization space, which is a standard practice when
performing optimization routines. 'e standard parameter
settings of the presented algorithm are given in Table 4, those
of each of the competing algorithms can be found in the
respective references.'e parameters present in Table 4 were
chosen via trial-and-error on a limited benchmark set.'ose
corresponding to the ORBIT algorithm were adopted from
that reference. For future development, a short description
of the influence of each parameter is included in table as well.

We have considered 4 different versions of the present
algorithm. Details about the numerical implementation are
given in the next subsection. 'ese 4 versions allow us to
study the separate effects of the two presented mechanisms,
namely the novel regular simplex-based sampling strategy
and the ellipsoidal trust-region mechanism. 'e different
versions are defined in Table 5 and are related to the values of
μ1 and μ2 from Algorithm 3 and (29), respectively. To study
the effects of the regular simplex-based sampling strategy
apart from the ellipsoidal trust-region framework, version
V1 can be compared with the ORBIT and NMSMAX al-
gorithm. Note that in this case, the interpolation set man-
agement is purely input space-oriented. To study the effect of
the ellipsoidal trust-region framework, version V2 can be
compared with respect to V1. Recall that in this case, the
shape of the trust-region is adapted to the output behavior of
the objective function. To study the effect of the novel
sampling strategy in combination with the ellipsoidal trust-
region, versions V2 to V4 can be compared. Note that when
parameter μ2 (29) is equal to 1, it corresponds with a
spherical trust-region framework. It is not possible to study
the behavior of the ellipsoidal trust-region framework in
combination with the sampling strategy of ORBIT, given
that this strategy does not assure that a better-than-linear
model is available every iteration.
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Figure 3: Illustration of a spherical trust-region and its isovolumetric ellipsoidal counterpart for the two-dimensional Rosenbrock function.
'e curvature was normalized using the exact Hessian. (a) Spherical trust-region. (b) Ellipsoidal trust-region.
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6.1. Numerical Implementation. All described procedures
were implemented in MATLAB R2017 computational envi-
ronment and run on a Dell Laptop with an Intel i7 CPU with
4 cores. All code is available at the GitHub repository in [59].
Some of the subproblems were solved using the available
implementations of routine in MATLAB. 'ese are docu-
mented next.

As mentioned in Section 4, once an affine subset was
determined using Algorithm 3, the available set of inter-
polation points was reconsidered to enhance the modelling
capabilities of the surrogate model. Additional points were
added as long as they did not corrupt the well-poisedness of
(14) and if the total amount of interpolation points did not

exceed the limit qM. A similar procedure is performed by
ORBIT and was adopted from that source code.

'e interpolation framework used here is that of
universal kriging. We employed the DACE toolbox to
obtain the modelling parameters as described in Section 3.
'is framework requires the user to define the lower and
upper limits of the hyperparameter β, β1, and β2, re-
spectively. More specifically, we used Gaussian RBFs for
the following reasons: they generally perform well and
exhibit nice interpolation properties that result in a
reasonably smooth optimization surface. Other kernels
could be considered as well, however, their influence
should be limited.

Table 3: Comparative results between 4 versions of the algorithms ORBIT and NMSMAX.

