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Representation of language is the �rst and critical task for Natural Language Understanding (NLU) in a dialogue system.
Pretraining, embedding model, and �ne-tuning for intent classi�cation and slot-�lling are popular and well-performing ap-
proaches but are time consuming and ine�cient for low-resource languages. Concretely, the out-of-vocabulary and transferring to
di�erent languages are two tough challenges for multilingual pretrained and cross-lingual transferring models. Furthermore,
quality-proved parallel data are necessary for the current frameworks. Stepping over these challenges, di�erent from the existing
solutions, we propose a novel approach, the Hypergraph Transfer Encoding Network “HGTransEnNet. �e proposed model
leverages o�-the-shelf high-quality pretrained word embedding models of resource-rich languages to learn the high-order
semantic representation of low-resource languages in a transductive clustering manner of hypergraph modeling, which does not
need parallel data. �e experiments show that the representations learned by “HGTransEnNet” for low-resource language are
more e�ective than the state-of-the-art language models, which are pretrained on a large-scale multilingual or monolingual
corpus, in intent classi�cation and slot-�lling tasks on Indonesian and English datasets.

1. Introduction

�e pretrained language models, such as ELMo [1], BERT
[2], RoBERTa [3], and XLNet [4], play vital roles in modern
neural NLP systems, which learn a widely applicable and
informative representation of words and sentences [5–7].
With the optimization of high-quality semantic represen-
tation, the performance of models for most of the down-
stream tasks such as text generation [8] or text classi�cation
[9, 10] is upsurging. Recently, the multilingual-BERT [11]
and Bilingual Generative Transformer (BGT) [12] for low-
resource languages draw attention in both research literature

and industry. However, pretraining a speci�c and reliable
word embedding model from scratch for the low-resource
language requires large-scale corpus and expensive com-
puting costs. Meanwhile, it is unwise and redundant to pay
so many e�orts for each low-resource language as there are
hundreds of low-resource languages in the world. Conse-
quently, to our knowledge, the popular strategies for em-
bedding low-resource languages are composed of two
branches: (i) utilizing the multilingual pretrained word
embedding model [2, 11] and �ne-tuning with annotated
training data directly; (ii) cross-lingual transferring [13]
based on multilingual embedding pretrained model from a
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resource-rich language in some designed methods, such as
aligning vectors [14, 15] or mixing codes [16].

+e blue circles denote the resource-rich natural
language sentences (i.e., English corpus), each of which
has its encoded representation from the pretrained em-
bedding model. +e green circles denote the low-resource
natural language sentences (i.e., Indonesian corpus). By
learning the high-order semantic representation from
hypergraph, the representation of the Indonesian corpus
is generated.

Under these two solutions, we also have to face and
overcome corresponding challenges. For the first challenge,
despite the large scale of multilingual pretrained models,
many words of a low-resource language are still not included
in the vocabulary, which leads to the out-of-vocabulary
problem. Fine-tuning the multilingual pretrained model is
an approach to update and adapt for the relevant data.
However, it is technically challenging, as the hyper-pa-
rameters picking for the fitting needs to be carried out
carefully [17]. Otherwise, this will cause either losing
valuable information learned from the origin multilingual
embedding model or merging the new corpus into the
embedding latent space poorly. And lots of irrelevant and
useless language embedding will also sparse the word rep-
resentation model [11]. +e second challenge is from the
cross-lingual branch. +ey not only suffer obstacles of the
multilingual pretrained model but also accumulate more
representing loss during training or fine-tuning [17]. And
they rely heavily on large amounts of a parallel corpus, which
is expensive to collect and hard to control quality [13].

In this study, we address these above problems via a
Hypergraph based Transfer Encoding Network (HGTran-
sEnNet), which allows learning high-order representation of
semantic information (rather than fine word-level repre-
sentation) for low-resource language benefiting from high-
quality monolingual pretrained word embedding model in a
transductive clustering manner. +e proposed HGTran-
sEnNet is built upon a cross-lingual hypergraph structure as
illustrated in Figure 1, which is fed with a bilingual but
nonparallel corpus. Hypergraph structure takes advantage of
collecting knowledge and explores and learns the co-rela-
tionship of high-order semantic representation shared be-
tween the low-resource language and resource-rich language
within the same domain. We conduct extensive experiments
on the annotated Indonesian dialogue dataset and the En-
glish dialogue dataset (MultiWOZ [18]). Our approach
achieves better performance than existing methods on all of
the domains in terms of intent classification and slot-filling
tasks. And we investigate the model’s performance on a
different scale of feeding training data, rare domains, out-of-
vocabulary, and other languages by abundant comparison
experiments. +is study is mainly divided into four sections.
In the abstract, we briefly describe the main issues to be
addressed, the structure of our proposed framework, and the
experimental results. Second, in the Introduction, we discuss
two challenges that exist in the field of low-resource lan-
guage representation learning, as well as how our model
addresses these challenges.We divide related work into three
subsections (Low-resource Language, Spoken Language

Understanding, and Preliminary on Hypergraph Learning)
to introduce our study on the basis of a solid theoretical
foundation. +ird, we disassemble and explain the structure
of the proposed model in detail in the Hypergraph Transfer
Encoding Network. Finally, in the Experiment, we first
introduce datasets and compared methods and metrics.
+en, we use figures and tables to demonstrate the effec-
tiveness and robustness of our proposed HGTransEnNet.
+e main contributions of this study are summarized as
follows:

(i) We propose a hypergraph-based framework for
representing high-order semantic information by
transferring and learning from resource-rich lan-
guage data.

(ii) Our framework is not only capable of effectively
solving embedding for low-resource languages but
also has the potential ability to overcome the out-of-
vocabulary problem for intent classification and
slot-filling tasks.

(iii) +e proposed method outperforms state-of-the-art
related methods in intent classification and slot-
filling tasks on the Indonesian dialogue dataset (ID-
WOZ), which will be released as one of the resource
contributions, as well as other widely adopted
multilingual dialogue datasets (Multilingual WOZ
2.0, Multilingual NLU).

