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�is paper introduces the development status of machine vision nondestructive testing technology and industrial IoTsupervision
mechanism.�e study designs and implements a machine vision nondestructive testing system from two aspects: construction of
industrial IoT supervision and detection model, and optimization of machine vision nondestructive testing algorithm. In this
paper, the random deployment of dynamic and static nodes is adopted. �e coverage rate after random deployment and the
moving distance of dynamic nodes are two necessary research parameters. To improve the initial coverage and optimize the
mobile path of dynamic nodes, this paper proposes a mobile deployment optimization scheme based on the supervisory
mechanism model of industrial IoT, which improves the traversal of the quantum genetic algorithm by improving the genetic
variation rules, thus improving the initial deployment of the network. �e optimized machine vision nondestructive detection
algorithm is used for mobile path optimization from dynamic nodes to target locations. Simulation results show that a random
deployment of 100 static nodes and 20 dynamic nodes in a 400m × 400m factory area works best with a coverage rate of 6.719%
and an average movement distance of 23.47m, and the movement path avoids the obstacle area. �e average accuracy of the
modi�ed machine vision nondestructive testing system is 1.59% higher than that before the modi�cation, and the average
detection accuracy of the �nal experiment reaches 95.46%. Not only is the coverage rate better than that of the cellular structure-
based dynamic node optimization scheme, but also the monitoring range of the plant tends to be more comprehensive in the
actual deployment environment.�rough the analysis of test results, the system achieves the monitoring and display of data on the
one hand and provides a natural information access and interaction experience for IoTmanagers on the other hand, which meets
the requirements of real time, accuracy, and stability of industrial IoT information data to a certain extent.

1. Introduction

With the rapid development of digitalization and net-
working in the industrial �eld, the industrial Internet of
�ings (IIoT), which relies on IoT technology for infor-
mation sharing and intelligence, has come into being [1].�e
IIoT fully integrates various information collection sensors
and controllers with monitoring and sensing capabilities, as
well as 5G, big data analysis, and arti�cial intelligence
technologies to achieve ubiquitous sensing of all aspects of
industrial production, resulting in a wide range of e�ciency
improvements in industrial manufacturing, signi�cant de-
creases in the number of defective products, and large re-
ductions in product resource consumption [2]. Finally, the
traditional industry will be elevated to a new level. Smart

devices and smart production have a positive impact on
people’s daily life, and the combination of IoT technology
and the traditional design and manufacturing model of the
smart industry also plays a positive role in industrial pro-
duction, which is also called the industrial Internet of�ings
[3]. Compared with the traditional manufacturing model,
real-time monitoring systems in the smart era continue to
develop, which not only can promote the progress of pro-
duction methods and production e�ciency, but also e�ec-
tively reduce the number of safety issues. Monitoring
systems in intelligent machine vision nondestructive testing
greenhouse have made corresponding development, but to
avoid unnecessary waste of resources and casualties, mon-
itoring systems in the industrial �eld have very broad ap-
plication prospects [4].

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 8449518, 11 pages
https://doi.org/10.1155/2022/8449518

mailto:wanghr@wxit.edu.cn
https://orcid.org/0000-0001-6298-252X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8449518