Name n
Total number of function evaluations Absolute difference to known minimum

V1 V2 V3 V4 ORBIT NMS V1 V2 V3 V4 ORBIT NMS
BEALE 2 28 25 32 42 419 63 5,75e-07 6,25e-09 3,10e-07 1,34e-07 5,16e-10 2,93e-07
BRANIN 2 24 25 32 36 53 56 1,10e-07 5,35e-07 7,60e-08 6,14e-07 1,10e-05 7,81e-07
ROSENBROCK 2 37 37 33 39 838 100 2,51e-07 9,56e-08 9,40e-07 1,69e-07 1,80e-03 3,71e-07
SCHWEFEL36 2 26 25 26 32 69 69 9,35e-07 4,29e-07 1,44e-07 7,43e-08 9,17e-07 4,39e-07
GULF 3 494 159 165 226 1000 389 3,29e-07 7,71e-07 1,84e-09 8,95e-07 2,66e+00 5,60e-07
HART3 3 52 46 49 69 348 129 9,98e-09 8,33e-07 7,14e-07 2,64e-08 3,91e-06 6,08e-07
HELIX 3 53 42 48 48 443 115 8,29e-07 5,97e-07 3,08e-07 4,50e-07 4,61e-04 4,31e-07
ROSENBROCK 3 77 68 80 88 1000 176 3,81e-07 4,41e-07 6,66e-07 1,18e-07 5,20e-03 5,12e-07
SCHWEFEL4 3 55 46 41 67 77 93 1,72e-07 7,98e-08 7,20e-07 1,81e-08 8,05e-07 7,07e-07
BROWNDEN 4 118 84 112 121 398 236 6,77e-07 9,34e-06 5,16e-06 3,44e-06 9,60e-06 9,77e-06
HART4 4 50 42 48 38 62 122 3,86e-07 2,78e-07 3,95e-07 2,94e-07 5,56e-07 8,85e-07
POWELL 4 201 92 104 148 615 366 6,77e-07 7,43e-07 8,85e-07 4,51e-07 6,01e-05 9,45e-07
ROSENBROCK 4 136 111 143 144 1000 332 8,67e-07 9,90e-07 3,10e-07 7,74e-07 2,75e-02 8,78e-07
SCHWEFEL4 4 63 61 62 74 112 156 2,46e-07 9,04e-07 5,55e-07 3,18e-07 9,25e-07 9,75e-07
WOOD 4 166 79 85 109 255 217 6,35e-07 5,16e-07 3,78e-07 2,13e-08 4,04e-04 7,57e-07
BIGGS 6 660 294 243 529 156 1000 7,54e-04 1,52e-07 9,65e-07 9,48e-07 6,60e-03 5,68e-05
HART6 6 104 116 95 107 139 179 5,63e-07 5,43e-07 5,23e-07 4,08e-07 8,21e-07 9,39e-07
ROSENBROCK 6 302 257 264 435 1000 818 3,02e-07 6,78e-07 8,09e-07 7,34e-07 7,22e-02 9,90e-07
SCHWEFEL4 6 124 116 111 169 173 221 8,37e-07 7,10e-07 2,38e-07 7,37e-07 9,47e-07 8,81e-07
TRID 6 405 206 205 194 399 541 6,30e-03 6,67e-07 2,77e-07 1,79e-07 6,90e-03 7,94e-07
WATSON 6 117 83 97 119 222 305 2,11e-07 8,63e-07 1,56e-07 4,16e-07 9,83e-07 7,21e-07
POWELL 8 168 135 139 151 225 410 7,61e-07 2,88e-07 5,77e-07 3,95e-07 1,00e-06 9,70e-07
ROSENBROCK 8 912 648 624 769 1000 1000 7,41e-07 7,25e-07 9,35e-07 8,96e-07 4,81e-01 2,75e-01
TRID 8 1000 648 585 778 1000 1000 1,10e-04 9,81e-07 8,49e-07 3,68e-07 3,53e-04 2,40e-03

Table 4: Standard settings of the algorithm.

θ1 1.25
Determines the set of points that is considered in algorithm 3. For θ1 � 1, all points must be inside the trust-region. For slightly
larger values, the nearby points are also considered. Large values will positively bias the volume so that even for poor set

distributions, the volumetric condition will be satisfied.
η1 0 Standard trust-region parameter. Adopted from [35].
η2 0.6 See η1
c1 0.5 See η1
c2 2 See η1
β1 10− 2 Lower-limit for the hyperparameters in the RBF framework. Determines how fast the RBFs decay. For normalized search space

and reasonably smooth objective functions, it was determined to be a good limit by trial-and-error.
β2 10− 1 Upper-limit for the hyperparameters in the RBF framework. See β1.
Δm 0 Minimal trust-region size. Determines the smallest focus the trust-region framework can have.
ΔM 3Δ0 Maximum trust-region size. Determines the largest focus the trust-region framework can have. Value was adopted from [31].

qM 100

Maximum number of points to be included in the RBF model. 'e value was chosen arbitrarily and worked well for relatively
low-dimensional problems.When the number is too large, the influence of far-away points may distort the local geometry of the
objective. Furthermore, the fitting and evaluating of the interpolationmodel becomes computationally challenging as a result of

hyperparameter optimization.
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Subproblem (3) was solved using the MATLAB function
fminsearchcon, an extension of the function fminsearch
made available on MathWorks File exchange [60]. Since
absolute CPU time was not considered, the solution pro-
cedure was executed until fully converged.