2. Related Works

2.1. Low-Resource Language. Many works make efforts on
representing low-resource languages [19–21]. Cross-lingual
transfer learning has become a popular topic aiming to
discover the underlying co-relationships between the source
and target languages. Reference [20] proposes to integrate
English syntactic knowledge into a state-of-the-art model
and shows that it is reasonable to leverage English knowl-
edge to improve low-resource language understanding.
Reference [22] conducts the cross-lingual word embedding
mapping using zero supervision signals. Reference [14]
proposes a self-learning framework in a small size of word
dictionary to learn the mapping between source and target
word embeddings. Reference [13] utilizes multilingual
embeddings obtained from training Machine Translation
systems [15] in+ai and Spanish. Reference [23] investigates
to align the cross-lingual sentence-level representations by
leveraging the large monolingual and bilingual corpus and
achieves state-of-the-art performance in several cross-lin-
gual tasks. In line with these methods, encoding semantic
information directly within the same cross-lingual latent
space could avoid semantic misunderstanding. But relying
on aligned parallel sentence pairs can suffer from noise and
imperfect alignments [16]. What is more, it is quite chal-
lenging to collect enough high-quality bilingual parallel
corpus with fine-labeled annotation. To our knowledge, our
approach is designed with a high-order structure–hyper-
graph modeling, to overcome these training and collection
problems. Simply with the help of easy-obtained mono-
lingual corpus and the off-the-shelf pretrained language
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model, our proposed framework is capable of achieving
comparable and reliable performance on the semantic
classification task (i.e., intent classification) on a low-re-
source language dataset.

2.2. Spoken Language Understanding. +ere are several
complex components in dialogue systems, mainly separated
into three parts: “Natural Language Understanding (NLU)”
[24–28] (a.k.a., Spoken Language Understanding, SLU),
“Dialogue Management (DM)” [29, 30], and “Natural
Language Generation (NLG)” [31, 32]. Some trials on end-
to-end modeling [31, 33–37] have also been considered. +e
difference among languages mainly reflects on the first part
and the third part [38, 39], the former of which is the
foremost challenge to tackle in this work. In recent years,
brief concepts have been extracted efficiently from the
growing data on the Internet. A method called Swarm In-
telligence (SI) is widely used in the construction of automatic
text summary frameworks. Moreover, several NLU models
based on SI perform well in both single-document and
multi-document summarization [40, 41]. Research in SLU
fields has not only been applied to dialogue models but has
gradually expanded to the field of chatbots. Kabiljo et al. [42]
propose an ADA (Academic Digital Assistant) chatbot
supported by natural language understanding to deal with
the impact of COVID-19 [43] on the education system.
Matic et al. [44] thoroughly investigate the structure of
common chatbots and introduced corresponding meta-
models. +is study also designs mapping rules between
common natural language understanding models, which can
be used to make chatbot architecture more flexible. Gupta
et al. [45] propose a novel health care chatbot based on the
RASA framework, which can initially predict the disease of
the patient and give certain treatment suggestions through
dialogue without any hassle. SLU typically involves identi-
fying the intent and extracting semantic constituents from
the natural language query, two tasks that are often referred
to as intent detection and slot filling [28]. Usually, the
performance on these two tasks can efficiently embody the
quality of semantic representation for understanding spoken
languages. +erefore, we mainly demonstrate the ability of

our framework by conducting experiments on these two
tasks in this work.

2.3. Preliminary on Hypergraph Learning. Hypergraph
learning has been widely applied in many tasks, such as
identifying nonrandom structure in structural connectivity
of the cortical microcircuits [46], identifying high-order
brain connectome biomarkers for disease diagnosis [47], and
studying the co-relationships between functional and
structural connectome data [48]. Hypergraph learning was
first introduced in [49], in which each node represents one
case, each hyperedge captures the correlation between each
pair of nodes, and the learning process is conducted on a
hypergraph as a propagation process. By this method, the
transductive inference on hypergraph aims to minimize the
label differences between vertices that are connected bymore
and stronger hyperedges. +en, the hypergraph learning is
conducted as a label propagation process on the hypergraph
to obtain the label projection matrix [50], or as a spectral
clustering [51]. Other applications of hypergraph learning
include video object segmentation [52], images ranking [53],
and landmark retrieval [54]. Hypergraph learning has the
advantage of modeling high-order correlation modeling, but
the mining and learning of the co-relation among different
languages for semantic understanding on the hypergraph
have not been well investigated.

3. Hypergraph Transfer Encoding Network

In this section, we introduce the detailed structure of our
proposed Hypergraph Transfer Encoding Network
(HGTransEnNet), as shown in Figure 2. In the first stage, the
encoding hypergraph is constructed from the resource-rich
language dataset and low-resource language data, which
includes the initial vertex feature matrix (denoted as X0) and
the hypergraph incidence matrix (denoted as H). +en, the
second stage learns the semantic representation for low-
resource language sentences from the pretrained resource-
rich language model by the designed hypergraph encoding
convolutional layers (denoted as “HGEnConv”) in a
transductive learning manner. Finally, we obtain the

English
Corpus

Hypergraph
Modeling

Raw
Indonesian Corpus

Encoded
Indonesian Corpus

…

…
…

Encoding Representation

Natural Language Sentence

Figure 1: Illustration of the achievement for our framework.
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encoded features of low-resource language for further intent
classi�cation and slot-�lling tasks. Next, we introduce each
individual step of the proposed framework detailed
furthermore.

3.1. Encoding Hypergraph Construction. Same as a funda-
mental hypergraph, our encoding hypergraph is de�ned as
G= 〈V, E〉, whereV and E denote a set of vertices and a set of
hyperedges respectively. Each hyperedge is assigned with a
weight by the diagonal matrixW. We let each vertex denote a
semantic feature of sentence, including resource-rich lan-
guage (i.e., English) and low-resource language (i.e., Indo-
nesian). �e crucial components of constructing stage in
HGTransEnNet are the sentence vertex feature matrixX ∈RN
× C and the incidence matrix H∈RN × E, where the N
denotes the number of vertexes |V|, the C denotes the di-
mension of the vertex feature, and the E denotes the number
of hyperedges |E |. As shown in Figure 2, we �rstly group the
English data and the Indonesian data based on the same intent
class (yi ∈ Y) within the same domain, since the same se-
mantic classi�cation could share a similar combination of
latent space patterns. In this grouping manner, the sets of
hyperedges are generated, which are denoted as the blue oval
dotted frame or the red oval dotted frame in Figure 2. �e
initial vertex feature matrix X0∈RN × C is formed by N =
Nen + Nid sentences, i.e., the sum of Nen English data and
Nid Indonesian data, whose structure can be formulated as:

X0 �
· · · ni . . .[ ]T︸�����︷︷�����︸
C
inf∈RNen×C

· · · nj . . .[ ]T︸�����︷︷�����︸
C
blk∈RNid×C

 
T

, (1)

where ni and Cinf denote the pretrained encoded feature
vector for English sentence and the informative features
matrix, respectively. Nen and Nid denote the number of
English sentences and Indonesian sentences, respectively. nj
and Cblk stand for the blank-semantic feature vector for the
target Indonesian sentence and the target Indonesian fea-
tures matrix, respectively. Note that the informative encoded

features matrix of English sentences Cinf are encoded by the
5 pretrained English-BERT-Base-cased models [2, 55],
provided by the popular repository bert-as-service1. �e
features matrix of Indonesian sentences Cblk are initialized
randomly within a word bank but share the same dimension
nj ∈ R1× C, which are generated and updated by several
layers of hypergraph encoding convolutional layers. In our
approach, to leverage as much as informative encoding from
high-quality pretrained English-BERT, we set up the co-
relation between each English vertex and Indonesian vertex
in the incidence matrix H, based on the same classi�cation of
the data (e.g., the same intention), denoted as the “blue” oval
wireframe and the “red” oval wireframe. Our incidence
matrix H is calculated by |V| × |E| and the entries are de�ned
in Eq. (2):

H �
1, ni ∈ yj,

0, nj ∉ yj,

 ni ∈ V, nj ∈ E( ). (2)

If a vertex ni is connected by a hyperedge yj, then the
value of the corresponding element of the incidence matrix
H (i, j) is 1, otherwise it has the value 0. �e degree of a
vertex v ∈V is de�ned as (v), and the degree of a hyperedge is
de�ned as (e). �e diagonal matrices of the hyperedge de-
grees and the vertex degrees, denoting as De and Dv, re-
spectively, could be generated as shown in:

De � δ ei( )[ ], i ∈ [1, E],

δ ei( )[ ] � ∑
υj∈]

h υj, ei( ),

Dυ � d(υj)[ ], j ∈ [1, N],

d υj( ) � ∑
υj∈ei,ei∈Ε

W ei( )h υj, ei( ),

W � W ei( )[ ],




(3)

whereW ∈R1× |E| denotes the weight matrix of hyperedges.
w (e) denotes the weight of each hyperedge; we here set it to
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Figure 2: Illustration of the proposed framework–hypergraph transfer encoding network (HGTransEnNet), consisting of three stages, i.e.,
encoding hypergraph construction, hypergraph transferring learning and semantic encoding aggregation. X0 and H and denote the
initialized encoded feature matrix and the hypergraph incidence matrix, respectively. �e “HGEnConv” layers are capable of merging and
extracting high-order semantic representation in a transductive clustering manner. So that the low-resource language data, represented by
blank feature vectors (i.e., Cblk) could be generated and updated with the transferring of representation from resource-rich language
sentences (i.e., Cinf ). �e “EnAggr” module is designed for aggregating the high-order encoding into the �nal semantic representation.
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1, i.e., ratio (e)� 1, all of the co-relationships between
sentences share static same weight.

3.2. Hypergraph Transferring Learning. +e vertex feature
matrix F v ∈ RN × C, as denoted in Figure 2, is composed of
semantic informative vectors Cinf ∈ RNen × C and semantic-
blank initialized vectors Cblk ∈ RNid × C, representing the
English sentences and the Indonesian sentences, respec-
tively. +e hyperedge is the bridge of transferring and
learning the representation for the low-resource language
from the existing pretrained model. +e hyperedge feature
matrix F e ∈ RN × E is the product of the vertex feature
matrix F v and the learnable parameter matrix Θ(l). +en,
the transfer operation by the incidence matrix H makes the
blank vectors Cblk filled and updated from the C. Since there
is no unique mathematical definition of translation on the
hypergraph from the spatial perspective, we take the widely
adopted classical spectral hypergraph convolution operation
[56] as the base structure of the hypergraph encoding
convolutional layer (HGEnconv(·)). +e hypergraph Lap-
lacian L, i.e., the normalized positive semi-definite Laplacian
matrix of the resulting hypergraph, is obtained by:

L � I − D
−1/2
υ HWD

−1
e H

T
D

−1/2
υ , (4)

where I ∈RN × N is an identity matrix. H is the incidence
matrix, W is the weight matrix for hyperedges. +erefore,
the convolutional operation, i.e., HGEnconv(·) of
HGTransEnNet, can be formulated in:

X
(i+1)

� σ (I − L)X
(i)Θ(i)

 ,

σ � LeakyReLU(0),

⎧⎨

⎩ (5)

where the X(l) ∈RN × C is a signal with N vertexes fed in a
layer l. And the X(l +1) is the output of a layer l. +e σ
denotes the nonlinear activation function like LeakyReLu (·).
Θ(l) denotes a learnable parameter in the layer l. Finally, by
adding the fine-tuned parameters bias, the HGEnconv(·)
finishes fusing and generating the high-order representation
for the Indonesian sentences.

3.3. Semantic Encoding Aggregation. After a few layers (i.e.,
k) of transferring hypergraph convolutional operation
HGEnconv(·), a set of output feature maps are obtained
Xin � {X1, X2, ..., Xk} ∈RN × kC, denoting different scale of
transferring. We design an encoding aggregation function
EnAggr(·) to control the rate of transferring, shown in

EnAggr Xin, ratio(  �
X1, ···, Xk√√√√

ratio∗ k

}⟶ Xin ∈ R
Nid×kC

.


(6)

ratio represents the proportion of encoding aggregation.
+e higher the transfer ratio, the more the coupling scale,
which means that the Indonesian representation enjoys
more fusion. +e representation of Indonesian sentences
Xblk is extracted from the global representation matrix Xin.
We treat different feature channels (a.k.a., attributes) as
different semantic factors that represent and affect the final

intent classification and slot-filling tasks. Considering that
the feature channels of each sentence are used to describe
different attributes with the same dimension latent em-
bedding space, we select the most remarkable or the average
value for each attribute via a column-wise aggregating op-
eration (i.e., AttrAggr(·)) to reserve each attribute infor-
mation as much as possible, which can be defined as:

AttrAggr X′
Ra×C

⎛⎝ ⎞⎠ �
1
a

.



a

i�1
X′[i][1]

· · ·



a

i�1
X′[i][C]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⟶ X″ ∈ R1×C
.

(7)

AttrAggr(·) is the column-wise aggregation function that
can be max-pooling, mean-pooling, etc. a indicates the
number of aggregated attributes. +e final encoded repre-
sentation for Indonesian data Xout ∈RNid × C is aggregated
by the following algorithm 1. And then, if the task needs
word-level representations (e.g., slot filling), the embeddings
for each word can be extracted, as shown in:

X
(i)
out � W

1
emb,W

2
emb, . . . ,W

M
emb  ∈ R1×C

, (8)

where M denotes the number of tokens contained in each
sentence. Finally, we feed the output of our framework
forward to the BiLSTM with the attention mechanism and
CRF layer [57] to train the intent classification and slot-
filling model further. Note that in this work, we mainly focus
on the representation of language, the BiLSTM-CRF model
could be exchanged for other related classified models;
therefore, we left these bunch of extending experiments as
our future works.

