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Prior to the construction of most engineering projects, earthwork is a complex and time-consuming task, requiring iterative
operations in civil engineering. .e effectiveness of earthworks determines the cost of many AEC (architecture, engineering, and
construction) projects (e.g., road, embankment, railway, and slope engineering). As a result, creating effective earthwork planning
is critical. .e earthwork allocation problem is simplified in this study to the vehicle route problem (VRP), which is often studied
in the field of transportation and logistics. An optimization model for the earthwork allocation path based on the modified genetic
algorithm with a self-adaptive mechanism is developed to work out the global optimal hauling path for earthwork..e findings of
the study are also used to shape the basic topographic shape of the Winter Olympic Skiing Course Project. Furthermore, a
comparative study with the former methods is conducted to validate the performance of our proposed method on tackling such a
multidepot two-echelon vehicle routing problem. Because of its flexibility, this optimization model is extremely compatible with
various evolutionary methods in many fields, making future development viable and practicable.

1. Introduction

Earthwork allocation is a substantial and repetitive task
required for the majority of AEC (architecture, engineering,
and construction) projects [1, 2]. Earthwork is the process of
leveling or shaping the ground in a target area by moving or
handling the geological materials that make up the target
area. .is geological material allocation usually includes
excavation, loading, handling, unloading, and compaction
operations in different areas. Sometimes it may also include
some intermediate steps, such as material mixing or pro-
cessing [3, 4]. Because of the complexity of earthwork ac-
tivities, the volume of work is large and often accounts for
more than 50% of the total project cost [5]. In particular,
among the above steps, transporting geotechnical materials
from one location to another is in most cases the most
expensive [6, 7]. Since earth distribution is usually a con-
tinuous and repeatable iterative process, finding an effective
technical approach to rationalize the earth deployment path

can yield significant economic benefits, such as reduced fuel
consumption or carbon emissions [1, 8].

Earthwork allocation is essentially an extended appli-
cation of the vehicle path problem (VRP). VRP is a com-
binatorial dynamic planning problem that seeks to utilize a
fleet of vehicles, such as trucks, to serve a certain number of
customers with different cargo requirements under certain
constraints, such as the delivery time or load capacity of
nominated vehicles [9, 10]. It primarily refers to a set of
issues in which an ideal route for a fleet of vehicles based on
one or more depots may be identified for a number of
geographically separated consumers [11, 12]. Figure 1
represents the schematic diagram of a single-depot VRP.
.e vehicle route problem, first proposed by Dantzig and
Ramser in 1959 [11], is a critical problem in transportation
and logistics. Since its inception, the problem has piqued the
interest of experts and researchers, and it has aided the
development of transportation, aviation, navigation, com-
munications, electric power, computer science, and other
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fields in some ways. .e VRP, on the other hand, is a
nondeterministic polynomial hard (NP-hard) problem that
cannot be solved in polynomial time. In other words, given
the existing knowledge, it is impossible to find the exact
answer to the problem, or it will take ages to find the exact
solution. It is especially true when the task is large-scale. As a
result, the current research has changed from finding the
perfect answer using an exact algorithm to finding a better
solution using a heuristic approach.

.e frequently used heuristic algorithms are the genetic
algorithm (GA) [13–16], ant colony algorithm (ACA) [17–19],
particle swarm optimization algorithm (PSOA) [20–23],
simulated annealing algorithm (SAA) [24–26], tabu search
algorithm (TSA) [27–29], differential evolution algorithm
(DEA) [30], and so on. ACA is adept at path planning
problems, in particular, ACA shows great robustness in
solving the traveling salesman problem [31]. However, ACA
requires a large amount of computation because it usually
requires all ants to choose the same route, which is the optimal
line. In practical calculation, it is difficult to achieve this
situation under a given number of cycles [32]. SAA is uni-
versal and robust, which is suitable for parallel processing and
complex nonlinear optimization problem, nevertheless, it also
relies on higher computation resources and longer computing
time [33]. PSOA and TSA are the opposite, it has fast con-
vergence speed, however, it is easy to produce premature
convergence problem, especially in dealing with complex
multipeak search problems [33, 34]. DEA and GA are evo-
lutionary algorithms. DEA ismodified fromGAby improving
the mutation operation to accelerate its convergence speed
[35], however, fast convergence speed may lead to a pre-
mature problem when the initial population is small [36].