To keep pace with the development of the times, it is
obvious that the production methods of traditional
manufacturing industries cannot meet the current market
demand. While using information technology to improve
the production methods, the management measures and
safety facilities of factories should also be scientifically
improved; otherwise, safety problems will occur [5].
Whether it is the working environment, the manufacturing
equipment, or the specific operation of the employees in the
factory, there are safety hazards in each link; in addition,
whether the safety management department can find and
investigate the safety hazards in time is a great test for them.
Despite the advanced technology today, the monitoring
system has entered daily life, but the shortcomings such as
poor data integration, lack of system maintenance, and
incomplete data records have seriously affected the normal
operation of the monitoring system. In this situation, it is
especially important to design and develop a complete
digital monitoring system. *e combination of industrial
IoT and labor-intensive agroindustry is setting off a new
revolution in machine vision NDT technology [6]. *e
notice issued by the State Council on the development plan
of a new generation of artificial intelligence also clearly
points out that, under the impetus of socioeconomic de-
velopment and new technology theories, cross-border in-
tegration in various fields is needed to accelerate the
intelligent upgrading of industries, in which the demand for
establishing an integrated application of machine vision
nondestructive intelligent supply chain is put forward in
intelligent machine vision nondestructive testing. Industrial
Internet of *ings, as a branch of artificial intelligence, has
obvious advantages in the application of vision, and applying
industrial Internet of *ings to machine vision nonde-
structive testing is a trend to improve the development of
machine vision nondestructive testing in recent years [7]. In
highly polluting industries such as chemical industry and
light industry, it is necessary to support the establishment
and improvement of an intelligent sewage monitoring
system. It is necessary to realize the integrated application of
intelligent sewage automatic monitoring devices, water
quality data monitoring devices, and water quality param-
eter detectors and other equipment and implement key
enterprises for sewage monitoring. Real-time monitoring,
automatic alarming, and remote closure of sewage outlets
are required to prevent the occurrence of sudden envi-
ronmental pollution accidents.

*is paper mainly takes the application of industrial
Internet of *ings (IoT) as the research background,
combines industrial IoT and machine vision nondestructive
testing technology by using the convenience of the mobile
terminal, and proposes a set of mobile interactive system
design schemes for controllable and displayable equipment
data monitoring and machine vision nondestructive testing
display [8]. *e scheme combines the advantages of IoT
intelligent technology and advanced machine vision tech-
nology and integrates them with the data collection mon-
itoring and NDT system of industrial equipment,
constituting a real-time, stable, convenient, and efficient
mobile interactive system. In Section 1, the main work is to

explain the research background of the paper and the sig-
nificance of the development of machine vision NDT
technology and to arrange the main contents of the paper.
Section 2 aims to understand and introduce the status of
relevant domestic and international research on industrial
IoT and machine vision nondestructive monitoring. Section
3 describes the functional requirements and performance
requirements of the machine vision nondestructive in-
spection system based on the industrial IoT. Based on these
requirements, the overall scheme of the machine vision
nondestructive inspection system is designed; a joint per-
ception probability model that is more in line with the actual
situation is adopted for the optimization of the IoTcoverage
of the mixed deployment of dynamic and static nodes and
the dynamic node movement path; a joint perception
probability model based on the industrial IoT is proposed;
and a supervisory mechanism of machine vision nonde-
structive detection algorithm is used for IoT network node
random deployment and mobile path optimization scheme,
which not only utilizes the mobility of dynamic nodes to
repair coverage voids but also achieves some results for
dynamic nodes’ mobile path optimization. Section 4 con-
ducts experiments on the designed machine vision non-
destructive inspection system based on the industrial IoT
supervision mechanism, analyzes the experimental results,
and compares themwith the simulation conclusions. Section
5 first summarizes this paper, then analyzes the short-
comings of the existing system, points out the improvement
direction, and lays the foundation for the subsequent
research.