6.2. Discussion of Results

6.2.1. Benchmark Problems. By assessing the results dis-
played in Table 3, one can observe that, on the whole, the
proposed algorithm outperforms both NMSMAX and
ORBIT, disregarding some coincidental draws.

Considering that V1 outperformed ORBIT in all but one
occasion, we can conclude that the regular simplex-based
sampling strategy offers a significant advantage. One might,
however, argue that the increased implementational and
computational complexity of Algorithm 3 does not justify
the advantageous optimization setting in case that less
challenging optimization problems are considered. In none
of the benchmark problems did V1 outperform V2, V3, or
V4, indicating that engaging an ellipsoidal trust-region
framework is clearly a beneficial endeavor regardless, given
the low implementational cost. However, the downside is
that to obtain a curved model, a minimum of n + 2 points are
required, making the advanced regular simplex sampling
strategy indispensable.

Whether V2, V3, or V4 outperformed one another
depends on the objective function at hand. However, on the
whole, we could state that V2 is the better candidate for
lower-dimensional problems, whilst V3 is the better can-
didate for higher dimensional problems, as will be confirmed
in the next section. Also, considering the convergence
history of the different algorithms, it was noted that the
ORBITalgorithm occasionally stagnated on a local plateau of
the objective function. Since this behavior was also exhibited
by V1 (e.g., GULF, TRID; although V1 recovered each time),
it demonstrates that compensating for the output behavior
of the objective function by the input space-oriented sam-
pling strategy and by altering the shape of the trust-regions is
quintessential to recover from such apparent plateaus.

6.2.2. Extended Powell Singular and Extended Rosenbrock.
To demonstrate and comment on the mechanics of the
elaborated methods in greater detail, convergence results on
the 8-dimensional extended Powell singular and extended
Rosenbrock are presented in Figure 4 and discussed below.

Consider the convergence history for the extended
Powell singular function in Figure 4(a). We will initially
discuss the history of the algorithms V1, ORBIT, and
NMSMAX. All exhibit approximately the same convergence
behavior during the initial stage of the optimization (up to
100 function evaluations). After 100 function evaluations,

the NMSMAX algorithm clearly starts to diverge from this
trend. It is because of the fact that the NMSMAX algorithm
is bounded to operate on its vertices. At the common point
of approximately 100 function evaluations, it reaches a re-
gion where the simplex size needs to shrink sufficiently to
attain a size that is small enough to accurately grasp the local
curvature of the objective function. A similar phenomenon
is observed for the ORBITalgorithm, which starts to diverge
from the global trend approximately after 200 function
evaluations. 'e phenomenon occurs later for the ORBIT
algorithm since it is not bounded to operate on the vertices
of its standard simplex, and the solution of (3) is only limited
to the convex set, B(xk,Δk). 'erefore, it can maintain a
larger trust-region throughout the iterations than
NMSMAX. 'at algorithm V1 can maintain a larger trust-
region longer than ORBIT, and NMSMAX is a result of the
improved geometry of the interpolation points. Apart from
that, algorithm V1 too fails to reach the benchmark con-
dition within the admissible budget. Now, consider the
behavior of algorithm V2. 'e sampling strategy is equiv-
alent to that of V1, however, the modelling space is now
normalized with respect to the estimated curvature of the
objective function. It corresponds with an ellipsoidal trust-
region geometry in the original optimization space. 'e
effect is hardly observable during the initial stage but clearly
demonstrates its usefulness after approximately 500 function
evaluations, where V2 diverges from V1 and successfully
reaches the benchmark condition. It is argued that because
of the transformation, the modeling and optimization steps
of the algorithm are now executed in a space, where the
objective function behaves more as if it was a quadratic
function. 'e effect of the parameter μ1 can be assessed by
comparing V2, V3, and V4. 'e parameter determines how
strictly the volume of an exact regular simplex has to be
respected. It results in a larger number of interpolation
points to be added in every iteration. 'erefore, algorithm
V3 and V4 diverge from the common trend at about the
same moment V1 and ORBIT do. In this region of the
optimization space, the size of the trust-region (simplex)
starts to shrink for all algorithms. It means that less function
evaluations can be recycled from one trust-region to an-
other. Algorithms V3 and V4 set a stricter limit on the
volume of the simplex and are, therefore, forced to add more
points to complement the recycled set. As a result, they
consumemore function evaluations than V1 and V2 to cross
the same region. Nonetheless, this increase in function
evaluations benefits the overall modelling procedure, and V2
is surpassed by V3 eventually.