In this paper, GA is adopted to study the earthwork
allocation path problem as it is one of the earliest algorithms
to be applied to the field of transportation [37]. Furthermore,
research demonstrates that GA is well-suited to handling
NP-hard issues, including various variables, parameters,
objectives, and weak connectivity across different areas
[38, 39]. GA can also record numerous solutions at once, and
the simultaneous optimization process for multiple solu-
tions can be used to solve multiobjective optimization
problems [39]. Furthermore, GA has a better universality
and compatibility, which allows for further improvement
when combined with other heuristic algorithms [40].

.erefore, this paper focuses on the vehicle route
problem to refine the earth allocation problem based on the
genetic algorithm. In reality, earth allocation may include
multiple vehicle replenishment centers (depots), multiple
cutting fields (distribution centers), and multiple filling
fields (customers) distributed geographically in a certain
range of areas. Before reaching its mileage restriction, each
vehicle must return to any replenishment site to refuel.
Furthermore, fuel usage varies depending on whether the
truck is empty or loaded. Furthermore, each excavation area
has a maximum amount of earthwork it can generate.
Hence, an excavation area cannot contribute a limitless
amount of earthwork to its neighboring filling regions.
When the earthwork from their nearest excavation location
is depleted, those filling regions must choose another
suitable excavation place to furnish the earthwork. In light of
the aforementioned restrictions, the goal of this work is to
maximize the number of sent trucks and the overall fuel
usage throughout the shipping distance. Accordingly, this
paper made the following contributions:

(1) .is paper constructs a complicated multidepot two-
echelon vehicle routing problem (MD-TEVRP) and
provides a many-to-many recursive pairing solution
based on the genetic algorithm.

(2) A self-adaptive mechanism is designed to control the
crossover and mutation rate to manipulate and
maintain the diversity of the generated population,
which can prevent the local convergence problem
and provide robust performance.

(3) .e proposed method demonstrates great perfor-
mance in the case study and comparative study,
which provided guidance for the construction of the
skiing courses of the Beijing Winter Olympic Games
Skiing Center in Yanqing, Beijing.

2. Model Formation

2.1. Problem Description. .is paper assumes that the
earthwork working sites are divided into 4 parts, i.e., the
replenishment centers, the cutting fields, the filling fields,
and the paths. .e replenishment centers, denoted as j ∈ J,
are defined as the depots where engineering vehicles (in this
paper, dump trucks are mainly considered) can get refueled

VRP
Depot

Customer
Customer

Depot

Figure 1: Schematic diagram of a single-depot VRP (also see in [6]).
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or repaired. Each replenishment center is able to accom-
modate Ij dump trucks that can provide stable and nonstop
hauling services at each dispatch, which means these dump
trucks will not stop transporting earthworks from the cut-
ting fields to the filling fields until they exhaust all fuel
capacity. To this point, earthwork allocation can be regarded
as an extension of the vehicle route problem (VRP) with the
purpose of transporting the earthwork from several specific
places to other different appointed locations. .e planning
key of earthwork allocation is to transport the required
amount of earth volume from the cutting field k ∈ K and
distribute them according to the different earthwork needs
of the filling fields g ∈ G. To simplify this problem, this paper
defines the volume of earthwork to be excavated in the kth
cutting field as the number of fully loaded dump trucks bk

needed to transport away all the dredged earth. Similarly, the
volume of earthwork needed in the gth filling fields demands
cg fully loaded dump trucks to unload the earth. It is notable
that the earthwork from all cutting fields should be not less
than the earthwork needed in all filling fields, namely,


k∈K

bk ≥ 
g∈G

cg, ∀k ∈ K, ∀g ∈ G,
(1)

where bk is the total number of fully loaded dump trucks
needed to haul all earthwork in kth cutting field, and cg is the
total number of fully loaded dump trucks needed to fill the
gth filling field.