4. Experiments

4.1. Datasets and Evaluations. We take the English dataset
MultiWOZ [18] as the resource-rich language corpus and
our Indonesian dataset named ID-WOZ, as the low-resource
language corpus. In terms of collection and annotation, we
adopt the Wizard-of-OZ [58] dialogue-collecting approach,
which has been shown to be effective for obtaining a high-
quality corpus at relatively low costs and with a small-time
effort. Following the success of MultiWOZ [18], we conduct
a large-scale corpus of natural human-human conversations
on a similar scale. Based on the given templates for various
domains, users and wizards generate conversations using
heuristic-based rules to prevent the overflow of information.
We design and develop a collection-annotation pipeline
platform with a user-friendly structure for building the
dataset. At the stage of annotation, we divided the number of
well-trained annotators (i.e., 80 local people, 70 of whom
spoken ID as their native language, 10 of whom were bi-
lingual citizens, plus 2 main organizers) into two groups to
produce dialogue and annotation. A quarter of annotators
(i.e., 20) are trained following the guidance we provide to
play the wizard role. After collecting 1 k dialogues initially
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(about one week), while the collecting conversation is still
ongoing, the second group of annotators (i.e., 62) joins in
work toward the detailed full-labeled corpus, including
domains, actions, intents, and slots. A brief example is
shown in Figure 3. It consists of nine domains, namely plane,
taxi, wear, restaurant, movie, hotel, attraction, hospital, and
police. And we organize a group of annotators to label the
corpus including actions, slots, and intents. As the hospital
and police domains in MultiWOZ contain very few dia-
logues (5% of total dialogues) and only appear in the training

dataset, we choose to ignore them in our main experiments,
following [59]. �erefore, we only adopt four domains
restaurant, hotel, taxi, and attraction shared by MultiWOZ
and ID-WOZ datasets in our main experiments. Statistics of
them are shown in Table 1. We use the F1 score as the
evaluation metric, which is the harmonic mean of precise (P)
and recall (R) and is widely adopted in the intent classi�-
cation and slot-�lling tasks. Given a set of training data and
corresponding testing data, we split the training data into 5
folds. In our implementation, �ve-fold cross-validation is

Halo, ada yang bisa saya bantu?
Hello, may I help you?

Saya ingin membeli T-shirt

I want to buy a T-shirtSaya sarankan Anda bisa pergi
ke pusat kota dengan taksi

I suggest you could go
downtown by taxi Dan saya ingin mencari tempat untuk

menonton film
And I want to find a place to see a movieSaya akan merekomendasikan

bioskop di pusat kota

I would recommend the
cinema in downtown Hotel apa yang Anda rekomendasikan?

What hotel do you recommend?

Mungkin Home Hotel cocok untuk Anda

Maybe Home Hotel is suited for you
Terima kasih selamat tinggal.

�ank you, goodbye.
Dengan senang hati membantu Anda, semoga

harimu menyenangkan.

It's my pleasure to help you, have a nice day.

General Wear Taxi Movie Hotel

Figure 3: �e example of our collected task-oriented dialogue dataset.

Input: Xin = {X1, X2, ..., Xk}, ratio∈[0, 1], pooling
Output: Xout� [C(1)blk, ...,C

(j)
blk]

T∈RN×C

(1) Xout , Xblk ← InitializeTensor(Φ)
(2) X̂in ← EnAggr(Xin,ratio)
(3) for X i∈X in do

Xblk(i) = [C(1)blk, ...,C
(j)
blk]

T← Extract(Xi)
(5) Xblk ← VerticalStack(Xblk, Xblk(i))
(6) end for
(7) Xdblk ← AttrAggr(Xblk, pooling)
(8) Xout ← Transpose(Xdblk)
(9) return Xout
(5) Xblk ← VerticalStack(Xblk, Xblk(i))
(6) end for
(7) Xdblk ← AttrAggr(Xblk, pooling)
(8) Xout ← Transpose(Xdblk)
(9) return Xout

ALGORITHM 1: Semantic encoding aggregation.
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employed to investigate the optimal parameter setting
within training datasets. To verify the stability of the pro-
posed method, we run the experiments ten times for each set
of parameter settings and compare their mean performance.

4.2. Compared Methods and Implementation. We first unify
the sentence length based on the longest sentence by pad-
ding, i.e., each sentence containing M tokens (M � 64). And
the following related approaches for word embedding are
compared with our network:

(i) Random Initialization. In this simplemethod, we set
the dimension of word embedding the same with
EnglishBERT-Base-cased (i.e., Wemb ∈ R1× 768),
and randomly generate the word embedding bank.

(ii) Machine Translation (MT). In order to embed
reasonably, under the lacking Indonesian pre-
trained model situation, we compare with the
machine translation preprocessing method. And
then we utilize the English-BERT-Basecased (i.e.,
Wemb ∈ R1× 768) to encode the corpus. Note that
mostly the last two layers of BERT are used as the
embedding output.

(iii) Multilingual-BERT (ML-BERT) [2]. Released on
the popular repository–Multilingual-BERT. It
contains 104 languages, 12 layers, 768 hidden nodes,
12 heads, and 110M parameters. So that the In-
donesian corpus can be represented directly by this
pretrained model (i.e., Wemb ∈ R1× 768).

(iv) Indonesia-fastText [60, 61]. +is work released
pretrained word vector models for 157 languages
based on each monolingual corpus, including
Indonesia. +ey pretrained it on the Common
Crawl and Wikipedia using fastText. +is Indone-
sian word vector model is trained using CBOWwith
position-weights, in dimension 300 (i.e., Wemb ∈
R1× 300), with character n-grams of length 5, a
window of size 5 and 10 negatives.

(v) Cross-lingual Transfer [14]. +ere are multiple ideas
of cross-lingual transfer in recent years, we repro-
duced several of them and reported performance of
this practical and reliable method. +is method is
capable of learning the Indonesian word embed-
dings notwithstanding still requiring a few bilingual

data, which we will also release (i.e., Wemb ∈
R1× 768).

(vi) Indonesian-BERT (ID-BERT). To compare with the
state-of-the-art embedding method, we pretrain a
specific BERT for Indonesian from scratch with
about 3.3 billion tokens from Indonesian websites’
document-level corpus, which covers news reports,
research assay, daily articles, and other text genres.
+e size of its vocabulary is 0.9M, which is much
larger than Multilingual-BERT (0.12M). We believe
that this size of the vocabulary is sufficient to cover
most situations. +e training takes one week using
Google Cloud TPU v3_8; the Indonesian-BERT-
Base (Cased, L� 12, H� 768, A� 12) is eventually
obtained (i.e., Wemb ∈ R1× 768).