'ese observations are confirmed by the convergence
history for the extended Rosenbrock function, see
Figure 4(b). Here, the results are directly affected by the local
behavior of the objective function and all algorithms start to
diverge at the starting point. In this case, V1 does reach the

Table 5: Tested versions of the algorithm.

m1 0.5 0.75 1
m2 0.95 V2 V3 V4

1 V1
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benchmark condition, again illustrating the improved
scattering of points with respect to state-of-the-art. We
argue this is a result of the regular simplex based sampling
strategy. 'e beneficial effect of the ellipsoidal trust-region
framework is again clearly present as V2 to V4 converge
faster than V1. In conclusion, one can observe that the same
effect is present for V3 as was the case for the extended
Powell singular function. Function evaluations are con-
sumed at a higher rate in the initial stage. 'is phenomenon
ultimately benefits the modelling procedure in the final
optimization stage, resulting in a steeper convergence his-
tory and even the surpassing of V2 with respect to con-
vergence speed.

7. Conclusion

'is paper is about reducing the number of objective
function evaluations in derivative-free numerical optimi-
zation with surrogate models. Here, the radial basis func-
tions are considered to be surrogate models with the
interpolation framework provided by universal kriging. In
each iteration of an interpolation-based optimization al-
gorithm, a trust region can be used, wherein an optimization
is performed using the surrogate model. 'e interpolation
framework consists of using an interpolation set, of which, a
subset of interpolation points needs to be well-poised so that
the quality of the surrogate model is maximal. Interpolation
set management aims at maximizing this range of model
validity.

Currently, at least q � n + 1 interpolation points are
considered to guarantee a valid surrogate model. We ad-
vanced on interpolation-based optimization by relying on a
subset of at least q � n + 2 interpolation points within the

interpolation set management to improve the scattering of
the interpolation points, but more importantly, to have
surrogate models that exhibit curvature. For that purpose,
we defined fully linear surrogate models in Definition 1 that
can be incorporated in the trust-region Algorithm 2. We
implemented RBF models using a flexible multivariate in-
terpolation framework for which universal kriging was used
(see Section 3). In Lemma 1, we provide for a given RBF
model with linear tail, information on the boundedness of
the tolerance of the RBF model, objective function, and
information on their gradients, i.e., constants Lf and Lg in
Definition 1. In this manner, we are able to predict whether
an interpolation model can be classified as being fully linear.
Since we consider q � n + 2 interpolation points that rep-
resent a regular simplex (see Section 4.3), we propose in
algorithms 3 and 4 how the interpolation set management
needs to be adapted, i.e., how the input points that need to be
evaluated in the objective function need to be chosen.

By leveraging on the curvature of the surrogate model
that is valid in the presented interpolation set management,
we introduced an ellipsoidal trust-region framework that
allows morphed trust-regions that adapt to the objective
function geometry. 'is adaptation is implemented by
means of curvature normalization with coordinate trans-
formation (24) and filtered Hessian approximation (29). In
this manner, we allow to incorporate the output behavior of
the objective function in the shape of the trust-region.

'e proposed interpolation set management with proper
input of interpolation points that follow a well-poised ge-
ometry, together with the output behavior of the objective
function that is incorporated in the ellipsoidal trust-region,
have shown their benefits with respect to the reduction of the
number of objective function evaluations when performing
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Figure 4: Convergence history represented by the evolution of the best relative function value in the function of the total number of function
evaluations. (a) Extended Powell Singular, n � 8. (b) Extended Rosenbrock, n � 8.
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elaborate numerical optimizations on various test functions
with n≤ 8. To show the impact of internal parameters of the
algorithms, i.e., μ1 in Algorithm 3, which is related to the
input set, and μ2 in (29), which is related to the ellipsoidal
trust-region shape, the results of 4 different versions of the
presented algorithm are shown in Figure 4 and Table 3. 'e
results clearly illustrate the impact of the used input in-
terpolation points and the ellipsoidal trust region. Moreover,
the convergence histories show faster convergence com-
pared to algorithms incorporating at least n + 1 interpolation
points and compared to those that use a spherical trust-
region [61].