As illustrated in Figure 2, an empty-laden truck is dis-
patched from the jth replenishment centers to the kth cutting
field after fully loading with earth and rocks. .is truck will
move to the gth filling field and unload the earth and rocks.
Depending on its fuel capacity, this truck can either return to
one of the replenishment centers to get refueled (in this case,
this path for this truck is called one-way path) or head to one
of the cutting fields to get loaded again and repeat the
earthwork hauling work between the cutting fields and the
filling fields (in this case, the path for this truck is called
multiway path). In this paper, the maximum mileage of a
truck is dynamic based on how often it is fully loaded during
each dispatch, i.e., each truck has its own maximum fuel
capacity lij, and thus, a fully loaded truck will consume more
fuel at each unit hauling distance, and the more frequent it is
fully loaded, the less mileage it can guarantee. Practically,
earthwork allocation is repetitive, and thus, a multiway

transportation path planning for each dump truck is in-
dispensable. On the basis of not exceeding the mileage limit,
it is required that a minimum number of dispatched trucks
and a global minimum hauling distance are derived ac-
cordingly to achieve a minimum fuel consumption for the
least carbon emission.

2.2. Objective Model and Constraints. According to the
problem illustrated above and the schematic diagram shown
in Figure 2, our objective is to find the shortest overall
hauling distance and achieve the lowest fuel consumption.
.erefore, the objective model can be formulated as follows:

minZ � 
j∈J


i∈Ij


k∈K


g∈G

α dijkXijjk + digkUijgk + digjVijgj  + βdikgYijkg ,

(2)

where dijk is the hauling distance of the i
th dump truck from

the jth replenishment center to the kth cutting field, dikg is the
hauling distance from the kth cutting field to the gth filling
field, digk is the hauling distance from the gth filling field to
the kth cutting field, and digj is the hauling distance from the
gth filling field to the jth replenishment center. α and β are the
average fuel consumption per unit distance of each dump
truck at no load and full load, respectively. Xijjk, Yijkg, Uijgk,
and Vijgj are binary decision variables.

Equation (2) is the objective function that consists of two
parts. .e first part is the total fuel consumption of all dump
trucks at no load. To be specific, αdijkXijjk indicates the fuel
consumption of the ith dump truck at the jth replenishment
center dispatched from the jth replenishment center to the
kth cutting field, αdigkUijgk is the fuel consumption upon
traveling from the gth filling field back to the kth cutting field
at no load, and αdigjVijgj represents the fuel consumption
coming from the gth filling field back to the jth replenishment
center at no load. .e second part is the total fuel con-
sumption of all dump trucks at full load, specifically re-
ferring to the sum fuel consumption hauling from the kth
cutting field to the gth filling field.

In addition, the objective function in (1) should be
subjected to the following constraints:


i∈Ij


k∈K

Xijjk ≤ aj, ∀i ∈ Ij, ∀j ∈ J, ∀k ∈ K,
(3)


j∈J


i∈Ij


g∈G

Xijjk + Uijgk ≥ bk, ∀i ∈ Ij, ∀j ∈ J, ∀k ∈ K,∀g ∈ G,
(4)


j∈J


i∈Ij


k∈K

Yijkg ≥ cg, ∀i ∈ Ij, ∀j ∈ J, ∀k ∈ K,∀g ∈ G,
(5)


k∈K


g∈G

dijk + digk + dikj α + dikgβ ≤ lij, ∀i ∈ Ij, ∀j ∈ J,∀k ∈ K,∀g ∈ G, (6)
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k∈K

bk ≥ 
g∈G

cg, ∀k ∈ K, ∀g ∈ G,
(7)

Xijjk ∈ 0, 1{ }, ∀i ∈ Ij, ∀j ∈ J, ∀k ∈ K, (8)

Yijkg ∈ 0, 1{ }, ∀i ∈ Ij, ∀j ∈ J, ∀k ∈ K,∀g ∈ G, (9)

Uijgk ∈ 0, 1{ }, ∀i ∈ Ij, ∀j ∈ J,∀k ∈ K,∀g ∈ G, (10)