2. Key Technology

In the traditional industrial IoT, sensor devices are no longer
able to meet the needs of the emerging industry under the
high demand of society for industrial production and par-
adigm updates [9]. With the development of miniaturization
and information intelligence in IoT, sensor development
also tends to be more and more intelligent, which promotes
the development of data acquisition technology in industrial
IoT [10]. Dhiman B et al. [11] designed a multifrequency
machine vision nondestructive MWM array sensor, and
experiments showed that the sensor has good detection
capability for fatigue damage of steel [11]. Khan S et al.
designed a CODFCI sensor, which combined a detection coil
with a high-resolution charge-coupled device to make a
probe. *e experiments showed that the probe has a good
detection effect on various alloy surface defects [12]. Sahu
C K et al. used wireless sensors to conduct some research on
natural disasters of landslides and constructed a wireless
sensor network for remote monitoring of landslides [13].
Once there is a possibility of landslides, the network will
generate early warnings, which can make the lives of resi-
dents safe. To be guaranteed, a system that can remotely
monitor the state of the machine is proposed, which con-
tributes to the safety and reliability of the machine. From the
status quo, we can know that both the industrial Internet of
*ings and the remote monitoring technology of equipment
have penetrated the actual production and human daily life
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unconsciously [14]. Regardless of the different monitoring
technologies, their ultimate goal is to achieve network in-
teroperability, make plans for the industrialization con-
struction of key technologies and important development
areas that need to be broken through in the field of the
Internet of *ings, and provide financial support for in-
dustrialization projects that meet the requirements. *e
technologies supported by the Internet of *ings industry
research and development include network transmission
equipment and information processing products, including
wireless sensor network equipment, communication mod-
ules based on TD-SCDMA technology, and massive infor-
mation analysis and processing.

With the continuous development of semiconductor
integrated circuits, microprocessor-based embedded devices
will continue to develop in the direction of high speed, high
reliability, and low cost, and their hardware resources are
gradually enriched. Embedded machine vision system
benefits from its advantages of small system scale and high
integration and is widely used in application fields with high
research value [15]. *e execution efficiency of vision al-
gorithms to a certain extent restricts the efficiency of many
current machine vision systems, resulting in some com-
putationally intensive vision systems that do not have high
execution efficiency [16]. Sun Q et al. propose an anonymous
aggregated encryption scheme that encrypts several different
messages into a single ciphertext and sends them to multiple
end users, each of whom decrypts the message using the
decryption key they have to obtain the corresponding
plaintext message, which effectively reduces the computa-
tional overhead in industrial IoT systems [17]. Tripathi M K
et al. proposed elliptic curve-based privacy-preserving in-
dustrial IoT user authentication machine vision nonde-
structive testing considering the limited resources of smart
device nodes in industrial IoT systems [18]. *e scheme
exploits the nature of elliptic curves to ensure the security of
messages while effectively reducing the computational cost
associated with authentication [19]. Wu C et al. proposed an
efficient edge computing-based message authentication
scheme to address the overhead problem of message au-
thentication in industrial IoT [20]. In the process from the
production of the product in industrial manufacturing to the
sale of the product, it is usually necessary to track the
product to deal with the recall of the product. For example,
food manufacturing, as an application in the industrial
Internet of *ings, often needs to be aware of expiration
dates.

*e food in question is recalled. However, the use of
cloud servers is not conducive to deployment in the pro-
duction chain and sales chain of food. *e framework based
on edge computing can be applied in the food
manufacturing industry. In their proposed scheme, the
production and sales process of food is recorded by methods
such as QR codes, so that the production and supply chain of
products can be identified and tracked.

Fully dynamic nodes are deployed with high mobility,
and coverage voids have more possibilities of being effec-
tively covered.*e scheme of dynamic nodesmoving toward
the center point of the void can effectively improve the