Appendix

A. Universal Kriging

'e universal kriging (UK) framework obtains an inter-
polating approximation model for the function
f: X ⊂ Rn⟶ f(X) ⊂ R as themost likely unbiased linear
predictor, m(x), based on a set of q interpolation pointsZ �

z1, . . . , zq􏽮 􏽯, zi ∈ X and a set of q function evaluations,
F � f(z1), . . . , f(zq)􏽮 􏽯. 'e framework presumes that the
modelled function f can be decomposed as follows:

f(x) � p(x) + w(x) � π(x)
⊤β + w(x). (A.1)

'e function p(x) is assumed to be an element of a linear
function space,A. In the UK framework, one is interested in
the specific case, whereA is the n-variate polynomial space,
Pn

d, of at most degree d spanned by the arbitrary basis,
􏽢P

n

d � π1(x), . . . , π􏽢d
(x)􏼚 􏼛. We further introduce the vector,

π(x), whose entries are determined by πi(x) so that we can
write p(x) � π(x)⊤β, where β ∈ R􏽢d is a unique coefficient
vector. It is further assumed that w(x) is an unbiased
random process and that the output values w(x) and w(z)

are correlated. 'eir correlation is modeled by a function
from the class of radial basis functions, i.e.,
corr(w(x), w(z)) � ϕ(‖x − z‖). One looks for an unbiased
linear predictor m(x) � η(x)⊤f , where the elements of F
determine the entries of f .

'e model decomposition can be applied to this vector f
so that one obtains f � Πβ + w. Here, the entries of w are
defined as w(xi) � f(xi) − p(xi) and the matrixΠ ∈ Rq×􏽢d as
Πij � πj(xi). Substitution in the linear predictor yields
m(x) � η(x)⊤Πβ + η(x)⊤w. Hence, we can define an error
function between the linear predictor and the true function
as follows:Δ(x) � m(x) − f(x) � (η(x)⊤Π − π(x)⊤)β+

(η(x)⊤w − w(x)).
We can now impose two additional properties on the

linear predictor that affect the error function Δ and that will
render the predictor unique. Firstly, the linear predictor
should be unbiased, which can be expressed as E[Δ] ≡ 0. It
follows that Π⊤η � π, and consequently, it follows that
Δ � η⊤w − w. Secondly, we wish to determine η so that the
expected squared error is minimized. Given that E[Δ] � 0,
the expected squared error can be defined as E[Δ2], and after
substitution of the error function, we obtain E[(w − η⊤w)2].
'e evaluation of the expectation operator determines that
the error is proportional to the functional

ϵ[η] � η⊤Φη − 2η⊤ϕ + 1, where matrix Φ ∈ Rq×q is defined
as Φij � ϕ(‖zi − zj‖), and the entries of ϕ(x) are determined
by ϕ(‖x − zi‖). 'e most likely unbiased linear predictor η is
thus the solution of the equality constrained variational
problem.

min
η,ξ

1
2
η⊤Φη − 2η⊤ϕ + 1( 􏼁 + ξ⊤ Π⊤η − π( 􏼁. (A.2)

'e expression of the first-order optimality condition
yields the system of linear equations given in (16).

According to the probabilistic interpretation of the
random process w(x), the function values in f can be as-
sociated with the outcome of a stochastic experiment.
Consequently, it is possible to associate a probability value to
the outcome of this experiment. If we make the additional
assumption that the random process w(x) itself behaves as a
Gaussian with the expectation μ � Πβ and covariance σ, the
probability of the experiment is given by,

P σ2􏼐 􏼑 � 2πσ2􏼐 􏼑
− n/2

det(Φ)
− 1/2

× . . .

· exp −
1
2
σ − 2

(f − μ)
⊤Φ− 1

(f − μ)􏼒 􏼓.

(A.3)

A maximum log likelihood estimation for the parameter
σ2 results in the following estimate: 􏽢σ2 � 1/n
(f − Πβ)⊤Φ− 1(f − Πβ). Now, assume that the correlation
model corr(x, z) still depends on the additional hyper-
parameter, say θ (e.g., ϕ(‖x − z‖; θ)). 'en, the optimal
parameter θ∗ can also be determined by maximizing the
likelihood.