Vijgj ∈ 0, 1{ }, ∀i ∈ Ij, ∀j ∈ J, ∀g ∈ G, (11)

where aj is the total number of available dump trucks at the
jth replenishment center. (3) represents that the dispatched
dump trucks from each replenishment center should not
exceed the maximum number of available dump trucks
parked in each replenishment center. Equations (4) and (5)
determine that the number of dump trucks sent to each
cutting field and each filling field should satisfy the earth-
work hauling need. Equation (6) indicates that the maxi-
mum hauling distance of each dump truck is constrained by
its own maximum fuel capacity. Equation (7) indicates that
the earth volume in all cutting fields must not be less than
that in all filling fields, otherwise, the filling need will not be
satisfied. Equations (8) to (11) are the decision variables to
control the hauling path of each dump truck.

3. Adaptive Genetic Algorithm

.e proposed earthwork allocation problem can be regarded
as an MD-TEVRP, which is a many (dump trucks in the
replenishment centers)-to-many (filling fields) matching
problem, considering the transfer stations (cutting fields).
.e MD-TEVRP is an NP-hard question [41], and thus, this
paper proposed an adaptive genetic algorithm to determine
the optimal solution.

.e genetic algorithm is a heuristic algorithm that is
based on the “Survival of the Fittest” and “Natural Selection”
theories. Figure 3 depicts the process and technique by
which randomly created individuals compete with one
another and form new generations using self-adaptive
crossover and mutation strategies. When the system con-
verges to a stable solution in the final phase, it signifies that
the optimal solution has been discovered.

3.1. Generation of Initial Population. Based on the dynamic
planning theory, the Floyd algorithm is used to calculate the
shortest distance between the arbitrary points i and j in the
original spatial weight matrix [42]. .e Floyd algorithm
seeks a third point k between the points i and j by comparing
the distances from i to j directly and from i to j via k. If the
latter distance is shorter, the path i-k-j is updated as the
shortest distance between the points i and j. .erefore, the
recursive process of the Floyd algorithm can be expressed as
follows:

d
k
ij � min d

k−1
ij , d

k−1
ik + d

k−1
jk . (12)

By deriving the shortest distance between each point via
(4), the next step is to find the optimal path for the many-to-

jth Replenishment center

kth Cutting field

gth Filling field

dijk

digj

digk dikg

Figure 2: Schematic diagram of earthwork allocation (the dash lines indicate that the trucks have two options depending on their mileage
limitation. .ey can either return to a replenishment center or head to a cutting field to reload).
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many problem described in Section 2. As depicted in Fig-
ure 3, the next step is to determine the coding of the initial
population.

Assume that there are N units (chromosomes) in each
generation, and each chromosome contains two parts: one is
the feasible solution, while the other is the fitness value.
.erefore, the information of a chromosome can be stored
in a 1 × 2 Cell Array. According to the proposed model, the
coding for the first element in the array can be designed as a
(g∈Gcg) × 7 matrix to store the information of a feasible
solution. .e formation of this matrix is generated by our
proposed many-to-many algorithm, as seen in Table 1.

To be more specific, if the dump truck was assigned a
one-way path because of its mileage limit, the one-way path
solution can be expressed as a 1 × 7 matrix that contains the
following information (see Table 2):

Similarly, a multiway path viable solution can be
expressed in a x × 7 matrix shown in Table 3. It is noticeable

that the final retuning replenishment center should be the
same as the departure one.

.e second element of the array records the fitness value
of each chromosome, which stores the sum of the total fuel
consumption of all dispatched trucks in the corresponding
feasible solution.

3.2. Roulette Select. Roulette selection is to determine some
better individuals from the paternal chromosome based on
the fitness value associated with the paternal chromosome.
.e smaller the fitness value, the more likely the corre-
sponding chromosome is to be inherited. In addition, the elite
strategy was adopted for the offspring generated after the
above random operation, in which the best feasible solution of
the parent gene was retained and the worst feasible solution of
the offspring was replaced by the best feasible solution of the
parent. .e fitness value is defined as follows:

Spatial Weight Matrix

Path Matrix and
Distance Matrix

Initial Population

Roulette Selection

Is convergence
criterion satisfied?