+e left user plays the wizard role pretending the as-
sistant chatbot, and the right green plays the customer. One
dialogue may contain several different domains.

After embedding words by the above models as well as
our proposed network, each sentence is represented by a
word embedding tensor, whose dimension is RM × W.
Besides feeding the original word embeddings of sentences
to our network, we also follow the sentence encoder method
[5] to experiment. We adopt the average pooling of the word
embedding feature map into a 1-dimensional vector R1× W

and overlay the BiLSTM and CRF layers as the base model
[28] to finish the task.

Compared with pretrained ML-BERTand the ID-BERT,
our framework is capable of classifying the intention and
slots of sentences more accurately, especially in several
complex classes, such as hotel_name, area, destination,
request_area, and inform_departure.

4.3. Results andDiscussion. +e comparison results of all the
methods are summarized in Table 2. Based on these
quantitative results, we have the following analysis.

4.3.1. Intent Classification: Our Proposed Framework.
HGTransEnNet outperforms others on this task across all of
the boards in the F1 score, achieving 87.21%, 85.03%, 91.26%,
91.44%, and 87.69%, 85.23%, 91.38%, and 91.59% for res-
taurant, hotel, taxi, attraction domains on the BiLSTM with
attention mechanism and BiLSTM with attention mecha-
nism and CRF, respectively. Compared with the nearest
baseline models, our method averagely achieves a gain of
0.98% (pvalue �1.371 ∗ 10 – 2), 0.91% (p − value � 3.075 ∗
10 – 3), 1.58% (p − value � 7.864 ∗ 10 – 3), and 0.45%
(p − value � 2.609 ∗ 10 – 2) compared with the nearest
baseline models, cross-lingual, Multilingual-BERT, Indone-
sian-fastText, and Indonesian-BERT, respectively.

4.3.2. Slot Filling. Our model is also capable of out-
performing other methods on slot filling. +e accuracy
reaches 76.94%, 77.28%, 87.58%, 88.22% and 77.08%,
77.86%, 87.47%, 89.01% on F1 score for restaurant, hotel,
taxi, attraction on the BiLSTM-Attention and BiLSTM-

Table 1: Statistics for the total number (#.) of sentences, intents,
and slots in four domains on the ID-WOZ dataset and the English
MultiWOZ dataset.

Datasets Data #. Sentences #. Intent #. Slots
MultiWOZ Restaurant 62, 703 41, 177 28, 351
ID-WOZ Restaurant 28, 095 22, 312 5, 809
MultiWOZ Hotel 64, 284 42, 434 25, 985
ID-WOZ Hotel 30, 865 24, 694 8, 720
MultiWOZ Taxi 48, 080 28, 976 7, 160
ID-WOZ Taxi 28, 178 22, 168 6, 038
MultiWOZ Attraction 55, 186 34, 053 21, 004
ID-WOZ Attraction 36, 523 29, 513 9, 198
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Attention-CRF, respectively. Because our model mainly fo-
cuses on the general high-order semantic representation and
the slot �lling is a kind of more relying on the word-level
subtle task. Our method does not achieve relatively high
performance, gaining of 1.74% (p − value �1.715 ∗ 10 – 2),
1.68% (p − value �1.047 ∗10 – 2), 2.29% (p − value � 5.913 ∗
10 – 3), and 1.00% (p − value � 4.183 ∗ 10 – 3) compared with
the nearest baseline models, cross-lingual, multilingual-BERT,
Indonesian-fastText, Indonesian-BERT, respectively.

4.3.3. Validation and Analysis. As shown in Figure 4, we
select the top three methods for intent classi�cation and slot-

�lling tasks in hotel and taxi domains and draw the bar chart
to analyze qualitatively. For intent classi�cation, the model
relies on understanding the general semantic information of
the given sentences and classifying it into di�erent classes.
We can see that inform_type, request_area intents in hotel
domain and the request_arrive, request_leave intents in taxi
domain are higher than the other two methods, because they
are obscure and hard to detect. We analyze and draw the
conclusion that the speci�c ID-BERTachieves slightly higher
performance than our approach in the precision (P) eval-
uation metric (1.04%). Because it owns the richest back-
ground knowledge of Indonesian. �erefore, it also proves
that our model has slightly weaker learning ability without
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Figure 4: Illustration of three methods’ performance on the intent classi�cation and slot-�lling tasks.

Table 2: Experimental comparison of di�erent methods on the four main domains of ID-WOZ for intent classi�cation and slot-�lling tasks.
(”†” denotes the signi�cance testing, taking HGTransEnNet as the base model, all of pvalue <0.05).

Main domains (F1) Restaurant Hotel Taxi Attraction
Embeddings Base model Intent Slots Intent Slots Intent Slots Intent Slots
Random initialization BiLSTM-attention 85.48 74.36 80.73 73.49 89.15 85.22 89.64 86.26
Machine translation BiLSTM-attention 85.86 73.43 81.82 73.74 89.34 84.17 89.92 86.12
Cross-lingual [14] BiLSTM-attention 86.59 76.09 84.32 73.92 89.97 86.31 90.73 87.03
Multilingual-BERT [2] BiLSTM-attention 86.44 75.95 83.92 74.13 90.09 86.28 90.51 87.22
Indonesia-fastText [60] BiLSTM-attention 85.88 75.27 83.17 74.09 88.92 85.08 90.02 86.88
ID-BERT BiLSTM-attention 87.03 76.32 84.29 75.51 90.38 86.33 91.37 87.49
HGTransEnNet BiLSTM-attention 87.21† 76.94† 85.03† 77.28† 91.26† 87.58† 91.44† 88.22†

Random initialization BiLSTM-attention-CRF 85.86 74.72 81.49 73.52 89.82 85.59 90.03 86.62
Machine translation BiLSTM-attention-CRF 85.79 73.58 82.04 73.81 89.54 85.31 90.23 86.43
Cross-lingual [14] BiLSTM-attention-CRF 86.34 76.27 84.51 74.09 90.33 86.45 90.22 87.34
Multilingual-BERT [2] BiLSTM-attention-CRF 86.35 76.42 84.68 73.73 90.61 86.77 90.98 87.52
Indonesia-fastText [60] BiLSTM-attention-CRF 85.97 75.38 83.72 74.68 89.37 85.35 90.79 86.41
ID-BERT BiLSTM-attention-CRF 87.38 76.64 84.57 75.48 90.79 87.04 91.44 88.65
HGTransEnNet BiLSTM-attention-CRF 87.69† 77.08† 85.23† 77.86† 91.38† 87.47† 91.59† 89.01†
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the support of large-scale datasets. However, we perform
better than others in the recall (R) metric about 2.17%,
which reflects our model can learn the high-order general
semantic representation from the English language model
in the transductive clustering manner. +e slot-filling task
requires the model to detect the value of slots and recognize
the class of slots at the same time. In this procession,
representation for every word is critical. Our proposed
framework HGTransEnNet outperforms others on this task
across all of the boards in the F1 score. For the complex
types of slots, like hotel_name, area and destination, de-
parture in hotel and taxi domains, respectively, our model
has the ability to leverage the language semantic knowledge
by the grouping manner and outperforms others (Tables 3
and 4).