θ∗ � argmin
θ

P 􏽢σ2􏼐 􏼑. (A.4)

B. Error Bounds on Better-than-Linear
RBF Models

Using the Einstein summation convention, we can write an
RBF model with linear polynomial tail as presented in (B.1).
Here, we have implicitly defined the error functions ef(x)

and e∇f(x). We are interested in the bounds on the values
these functions can take, given that the interpolation set,Z,
contains the origin and that both x and Z are contained
within the ball B(0,Δ).

m(x)≐ c + x⊤β + αjϕj(x) � f(x) + ef(x),

∇m(x)≐ β + αj∇ϕj(x) � ∇f(x) + e∇f(x).
(B.1)

Subtracting the left- and right-hand side expressions for
m(x) from the left- and right-hand side expressions of each
of the q> n + 1 interpolation conditions,
c + x⊤β + αjϕj(x) � f(xi), one obtains the following set of
equalities.

− x⊤β � f(0) − f(x) − αj ϕj(0) − ϕj(x)􏼐 􏼑 − ef(x)

zi − x( 􏼁
⊤β � f zi( 􏼁 − f(x) − αj ϕj zi( 􏼁 − ϕj(x)􏼐 􏼑 − ef(x)

⎧⎪⎨

⎪⎩
,

(B.2)
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of which the latter holds for all j> 0.
'ese inequalities can be manipulated so to relate the error

on the function value, ef(x), to the error on the derivative value,
e∇f(x). For that purpose, we shall first rewrite the functions
f(x) and ϕk(x) using the integral representationf(x) � f(zi)

+ 􏽒
x
zi
∇f(s)⊤ds. After substituting x(1 − t) + zit for s, it follows

that 􏽒
x
zi
∇f(s)⊤ds � − 􏽒

1
0 ∇f(x − t(zi − x))⊤(zi − x)dt. Now,

to make the derivative error function emerge, one can add
− αjx⊤∇ϕj(x) + x⊤∇f(x) to each side of the expressions.
Together with the left-hand side of (B.2) this expression
combines into e∇f(x). In the right-hand side, these expressions
can be included in the integrand since their value is constant
with respect to the integration variable and considering that the
integral is taken over the unit interval.

'ese manipulations allow to reorganize the equalities in
(B.2) and rewrite them in the function of the operators
Q[f](x) and Qi[f](x), which are defined as follows:

Q[f](x) � 􏽚
1

0
(∇f(x − tx) − ∇f(x))

⊤
(− x)dt

Qi[f](x) � 􏽚
1

0
∇f x + t zi − x( 􏼁( 􏼁 − ∇f(x)( 􏼁

⊤ zi − x( 􏼁dt

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

,

(B.3)

and in the function of the error functions, ef(x) and e∇f(x)

are given by the following:

− x⊤e∇f(x) � Q[f](x) − αkQ ϕk􏼂 􏼃(x) − ef(x),

zi − x( 􏼁
⊤e∇f(x) � Qi[f](x) − αjQi ϕj􏽨 􏽩(x) − ef(x),

⎧⎪⎨

⎪⎩

(B.4)

of which the latter holds for all j> 0.
Introducing the operator, δQi[f](x) � Qi[f]

(x) − Q[f](x), and subtracting the first equation from the
others yields the final expressions,

z⊤i e∇f(x) � δQi[f](x) − αkδQi ϕk􏼂 􏼃(x),∀i> 0. (B.5)

Considering that Z ⊂B(0,Δ), it can be shown that the
right-hand side is bounded by (see [40, 62]),

Q[f](x) − αjQ ϕj􏽨 􏽩(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤
1
2

cf + cϕ􏼐 􏼑Δ2,

Qi[f](x) − αjQi ϕj􏽨 􏽩(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ 2 cf + cϕ􏼐 􏼑Δ2,

δQi[f](x) − αjδQi ϕj􏽨 􏽩(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
5
2

cf + cϕ􏼐 􏼑Δ2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B.6)

where cf and cϕ are the Lipschitz constants of the functions
∇f(x) and αk∇ϕk(x), given that x ∈B(0,Δ).

'e combination of the equations in (B.5) yields a bound
on the derivative error function in the function of the in-
terpolation points contained in Z.

z⊤1

⋮

z⊤q

������������������

������������������

e∇f(x)
�����

�����,

� ‖Z‖ e∇f(x)
�����

����� ≤
5
2

������������

q − 1 cf + cϕ􏼐 􏼑

􏽱

Δ2.