Crossover

Mutation

Optimal Solution

Floyd Algorithm

No

Yes

Self-adaptive
Mechanism

Figure 3: Flow chart of the adaptive genetic algorithm.

Mathematical Problems in Engineering 5



fn �
1

j∈Ji∈Ij
k∈Kg∈G α dijkXijjk + digkUijgk + digjVijgj  + βdikgYijkg 

, n ∈ N. (13)

.e probability of selecting each unit from the pop-
ulation is calculated as

pn �
fn

n∈Nfn

. (14)

3.3. Crossover. In this model, the individual pairs of chro-
mosomes can intersect with each other according to the
crossover rate defined in (8), i.e., a certain rate of individual
pairs can exchange their cutting fields and recalculate their

overall mileage and fitness value thereafter. .e crossover
rate is self-adaptive according to the proportion p of the
ratio of current optimal individuals to the whole population
size. ω is the allowable peak crossover rate, and thus,
CR ∈ [0,ω]∀p ∈ (0, 1].

CR � ω log50(50p). (15)

Specifically, if the crossover rate is satisfied, the nth unit
will swap its cutting field with the (n+N/2)th unit. .e al-
gorithm is presented in Table 4.

Table 1: Algorithm for generating initial population.

#pseudocode
Load node information;
Load distance information D and path information P from Floyd algorithm;
for each unit n ∈ N

for each cutting field k ∈ K

if bk − j∈Ji∈Ij
g∈G(Xijjk + Uijgk)≥ 0

if aj − i∈Ij
k∈KXijjk ≥ 0

Randomly select a replenishment center j ∈ J;
end if
if cg − j∈Ji∈Ij

k∈KYjkg ≥ 0
Randomly select a filling field g ∈ G;

End if
End for
Construct a one-way path solution S as shown in Table 1;
While k∈Kg∈G[(dijk + digk + dikj)α + dikgβ]< lij

S(: , 6)←0, S(: , 2)←x and append 1 row⟶ S;
End while

End for

Table 2: An example of a one-way path feasible solution.

1 0 2 4 6 8 1
Indexing the
number of
dispatched dump
trucks

Indexing it is a
one-way path

solution

.e serial number of
the departure

replenishment center

.e serial
number of the
cutting field
arrived at

.e serial
number of the
filling field
reached

.e serial number of
the returned

replenishment center

.e total distance
the truck travels
in the current

dispatch

Table 3: An example of a multiway path feasible solution.

Indexing the
number of
dispatched
dump trucks

Indexing how
many runs the
current truck

travels

.e serial number of
the departure

replenishment center

.e serial
number of the
cutting field
arrived at

.e serial
number of the
filling field
reached

0 if the dump trucks can
continue shipment, otherwise
indexing the serial number of
the returned replenishment

center

.e distance
the truck
travels in
each run

1 1 2 5 6 0 5
1 2 4 7 9 0 10
. . .

1 x 3 2 5 2 14
2 1 2 5 6 0 5
2 2 4 7 9 0 10
. . .

2 x 3 2 5 2 14
. . .
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Equation (8) is an increasing logarithmic function
subjected to the proportion of the current optimal indi-
viduals. .e shape of (8) is demonstrated in Figure 4. As
indicated, as the number of optimal individual increases,
the crossover rate will rise to increase the population di-
versity to avoid premature problem. It is noticeable that
when p is larger than 0.02, the crossover rate and the
mutation rate will become positive. p is the proportion of
the current optimal individuals to the whole population. In
this case, we assume that only when the proportion of
optimal individuals is larger than 2%, the self-adaptive
mechanism will work and start to manipulate the diversity
of population. Otherwise, the algorithm will let the nature
take its course.

3.4. Mutation. In the mutation stage, this paper mainly
carries out the variation operations on the fourth element
(cutting fields) of the first array. Specifically, this paper will
replace the cutting field with another available one with the
remaining earth volume required to be transported, which
can achieve a shorter hauling distance from the replen-
ishment centers to the filling fields on this single run.
.erefore, it is necessary to ensure that the amount of
earthwork in the cutting fields is not less than that in the
filling fields when modeling, so that it can provide re-
dundant earth volume in the cutting fields for variation.
After mutation, the path length traveled by the dump
trucks and the corresponding fitness value of the entire
feasible solution will be updated again. .e mutation rate is

Table 4: Algorithm for crossover.