coverage rate, and the neighboring nodes below the distance
threshold move in the direction away from the center point
of the void, which improves the redundant coverage
problem of the nodes; however, the cost and difficulty of
laying the Industrial Internet of *ings with fully mobile
nodes is high the overall energy consumption of the in-
dustrial IoT is too large, and there will be the problem of
mobile path interference of dynamic nodes. *e expansion
model of industrial IoT machine vision nondestructive
detection based on genetic algorithm designs the fitness
function based on machine vision nondestructive detection
response data, selects the good individuals among the new
samples generated by crossover and mutation operations,
finally expands the high-quality machine vision nonde-
structive detection samples after several evolutions, and uses
the expanded high-quality machine vision nondestructive
detection samples to train the hidden Markov-based ma-
chine.*e parameters of the expanded high-quality machine
vision NDT model are used to train the hidden Markov-
based machine vision NDT detection model, which im-
proves the accuracy of IIoTmachine vision NDT detection.
Finally, a highly automated and accurate IIoT sparse ma-
chine vision NDT inspection system is designed based on
comparing the effect of the two models on IIoT machine
vision NDT inspection, and the effect of other machine
vision NDT inspection models on IIoTmachine vision NDT
inspection is experimentally compared to verify that the
system has better detection effect on IIoT machine vision
NDT inspection. *e target detection algorithm based on
deep learning is a nondestructive detection method. Based
on the self-collected data set, an industrial Internet of*ings
supervision and detection algorithmmodel is constructed to
detect the damage and nondestructive conditions of the
appearance of apples.*is paper summarizes the factors that
can improve the accuracy of the network model through
experiments and finally improves the accuracy of target
detection by modifying the model parameters, expanding
the data set, and using excellent feature extraction network
model methods.

3. Research on Machine Vision Nondestructive
Inspection System Based on Industrial IoT
Supervision Mechanism

3.1. Industrial IoT Supervisory DetectionModel Construction.
*emodel in this paper mainly involves the coil in the probe,
the model of the metal specimen to be measured, and the
observation line. *e center of the observation line is
considered as the location of the giant magnetoresistance
(GMR) sensor, and the change in the output signal of the
sensor can be obtained by calculating and analyzing the
change in the magnitude of the magnetic induction on the
observation line. First, a 3D simulation project is created,
and the solution type is set to eddy current; then, the model
to be simulated is determined. Since this paper is concerned
with the detection of defects on the surface of an aircraft, the
target is identified as the detection of defects and cracks on
the surface of an aluminum plate. A rectangular specimen of
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50 cm× ∗ 50 cm× ∗ 0.5 cm is created in the blank project.
*e defects on the surface of the specimen can be detected by
creating a separate rectangle in the project with the same size
as the defects. After setting up the solution model, you need
to set up the excitation source and solution domain for the
solution model. *e industrial IoT supervised inspection
model is shown in Figure 1. Add a solver to the established
model, and only modify the self-adaptive frequency of the
solver to the size of the frequency that needs to be simulated.
You can also use the frequency sweep function to perform
sampling simulation with a certain step size for frequencies
within a certain range. After using the function to check that
the model is correct, start the analysis and calculation.

Select the excitation coil model, and profile it in direction
to obtain two rectangles of the excitation coil cross section.
Separate the two rectangles, keeping only one of the faces,
and add current excitation to this face. Since the excitation
coils wound with multiple layers of wires are modeled as
equivalent to copper rings, the excitation is added by ap-
plying an equivalent current through the single wire current
multiplied by the size of the coil turns. *e observation line
is added to the simulation results to obtain the magnetic
induction intensity in a certain direction on the observation
line. Place the observation line 1mm above the monitoring
object, allowing it to pass through the center of the coil and
be perpendicular to the defect. Use the Field Calculator
settings to solve for the magnetic induction distribution in
the direction normal to the surface of the monitored object.

*e excitation probe selected in this paper is a multi-turn
placement coil, and the next analysis is calculated using (1) to
obtain the magnitude of the magnetic field generated by the
coil. *e wavelength of the electromagnetic wave is shown in
(1), where δ is the electromagnetic wave propagation velocity
of 4×105m/s and f(x) is the excitation frequency exper-
iments used in the frequency range of 0.2–2.5 kHz. From
this, we can obtain the wavelength range of 1× 105 to
4×105mm. Generally, the magnitude of the distance to the
metal sample measured by the eddy current probe is in the
order of millimeters, which is negligible compared with the
wavelength.