(B.7)

Since we already established a relation between both
error functions in (B.5), the bound above allows one to
determine a bound on ef(x) as well, which is given by the
following:

ef(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
1
2

cf + cϕ􏼐 􏼑Δ2 +
5
2

����
q − 1

􏽰
‖Z‖

− 1
cf + cϕ􏼐 􏼑Δ3. (B.8)

Now, upon introducing the scaled interpolation matrix
Δ‖􏽢Z‖ � ‖Z‖, we have established Taylor-like bounds on both
the error value functions that are related to the inverse value
of ‖􏽢Z‖. 'ese bounds are, in fact, solely determined by the
interpolation set geometry.

e∇f(x)
�����

����� ≤
5
2

����
q − 1

􏽰
‖􏽢Z‖

− 1
cf + cϕ􏼐 􏼑Δ

ef(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
5
2

����
q − 1

􏽰
‖􏽢Z‖

− 1
+
1
2

􏼒 􏼓 cf + cϕ􏼐 􏼑Δ2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(B.9)

C. Some Simplex-Related Defenitions

Consider a set of n + 1 points Z � z0, . . . , zn􏼈 􏼉 associated
with a set of coordinates in an n dimensional space. Assume
that these points are linearly independent so that the column
vectors z1 − z0, . . . , zn − z0􏼈 􏼉 are linearly independent. A
simplex is, therefore, the n-dimensional generalization of a
triangle. In simplex terminology, one has that each point
from Z determines a vertex, each couple of vertices de-
termines an edge, and each subset of n vertices determines a
face. 'us, an n-simplex has n + 1 vertices, n(n + 1)/2 edges,
and n + 1 faces. Conveniently, it follows that each face of an
n + 1-simplex constitutes an n-simplex itself.

According to the general convention, when speaking of
the n-simplex that is determined by Z, one refers to the
convex set determined by S.

S � 􏽘
n

i�0
θizk| 􏽘

n

i�0
θi � 1∧θi ≥ 0,∀i

⎧⎨

⎩

⎫⎬

⎭. (C.1)

Now, as it may be inconsistent with this general con-
vention, in this work, we refer to the set of vertices Z when
speaking of the simplex. However, when we speak of the
hypervolume of that simplex, we do, in fact, refer to the
hypervolume of the convex set, S.
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'e volume V of the simplex determined byZ is defined
as the determinant of the associated column vector matrix
[Z] normalized by the factor n!.

V(Z) �
1
n!
det([Z]), (C.2)

where the operator [.] is defined as [Z] � z1 − z0􏼂 · · ·zn − z0].
In the following subsection, we mention some relevant

simplex geometries and properties.
Orthocentric Simplex. A simplex for which the following

holds are called orthocentric simplices: each edge is per-
pendicular to all the edges it does not meet [63]. Ortho-
centric simplices possess a unique orthocenter. In the special
cases where n≤ 2, every set of points that determines a
simplex is orthocentric as well.

In [50], it is shown that an orthocentric simplex max-
imizes the volume satisfying a predetermined orthocenter, o,
and distances from the simplex vertices to the orthocenter
di � ‖zi − o‖. 'ese conditions determine the simplex, Z,
within an isometry. It is this very property that we exploit to
maximize the volume of the union of an existing set and an
expansion set generated by the procedure Simexpand, Al-
gorithm 4.'e expansion set is constructed exactly so that all
of its edges are perpendicular to the edges determined by the
existing set. Given the freedom of the edge lengths, albeit
that the union of existing and expansion set is restricted to
an n-sphere, these are determined so to maximize the
volume.

Standard Simplex. A standard n-simplex is obtained
when n of its edges are orthogonal and have the same length,
l. A convenient coordinate representation of a standard
n-simplex is given by the origin, 0, and the scaled coordi-
nates of the n basis vectors, lei. It is easily verified that the
n(n − 1)/2 nonorthogonal edges have length

�
2

√
l.

We also note that the standard simplex is not an
orthocentric simplex.

Regular Simplex. A regular n-simplex with side length l is
obtained when all edges have the same length. From this
definition, it follows immediately that any subset of m + 1
points from that simplex determines a regular m-simplex.

If we consider all simplices Z whose vertices are con-
tained within an n-hypersphere with radius Δ, it can be
shown that if a simplex’s volume is maximized, it is an
element from the class of regular simplices [63]. Moreover, it
can be shown that the regular simplex is an orthocentric
simplex.

It is worth mentioning that a regular n-simplex is em-
bedded in a standard n + 1-simplex as the face determined
by the n(n + 1)/2 nonorthogonal edges of the standard
n + 1-simplex. 'e edge length of a regular n-simplex that is
embedded in a standard n + 1-simplex with an orthogonal
edge length, l, is

�
2

√
l in accordance with the nonorthogonal

edge length of a standard simplex, with an edge length l as
determined above.