#pseudocode
For each unit n ∈ N/2
if random(0, 1)≤CR

S(n , 4)⇄S(n + N/2 , 4);
end if
Recompute fn � 1/j∈Ji∈Ij

k∈Kg∈G[α(dijkXijjk + digkUijgk + digjVijgj) + βdikgYijkg];
end for
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Figure 4: Logarithmic functions with a base of 50.

Table 5: Algorithm for mutation.

#pseudocode
For each unit n ∈ N

if random(0, 1)≤MR

Kremain � find available cutting fields with remaining earth volume inK;
for kremain ∈ Kremain

S(n , 4)←kremain;
Recompute fn � 1/j∈Ji∈Ij

k∈Kg∈G[α(dijkXijjk + digkUijgk + digjVijgj) + βdikgYijkg];
end for
fmin k

n � min(f
kremain
n );

S(n , 4)←min k;
end if

end for

Mathematical Problems in Engineering 7



also controlled by a self-adaptive mechanism as (16), where
χ is the maximum mutation rate, which ensures
MR ∈ [0, χ]∀p ∈ (0, 1].

MR � χ log50(50p). (16)

As displayed in Table 5, the mutation algorithm aims to
find the best cutting field to achieve a lower fitness value for

0 1000 2000 3000 4000 5000

31000

31500

32000

32500

33000

33500

34000

34500

Generation

Figure 5: High diversity of optimal solutions at each generation.

(a) (b)

(c) (d)

Figure 6: Skiing courses of the Beijing Winter Olympic Games Skiing Center in Yanqing District. (a) Real map of the skiing courses.
(b) Distribution plan of the skiing courses. (c) BIM map of the G1 and D2 skiing courses. (d) Schematic diagram of the transportation
network between the two depots, G1 and D2 skiing courses.

8 Mathematical Problems in Engineering



Ta
bl

e
6:

N
od

e
in
fo
rm

at
io
n.

Re
pl
en
ish

m
en
t

ce
nt
er
s

C
ut
tin

g
fie
ld
s

Fi
lli
ng

fie
ld
s

N
od

e
1

2
3

4
5

6
7

8
9

10
11

12
N
um

be
r
of

ve
hi
cl
es

40
30

83
5

78
5

73
2

28
0

26
0

33
0

30
0

25
0

33
4

22
4

Mathematical Problems in Engineering 9



each run. Once the mutation rate is satisfied, the algorithm
will find all available cutting fields that can replace the
original one and select the one with the least fitness value
among all the alternatives.

.e adaptive mechanism in the mutation stage is similar
to that in the crossover stage, which aims to enlarge the
diversity of the population and prevent a premature prob-
lem. As shown in Figure 5, during 4500 iterations, the
optimal solution at each generation oscillates up and down
greatly, ranging from 31,500 to 33,750, which means a high
divergence population is maintained by this self-adaptive
mechanism to avoid a premature problem. .is adaptive
mechanism provides more possibility to seek better solu-
tions by jumping out local convergence.

3.5.RecursiveOptimization. A better solution with the lower
fitness value can be obtained by repeating sections 3.2 to 3.4
and iteratively updating the chromosomal information of
each generation of the population until meeting the fol-
lowing convergence criterion:

number of iterations � max 500, ns( , (17)

where ns is the number of iterations when the optimal
solution remains unchanged for over 50 iterations.