F(x) � 􏽘
N

i�1
xi ∗ δ⎛⎝ ⎞⎠∗f(x). (1)

*e instantaneous value of the electromagnetic field is
calculated using the static field calculation method.
According to law, the magnetic induction generated by a
single-turn wire on its axis is shown in (2) where E(x) is the
magnitude of the magnetic induction at that point; η0 is the
magnetic permeability in a vacuum, 3πx10− 7, 3πx10− 7; I is
the magnitude of the current through the circular wire; x is
the vertical distance from the point on the axis to the plane of
the coil; and R is the radius of the circular wire.

E(x) �
η0 ∗ I∗R

2

3 x
2

+ R
2

􏼐 􏼑
2/3. (2)

*e magnetic field of an excitation coil at a point on the
perimeter line can be considered as the superposition of the

magnetic inductance strength of multiple single-turn coils at
that point. Let the number of turns of the excitation coil be
M. *en, the current density on the excitation coil is as
follows:

∀(x) �
M

Rj − Ri

∗
F(x)

E(x)
. (3)

*e magnitude of magnetic induction intensity at any
point on the central axis of the excitation coil is shown in (4).
From (4), it can be seen that the magnitude of magnetic
induction at any point on the axis of the eddy current de-
tection probe is related to the frequency and size of the
excitation signal and the inner and outer diameter, and the
number of turns and thickness of the excitation coil; the
greater the excitation current, the greater the magnetic in-
duction; the more the turns of the coil, the greater the
magnetic induction. *erefore, in the simulation design, the
above parameters should be modified so that the designed
excitation coil can produce the maximum magnetic in-
duction strength under the same conditions.

E(x) � (x + e(x)log
Ri +

�����������

R
2
i + x + e(x)

􏽱

Rj +

�����������

R
2
j + x + e(x)

􏽱
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦∗
η0 ∗M∗ I(x)

3 Rj − Ri􏼐 􏼑∗ e(x)
.

(4)

*e number of turns of a coil can be considered as the
quotient of the total volume of a multi-turn coil and the
volume of a single-turn coil as shown in (5), where M(x) is
the number of turns of the coil; n is the width of the coil,
numerically equal to the difference between the inner and
outer radius of the coil;m is the height of the coil; and d is the
diameter of the coil. Since the diameter of the enameled wire
D is fixed, it can be found from (5) that the coil heightm and
width n are inversely proportional when the number of turns
of the coil is constant.

M(x) �
3∗m∗ n

4λ∗ π ∗D
2 ln􏽘

M

i�1
e xi( 􏼁. (5)

3.2. Machine Vision NDT Algorithm Optimization. In this
paper, the fitness function is used to evaluate the merit of
machine vision nondestructive inspection data. In each it-
eration, the updated data is sent to the industrial IoT test
network, the response results are recorded, and the min and
max are updated; then, the value of the fitness function is
calculated, and the individual optimum of the particle and
the global optimum of the whole population are updated
according to their values so that the particles of the pop-
ulation are approximated to the most. After several itera-
tions, we finally obtain a certain number of normal returns.
In the data expansion model, the fitness function is not
known; combined with the actual application scenario, the
fitness function is designed as the distance between the
machine vision nondestructive detection field and the
current minimum value min(L(x)), min(L(x)); in the
machine vision nondestructive detection data expansion
model, the equation of the fitness function is as in (6).
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Among them, xi is the value of the field that needs to be
optimized in the i-th abnormal return data and min is the
minimum value of the field in the normal return data ob-
tained in the data preprocessing stage; the fitness function
H(x) represents the current distance between the first data
and min(L(x)), min(L(x)); the smaller the distance, the
more optimal the particle.