Volume of the Regular n -Simplex. Let Vs
n(l) be the

hypervolume occupied by the standard n-simplex with an
orthogonal edge length l. Following the definition given in
(C.4), it is easily verified that Vs

n+1(l) � 1/(n + 1)!ln+1. Now,

consider that the face determined by all the nonorthogonal
edges of the standard n + 1-simplex constitutes a regular
n-simplex. 'e distance from the intersection of the or-
thogonal edges, i.e., origin 0 according to the coordinate
representation in C.2, to the face that determines the regular
n-simplex is given by

�����
n + 1

√
/n + 1l. Since the hypervolume

of a standard n-simplex can also be determined using the
definition of the hyperpyramid, i.e., by multiplying the
hypervolume of one of its faces with the corresponding
altitude divided by n, the hypervolume of the regular
n-simplex Vr

n(l) can be determined. Recall that the edge
length of the regular n-simplex determined by the non-
orthogonal edges is

�
2

√
l and that, therefore, the result must

be scaled by a factor
��
2n

√
.

1
n + 1

·

�����
n + 1

√

n + 1
l · V

r
n(

�
2

√
l) � V

s
n+1(l),

⇒V
r
n(l) �

�����
n + 1

√

n!

l
n

��
2n

√ .

(C.3)

Radius of the Circumscribed n-Sphere. 'e radius,
rn(l), of the n-sphere circumscribing a regular n-simplex
with side length l can be determined reconsidering the
geometric relations between a standard n + 1-simplex
and a regular n-simplex described to determine the
hypervolume. In a regular n-simplex, the distance be-
tween the unique orthocenter and a vertex is equal to the
radius of the circumscribed n-sphere. It holds that the
altitude of the face determined by the nonorthogonal
edges and one of the orthogonal edges of the standard
n + 1-simplex constitute a right triangle with the or-
thocenter of the associated regular n-simplex and a
common vertex. Note that again the edge length of this
n-simplex is

�
2

√
l and that, therefore, the result must be

scaled with by a factor
�
2

√
.

l
2

� rn(
�
2

√
l)
2

+
1

n + 1
l
2⇒rn(l) �

�
n

√

�����
n + 1

√
l
�
2

√ . (C.4)

Hence, the side length, ln(Δ), of the regular n-simplex
inscribed in an n-sphere with radius Δ is given by
ln(Δ) �

�
2

√ �����
n + 1

√
/

�
n

√
Δ.

Other Useful Relations. From these results, we can derive
some other equalities that are of interest for the procedure
Simexpand described by Algorithm 4.

'e radius of the circumscribed m-sphere of a regular
m-simplex that is part of a regular n-simplex circumscribed
by an n-sphere with radius Δ is given by the following:

r
n
m(Δ) � rm ln(Δ)( 􏼁 �

��������
m(n + 1)

(m + 1)n

􏽳

Δ. (C.5)

Hence, the distance, dn
m(Δ), from the orthocenter of the

regular n-simplex to a subset of m + 1 vertices determining
such a regular m-simplex can be determined considering
that,

Δ2 � d
n
m(Δ)2 + r

n
m(Δ)2⇒d

n
m(Δ) �

��������
n − m

(m + 1)n

􏽲

Δ. (C.6)
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'is relation can be generalized. Consider, therefore, a
regular m-simplex embedded in an n-dimensional space and
inscribed in an n-sphere with radius Δ. Its edge length must
then be lm(Δ). Now, if one would translate this m-simplex
along any direction perpendicular to the m-dimensional
subspace spanned by its edges over a distance σΔ, this
m-simplex remains on the surface of the n-sphere as long as
it is scaled by a factor

�����
1 − σ2

√
Δ.
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[54] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, “Testing un-
constrained optimization software,” ACM Transactions on
Mathematical Software, vol. 7, no. 1, pp. 17–41, 1981.

[55] S. Wild and R. Regis, “Bound-constrained orbit for matlab,”
https://http://www.mcs.anl.gov/wild/orbit/.

[56] N. J. Higham, “'e matrix computation toolbox,” https://
www.ma.man.ac.uk/higham/mctoolbox.

[57] E. D. Dolan and J. J. Moré, “Benchmarking optimization
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