4. Validation of the Proposed Algorithm

To validate the proposed algorithm, an earthwork allocation
project on the G1 and D2 skiing courses of the Beijing
Winter Olympic Games Skiing Center in 2022 is used. .e
schematic diagram of the original transportation network is
shown in Figure 6, and the initial conditions of this case
study are listed as follows:

(1) Overall excavation volume: 2352m3

(2) Overall filling volume: 1978m3

(3) Maximum carrying capacity of each dump truck:
10m3

(4) .e transportation fuel consumption of empty load
is 0.1 L/km

(5) .e transportation fuel consumption of full loaded is
0.2 L/km

(6) .e maximum capacity of fuel tank: 100 L
(7) Number of cutting fields: 3
(8) Number of filling fields: 7
(9) Number of replenishment centers: 2

.e node information is listed in Table 6. .e number of
dump trucks in Table 6 provides the meanings, subject to the
locations, respectively, as follows:

(1) Number of dump trucks each replenishment center
can provide

(2) Number of dump trucks needed to transport all earth
volume away from the cutting fields

(3) Number of dump trucks needed to transport the
required earth volume to the filling fields

According to the distance information read from Fig-
ure 3, the spatial weight matrix can be constructed as Table 7.

According to equation (12), the distance information
matrix and the path information matrix can be derived (see
Tables 8 and 9).

.e overall demand of all filling areas is 1978, and thus,
the final optimal solution is a 1978 × 7 matrix. Each row
represents the path information of a single run. Table 10
demonstrates the results of the optimal solution for the last
20 rows. It can be seen that 2 dump trucks are dispatched for
multiple deliveries (e.g., the 63rd dump truck has been
assigned to carry out 12 transportation tasks from 1959 to
1970). .erefore, the optimal path can be read assisted by
Table 9 generated from Floyd Algorithm. For instance, the
1959th run travels from 1-4-11 as indicated in Table 10;
however, the real hauling path from 1 to 11 is 1-6-2-4-11 by
reading the path information matrix in Table 9. It is worth
noting that 64 dump trucks are used to carry out the
earthwork allocation task and achieve minimal fuel con-
sumption so far.

Meanwhile, Figure 7 is the iterative optimizing process.
.e iteration operates 500 times in total and converges at the
440th generation. .e final optimal fuel consumption is
31352 L.

Table 7: .e spatial weight matrix.

Destinations

Origins

0 — 3 6 — 2 3 6 8 — 11 — 0
— 0 — 2 3 1 — — — 3 — 5 —
3 — 0 — - - -— 1 — — 4 — 3
6 2 — 0 — 6 2 — — — 9 4 6
— 3 — — 0 — — — — 6 — 2 —
2 1 — 6 — 0 — — — 1 7 — 2
3 — — 2 — — 0 — 6 — — 3 3
6 — 1 — — — — 0 2 — — — 6
8 — — — — — 6 2 0 — — — 8
— 3 — — 6 1 — — — 0 — — —
11 — 4 9 — 7 — — — — 0 — 11
— 5 — 4 2 — 3 — — — — 0 —
0 — 3 6 — 2 3 6 8 — 11 — 0
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Table 8: .e Floyd distance information matrix (1� 5 km).

Node Destinations
Node 1 2 3 4 5 6 7 8 9 10 11 12

Origins

1 0 3 3 5 6 2 3 4 6 3 7 6
2 3 0 6 2 3 1 4 7 9 2 8 5
3 3 6 0 8 9 5 6 1 3 6 4 9
4 5 2 8 0 5 3 2 9 8 4 9 4
5 6 3 9 5 0 4 5 10 11 5 11 2
6 2 1 5 3 4 0 5 6 8 1 7 6
7 3 4 6 2 5 5 0 7 6 6 10 3
8 4 7 1 9 10 6 7 0 2 7 5 10
9 6 9 3 8 11 8 6 2 0 9 7 9
10 3 2 6 4 5 1 6 7 9 0 8 7
11 7 8 4 9 11 7 10 5 7 8 0 13
12 6 5 9 4 2 6 3 10 9 7 13 0

Table 9: .e Floyd path information matrix.