4.4. Analysis on Training Data Amount. One of our pro-
posed approach’s strengths is to learn more informative
semantic representations for low-resource language. +e
main limitation of most low-resource languages is lacking
high-quality annotated collected corpus. +erefore, to in-
vestigate the performance of the model within different
amounts of training data, we conduct a series of experi-
ments incrementally. As shown in Figure 5, we feed the
model annotated data batch by batch, i.e., 1 k, 2 k, 4 k, 8 k,
16 k, and full-scale. We here select restaurant and taxi
domains as examples. +e statistics line chart is shown in
Figure 5, where the two leftmost sub-graphs denote intent
classification and the two rightmost sub-graphs denote slot
filling. And we compare three approaches to stand for three
popular strategies, namely “machine translation”, “cross-
lingual” [14], and “HGTransEnNet”(our introduced
method), denoted as blue, yellow, and green lines, re-
spectively. As shown in Figure 5, the red line represents the
benchmark performance from ID-BERT pretrained by us
former. Based on the quantitative results shown in Figure 5,
we have the following observations:

+e red line denotes the performance of pretrained ID-
BERT, regarded as the reliable benchmark. +e green line
stands for our proposed HGTransEnNet, showing its
strength over other compared methods.

(1) For machine translation method, the main issue is
the quality of translation. We conduct the BLEU
[62] test for the entire MultiWOZ, and the per-
formance of translation is 28.46 (BLEU-5) on 30 k
sentences. However, during the translation of

dialogue messages, one incorrect word could
cause complete misunderstanding. We pick sev-
eral examples and show them in Figure 6. +e top
half of the examples stand for the mistakes implied
in the slot-filling task. Apparently, the translation
method suffers a few mistakes when accounting
for the “name”, “area”, “address”, etc., which are
quite challenging problems to solve. And the
below part shows that a tiny translation mistake
will cause the wrong result of the entire intention
classification for the sentence and will lead to
totally different progress of the dialogue. We can
see that with the help of pretrained English-BERT,
the performance of the translation method has the
ability to get close to the benchmark, but cannot
reach better.

(2) When the scale of fed annotated low-resource lan-
guage data gets larger, the strength of cross-lingual
becomes more obvious. It is capable of avoiding
misunderstanding caused by translation and miti-
gating the shrink effect of the English corpus, which
makes it achieve the best performance and even
better than the benchmark performance of ID-
BERT, when the Indonesian data reach around 16 k
for restaurant and taxi domains.

(3) +e accuracy reaches 86.44%, 76.00%, 89.45%, and
85.21% on F1 scores in intent classification and slot-
filling tasks, respectively.

(4) Based on Figure 5, we can draw the conclusion that
our method is capable of getting close to the
benchmark performance with the less collected
corpus. Enjoying the designed representation
transferring and aggregation modules, our network
manages to perform better than compared related
approaches stably and reaches higher achievement in
the same scale of training data. However, we can

Table 3: Experimental comparison of different methods on the five rare domains of ID-WOZ for intent classification and slot-filling tasks.
(“†” denotes the significance testing, taking HGTransEnNet as the base model, all of p value <0.05.).

Rare domains (F1) Plane Police Movie Hospital Wear
BiLSTM-attention-CRF Intent Slots Intent Slots Intent Slots Intent Slots Intent Slots
Random initialization 89.47 70.87 86.41 69.47 87.73 74.63 90.63 74.13 89.84 68.93
Machine translation 89.08 72.66 87.89 70.26 88.72 75.79 91.29 75.43 90.90 69.74
Multilingual-BERT [2] 90.09 74.39 89.16 70.89 89.47 74.28 92.43 76.23 92.06 72.69
Indonesia-fastText [60] 89.80 73.44 89.02 70.17 88.93 74.17 92.32 75.16 90.83 70.11
ID-BERT 90.43 75.95 90.35 70.89 89.68 77.30 92.55 76.43 92.19 72.75
HGTransEnNet 91.71† 75.86 90.39† 71.08† 90.31† 76.97 92.89† 77.31† 92.78† 71.80

Table 4: Statistics for the total number (#.) of sentences, intents and
slots in five rare domains on ID-WOZ.

Datasets Data #. Sentences #. Intent #. Slots
ID-WOZ Plane 30, 538 22, 701 9, 323
ID-WOZ Police 17, 825 10, 868 3, 446
ID-WOZ Movie 26, 577 18, 382 6, 105
ID-WOZ Wear 26, 092 18, 953 10, 197
ID-WOZ Hospital 26, 491 17, 076 5, 881
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observe that both the traditional pretrained model
and our proposed hypergraph model achieve poor
performance when the amount of data is extremely
small. �e main reason is that the length of the
dialogue data is short, and the hypergraph structure
barely uses su�cient contextual correlation to un-
derstand semantic information.

4.5. Performance on Rare Domains. We also conduct ex-
tensive experiments on other rare domains (i.e., plane,
police, movie, hospital, and wear), which re¶ect the local
cultural background in Indonesia. �e MultiWOZ dataset
contains the police and hospital domains but the scale is
small. �e other three domains are special in our collected
ID-WOZ. We use our model trained by main domains and
large-scale data to generate the sentence encoding and �ne-
tune for rare domains furthermore. In the plane, movie, and
wear domains, the speci�c ID-BERT achieves a slightly
higher performance in the slot-�lling task. Because in these

domains, the training data are not only relatively limited but
also lack the English corpus in the same domain. But still,
generally speaking, our approach shows its ability in the
small-scale data situation and outperforms others across all
of the board in intent classi�cation and most in slot �lling.
Overall, the results on rare domains re¶ect that our approach
is capable of transferring the semantic representation for
Indonesian and outperforms the pretrained embedding
model ID-BERT.

4.6. Ablation Study for Adjacency. Di�erent from the inci-
dence matrix, the adjacency matrix is another popular so-
lution for associating the nodes. In the broad sense, this
approach can also be viewed as the graph convolutional
neural network [63] when the incidence matrix H connects
each pair of sentences and becomes the symmetric matrix.
To compare with GCN, we also conduct a comparison
experiment in all of the domains. In most domains, its
performance is close to the random initialization approach,
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Figure 5: Illustration of three methods’ performance on the intent classi�cation and slot-�lling tasks within the di�erent scales of feeding
training data.
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or even worse. So we report a few results of this section in
Table 5, which do not have much meaning to discuss in this
implementation strategy. �e result demonstrates that
lacking the ability to group and learn high-order informa-
tion will make the model perform poorly and lose skills.

4.7. Analysis on Out-of-Vocabulary. To verify how our ap-
proach performs in the out-of-vocabulary situation, we
furthermore conduct a validation experiment, which is re-
ported in Tables 6 and 7. When the language embedding
model encounters some unfamiliar words, we expect the
reasonable solution is to group the coming new words into
some existing semantically similar groups. �erefore, we
take the Indonesian words as the out-of-vocabulary words of
the English-BERT-Base-Cased model. We believe that dif-
ferent vertex does not matter in di�erent syntax or in dif-
ferent languages, as long as they share the same group.�ere
are general semantic latent attributes that represent the same
classi�cation features.We know that themain purpose of the
pretrained language model is to embed the natural language
words or sentences into a speci�c latent space. �e words or
sentences having similar semantic or syntactic information
share similar latent mapping and have close spatial distances.
In this analysis scale, the achievement of our proposed
HGTransEnNet has the ability to imitate a similar sophis-
ticated embedding latent space. We select the top 1 k fre-
quent words from the corpus by TF-IDF [65] and calculate
the Euclidean distance between them and corresponding
Indonesian word embeddings. From beginning to end, we
never feed the model parallel corpus, and even though each
word is embedded to a complex dimension vector (Wemb ∈
R1× 768), the mean distance is 11.6327. (�e distance of
most synonyms in English within the English-BERTmodel is
around 9.8722.) And the scatter plot demonstrates an ob-
viously clustering e�ect of sharing similar semantic words.

�is proves that in the latent space, our model is capable of
embedding the language into a similar semantic cluster.

4.8. Performance on Other Languages. Besides the explora-
tion above, we also conduct several thorough experiments
on the performance of approaches in other languages.

4.8.1. Multilingual Datasets. We brie¶y introduced the ex-
periment datasets here. Multilingual WOZ 2.0 [66] is ex-
panded from the restaurant WOZ dataset by including two
more languages, 1200 dialogues of each, i.e., German and
Italian. Following the settings of [64], we use 600 dialogues
for training, 200 for validation, and 400 for testing. �e
corpus contains four slots types: food, price, area, and re-
quest. And the multilingual task-oriented natural language
understanding dialogue dataset (denoted as “Multilingual
NLU”) proposed by [67] contains English, Spanish and�ai,
across three domains (alarm, reminder, and weather). It
contains 12 intent types and 11 slot types.

4.8.2. Compared Methods. We adopt two more related
methods in this experiment besides those introduced in
Section 4.2.

mas, itu taksinya adanya warna apa aja ya?
sir, what colour do you have for that taxi?
Bro, what's the color of the cab?
tiket pesawatnya kalo beli besok berapaan ya?
how much is the airplane ticket if i buy it tomorrow?
What are the plane tickets for tomorrow?
kalo mau pesen tiket, lewat mana mas pesennya?
if i want to order the ticket, how do i order it? 
if you want to order a ticket, where do you order it?

Source Sentence
True Meaning 

Machine Translation

request_taxi_color
request_taxi_color
request_taxi_color

request_price
request_price
request_type

request_ticket
request_ticket

request_location

Source Sentence
True Meaning 

Machine Translation
Source Sentence

True Meaning 
Machine Translation

Christ College is located in the centre at saint Andrew street .
B-name I-name I-name O O O O B-area O B-addr I-addr I-addr I-addr O

Chunks: {'name': 'Christ's College', 'area': 'centre', 'addr': 'saint Andrew 's street’}
Christ College terletak di pusat di jalan suci dan suci .

O O O O O B-area O B-addr I-addr O B-addr O
Translated Chunks: {'name': 'Perguruan Tinggi Kristus', 'area': 'pusat', 'addr': 'jalan suci orang suci’}

Christ College terletak di pusat jalan saint Andrew .
B-name I-name I-name O O B-area B-addr I-addr I-addr I-addr O

Human Annotated Chunks: {'name': 'Christ's College', 'area': 'pusat', 'addr': 'jalan saint Andrew ’s’}

’s ’s

’s

’s

’s

Figure 6: Examples of translation mistakes. �e upper half shows the loss in the slot-�lling task. And the lower denotes a little error when
the model tackle of intent classi�cation will cause signi�cant misunderstanding.

Table 5: Experimental comparison of GCN andHGTransEnNet on
the four main domains of ID-WOZ for intent classi�cation and
slot-�lling tasks.

Task Intent classi�cation Slot �lling
Domains GCN HGTransEnNet GCN HGTransEnNet
Restaurant 40.88 87.69 30.56 77.08
Hotel 46.01 85.23 35.91 77.86
Taxi 47.56 91.38 40.15 87.47
Attraction 37.86 91.59 27.66 89.01
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(i) Zhang et al. [16] proposed a code-mixing approach
to tackle the cross-lingual dependency parsing task.
By adopting the code-mixing transfer method, it is
capable of leveraging syntactic knowledge to transfer
to the target language. +erefore, we here utilize this
transferring idea to implement the multilingual di-
alogue NLU tasks as one of the compared methods,
with the Multilingual-BERT as the embedding pre-
trained model.

(ii) Liu et al. [67] designed a zero-shot adaptation
method for a cross-lingual task-oriented dialogue
system, noted as “Attention-Informed Mixed-Lan-
guage Training (MLT)”. It leverages a few task-re-
lated parallel word pairs generated by the attention
layer from the trained English model and existing
bilingual dictionaries. We here implement it with
multilingual-BERT as the embedding pretrained
model.

4.8.3. Analysis on Other Languages. From the results sum-
marized in Table 8, we have the following observations: con-
sidering the difference among these languages, grammar,
syntactic, cultural background, language family, etc., our
proposed transferring representation method outperforms
others across all of the board. Note that though the quality of
the annotated dataset also affects all of the model’s perfor-
mance, the kind of language still plays amore critical role in the
cross-lingual intent classification and slot-filling tasks. +e
domain, quality, and data scale of Multilingual WOZ 2.0 and
Multilingual NLU are distinctive, but all of the models perform
reliably in German, Italian, and Spanish. Based on the trained
model, we analyze the Euclidean Distance of different lan-
guages in detail. (1) Since within our transferring method, the
model can embed multiple languages corpora into one single
latent space, which makes it possible to compare their latent
distance. As shown in Figure 7, we can intuitively see that
Spanish is the closest language to English. Italian, German, and

Table 7: Distance between English synonyms within the English-BERT model.