Node Destinations
Node 1 2 3 4 5 6 7 8 9 10 11 12

Origins

1 1 6 3 6 6 6 7 3 3 6 3 7
2 6 2 6 4 5 6 4 6 6 6 6 12
3 1 1 3 1 1 1 1 8 8 1 11 1
4 2 2 2 4 2 2 7 2 7 2 11 12
5 2 2 2 2 5 2 12 2 12 2 2 12
6 1 2 1 2 2 6 1 1 1 10 11 2
7 1 4 1 4 12 1 7 1 9 1 1 12
8 3 3 3 3 3 3 3 8 9 3 3 3
9 8 8 8 7 7 8 7 8 9 8 8 7
10 6 6 6 6 6 6 6 6 6 10 6 6
11 3 6 3 4 6 6 3 3 3 6 11 4
12 7 2 7 4 5 2 7 7 7 2 4 12

Table 10: Optimal solution of the last 20 rows.

Indexing the
number of
dispatched
dump trucks

Indexing how
many runs of
current truck

travels

.e serial number of
the departure

replenishment center

.e serial
number of the
cutting field
arrived at

.e serial
number of the
filling field
reached

0 if the dump trucks can
continue shipment, otherwise
indexing the serial number of
the returned replenishment

center

.e distance
the truck
travels in
each run

63 1959 1 4 11 0 14
63 1960 11 4 9 0 17
63 1961 9 4 9 0 16
63 1962 9 4 9 0 16
63 1963 9 4 9 0 16
63 1964 9 4 9 0 16
63 1965 9 4 9 0 16
63 1966 9 4 9 0 16
63 1967 9 4 9 0 16
63 1968 9 4 9 0 16
63 1969 9 4 9 0 16
63 1970 9 4 9 1 22
64 1971 1 4 9 0 13
64 1972 9 5 9 0 22
64 1973 9 5 9 0 22
64 1974 9 5 9 0 22
64 1975 9 5 9 0 22
64 1976 9 5 9 0 22
64 1977 9 5 9 0 22
64 1978 9 4 9 1 22
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Figure 8: Comparative study between [6] and ourmethod. (a).e former work with two-way path planning. (b) Ourmethod withmultiway
path planning.

Table 11: Variables and explanation.

Variables Explanation
J Number of replenishment centers
Ij Number of dump trucks in the jth replenishment center
K Number of cutting fields
G Number of filling fields
dijk .e hauling distance of the ith dump truck from the jth replenishment center to the kth cutting field
dikg .e hauling distance of the ith dump truck from the kth cutting field to the gth filling field
digk .e hauling distance of the ith dump truck from the gth filling field to the kth cutting field
digj .e hauling distance of the ith dump truck from the gth filling field to the jth replenishment center
α .e average fuel consumption per unit distance of each dump truck at no load
β .e average fuel consumption per unit distance of each dump truck at full load

Xijjk
Binary decision variable: whether the ith dump truck at the jth replenishment center travels from the jth replenishment center to

the kth cutting field

Yijkg
Binary decision variable: whether the ith dump truck at the jth replenishment center travels from the kth cutting field to the gth

filling field

Uijgk
Binary decision variable: whether the ith dump truck at the jth replenishment center travels from the gth filling field to the kth

cutting field
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To further validate the performance of our proposed
algorithm, a comparative study has been made by comparing
our method with former work in [6]. .e result in Figure 8
demonstrated that our method showed a dominant advantage
over the past work, and roughly, a performance boost of 38%
is achieved. .e global optimal hauling cost in Figure 8 is
related to fuel consumption. .us, a slight change to the
algorithm is made to accord with the optimization objective.

5. Conclusions

.is paper constructs a complex earthwork allocation path-
planning modeling based on MD-TEVRP by considering the
multiple runs of dump trucks between the cutting fields and
the filling fields. A well-designed genetic algorithm based on
this model is proposed to achieve the following contributions:

(1) .is paper provides a multiway transportation so-
lution to a typical MD-TEVRP, which achieves
many-to-many recursive pairing in earthwork allo-
cation path planning.

(2) .e proposed self-adaptive mechanism can manip-
ulate the diversity of the generated populations to
prevent the premature problem of GA and achieve a
lower fitness value.

(3) .e optimization method shows a dominant ad-
vantage over the past work by increasing approxi-
mately 38% of performance. .e proposed method
also provides guidance for the construction design of
the Skiing Courses of Beijing Winter Olympic
Games Skiing Center in Yanqing, Beijing.

.e implication of variables is listed in Table 11.
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