English synonyms Distance English synonyms Distance English synonyms Distance
Arrive Reach 9.8753 Complete Finish 9.9882 Divide Separate 10.7683
Pick Take 9.7968 Like Adore 10.1749 Happen Occur 10.3149
Location Position 9.8681 Street Avenue 10.2311 Attain Obtain 10.2579

Table 6: Distance between English and synonyms in Indonesian.

English Indonesian Distance English Indonesian Distance English Indonesian Distance
Address Alamat 9.8347 City Kota 11.8735 Start Bintang 8.8871
Location Lokasi 10.6342 Type Tipe 10.0988 Road Jalan 10.4652
Price Harga 9.9535 Time Waktu 10.3028 Room Kamar 10.8014
Departure Keberangkatan 11.3498 Parking Parkir 9.9913 Cheap Murah 10.2911
Arrive Tiba 11.8612 Hour Jam 10.2833 Phone Telepon 9.7668

Table 8: Experimental comparison of different methods on several multilingual datasets for intent classification and slot-filling tasks. (“†”
denotes the significance testing, taking HGTransEnNet as the base model, all of p value <0.05).

Settings Datasets Multilingual WOZ 2.0 [65] Multilingual NLU [66]
F1 score Language German Italian Spanish +ai
Embeddings Base model Request Slots Request Slots Request Slots Request Slots
Random initialization BiLSTM-attention 80.14 61.37 81.32 64.25 82.01 68.23 67.91 24.33
Machine translation BiLSTM-attention 81.33 60.02 82.84 64.03 82.23 67.48 68.30 23.71
Multilingual-BERT [2] BiLSTM-attention 83.03 62.43 83.12 65.34 84.18 70.82 70.23 25.92
Cross-lingual transfer [13] BiLSTM-attention 83.91 62.95 83.44 65.88 84.03 70.21 70.46 25.61
Cross-lingual code-mix [16] BiLSTM-attention 84.19 65.28 83.27 66.26 84.14 71.88 70.13 26.82
MLT+Multilingual-BERT [64] BiLSTM-attention 85.22 67.48 83.58 68.08 84.22 73.59 70.91 27.14
HGTransEnNet BiLSTM-attention 87.18† 68.01† 84.91† 69.47† 86.56† 74.84† 72.14† 27.44†

Random initialization BiLSTM-attention-CRF 80.32 62.14 81.47 64.82 82.47 69.66 68.10 24.47
Machine translation BiLSTM-attention-CRF 81.53 62.22 82.81 64.26 82.44 69.63 68.58 24.81
Multilingual-BERT [2] BiLSTM-attention-CRF 83.24 63.07 83.04 65.84 84.19 70.76 70.87 26.11
Cross-lingual transfer [13] BiLSTM-attention-CRF 83.78 64.33 83.31 68.61 84.73 71.32 70.88 26.59
Cross-lingual code-mix [16] BiLSTM-attention-CRF 84.17 65.82 83.98 69.04 84.68 73.81 70.91 26.90
MLT+Multilingual-BERT [64] BiLSTM-attention-CRF 85.41 67.57 84.04 69.78 85.03 74.16 71.00 27.42
HGTransEnNet BiLSTM-attention-CRF 87.37† 69.21† 85.17† 71.04† 86.42† 75.52† 72.77† 27.79†
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�ai are getting farther gradually. �is conclusion is also re-
¶ected in Table 8. All of the methods in Spanish, Italian, and
German outperform those in�ai. (2)�e visualization [68] of
our model attention encoding result in di�erent languages is
shown in Figure 8. �e above half of Figure 8 comes from our
collected dataset, i.e., English and Indonesian, and shows a
quite reasonable attention bias. �e model can allocate more
weights on several more domain-speci�c slots, such as “res-
taurant name”, “address” or “food name” either in English or
Indonesian. �e below half shows the representation of the
model for other languages, in which the attention weights also
make sense. For instance, though the model may make a few
mistakes for slot �lling, more weights are focused on the related
keywords like “time”, and “location”. We can see that our
approach has the ability to capture semantic and syntactic
information in di�erent languages.

5. Conclusion and Future Work

�is study presents a Hypergraph Transfer Encoding Net-
work for the tasks of intent classi�cation and slot �lling on

low-resource language, in which the encoding hypergraph is
constructed from both the low-resource language dataset
and the high-resource language dataset. �e semantic rep-
resentation of low-resource language is generated by the
well-designed hypergraph encoding convolutional layers
(HGEnConv). It is achieved by learning the high-order
semantic representation in a transductive clustering manner
from the pretrained resource-rich language model. In ad-
dition, we construct a well-annotated Indonesian dataset
named ID-WOZ, which consists of multiple domains, to
fairly evaluate baselines and our proposed HGTransEnNet.
Experiments on MultiWOZ and ID-WOZ demonstrate the
superior performance of our model to state-of-the-art neural
models on intention classi�cation and slot-�lling tasks. And
our method can also facilitate the exploration of the out-of-
vocabulary problem in the semantic representing scale. As
stated before, representation learning for the low-resource
language is still a highly data-dependent task. Traditional
pretraining models and cross-lingual models rely heavily on
large amounts of the parallel corpus or multi-language
datasets. Future work will consider zero-shot learning,

Shabu Ghin merupakan salah satu restoran Jepang yang menyajikan
menu All you can eat Shabu Shabu dengan pilihan Special beef ,
Premium Beef , Wagyu beef dan Predmium Wagyu Beef .

What is the weather forecast for Tallahassee , Florida next week ?
Cuál es el pronóstico del tiempo para Tallahassee , Florida la

próxima semana ?
Wie ist die Wettervorhersage für Tallahassee , Florida nchste Woche ?

Shabu Ghin is a Japanese restaurant that serves the All You Can Eat
Shabu Shabu menu with a choice of Special Beef , Premium Beef ,
Wagyu Beef and Predmium Wagyu Beef .
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Figure 8: Visualization of the model’s attention in di�erent languages. �e trained model can allocate weights to each token based on
semantic features.
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Figure 7: Euclidean distance between di�erent languages. We calculate the Euclidean distance of every token in each language and its
corresponding English tokens in latent space. And the visualization of their Gaussian distributions shows the distinctive di�erence between
each language intuitively. Spanish is the closest language with English and �ai is the farthest.
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attention mechanism, and high-order relationships in small
sample data to encode embeddings for low-resource lan-
guages. We will also explore its capability in other tasks in
future works.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.
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