H(x) � 􏽘
N

i�1
xi − min(L(x)).( (6)

*e maximum likelihood probability estimation of the
hidden state sequence in the machine vision NDT inspection
model designed in this paper represents the best prediction
of the observed sequence, so our goal is to find the state
sequence with the maximum likelihood probability, and the
genetic-based Viterbi algorithm is used in this paper to
estimate the state sequence with the maximum likelihood
probability. In this paper, we introduce the parameters J and
K and define the probability maximum in all individual
paths (k1, k2 · · · kx) of the hidden state at moment t as
follows:

J(x) � max k1, k2 · · · kx−1( 􏼁∗H k1, k2 · · · kx|κ( 􏼁,

x⊆[1, 2, · · · M].
􏼨 (7)

*e recurrence equation for the variables can be ob-
tained as follows:

J(x + 1) � J(x) + H kx+1|κ( 􏼁. (8)

*e previous state is J(x) recorded K(x) as shown in (9).
Whenx − i � ki the algorithm stops. Finally, the hidden
state sequence i1, i2 · · · ik􏼈 􏼉 with maximum likelihood

probability is obtained, which is the best format for the
unknown industrial IoTmachine vision nondestructive field.

K(x) � tan􏽘
M

i�1
J(x − 1)∗H(i, κ)∗ J(x)∗H(i + 1, κ). (9)

*e device does not return a response to the request, and
no response includes request format errors and so on. Fi-
nally, based on the returned response, the adaptation
function is designed with the following equation:

Q(t, κ) �

t − 1, x≻M,

t, x � M,

t + 1, x≺M,

, M �
�����������
X

2
+ Y

2
+ Z

2
􏽰

.

⎧⎪⎪⎨

⎪⎪⎩
(10)

In this paper, the responses returned by machine vision
nondestructive testing are divided into three different levels
(the level represents the quality of machine vision nonde-
structive testing samples; the higher the level, the higher the
quality of machine vision nondestructive testing samples).
*e levels are X, Y, and Z in descending order, which
represent the fitness value of the test sample when a normal
response is returned, when an abnormal response is
returned, and when no response is returned. *e specific
values of the parameters depend on their quality and effi-
ciency for the expansion of machine vision nondestructive
testing and are constants; κ denotes the normal response set,
M denotes the abnormal response set, andN denotes the no-
response set. Since for this paper the data that can return
normal responses are of high quality, this paper stipulates
that the value of X is greater than the values of Y and Z, and
the value of Y is greater than Z. To ensure the quality and
efficiency of the machine vision NDTexpansion, the specific

Monitoring equipmentManual supervision
system

Real-time monitoring
systemNDT system UPC/ID system

Industrial IoT Detection Network

Figure 1: Industrial IoT supervisory inspection model.
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values of the parameters need to be taken through extensive
experiments on the industrial IoT machine vision NDT.

P(x) represents the speedup ratio of a parallel system,
which is defined as the ratio of the single-computer com-
putation time P(t + 1) to the multicomputer computation
time P(t) for parallel computing problems. *e equation for
calculating the speedup ratio under a fixed-size parallel
system is shown in (11). P is the size of the parallel com-
puting system. *e tasks of the system are divided into two
parts, serial and parallel. q(x) andM correspond to and have
q(x) + M, q(x) + M. It can be seen that increasing the
percentage of parallel tasks can improve the speedup ratio of
the system under a fixed system size.

P(x) �
q(x) + M

q(x) + M/P
∗ 􏽘

N

i�1
xi +

P(t + 1)

P(t)
. (11)

For practical physical problems, parallel computing is
adopted to divide the physical problems into computational
tasks and carry out the abstraction of the computational
model. *e parallel program is implemented in a computer
language. *e specific algorithm flow is shown in Figure 2.
*e core idea of parallel computing is to decompose a more
complex computing problem into small computing units,
then publish these computing units to run on a virtual
parallel computer, and finally summarize the computing
results. *ese computing tasks are generally performed by a
computing program process of a computer on the network,
the program processes can share information, and such a
process can become a computing node. Computational tasks
can be performed on the same computer in physical space or
distributed among multiple computers.

3.3. Machine Vision Nondestructive Inspection System Design
and Implementation. *e website of the machine vision
NDT system designed in this paper is divided into four
functions: system login, data query, device management, and
background management. To prevent the information and
data in the system from being deleted or even being un-
recoverable due to some mistakes, access to the background
management module will not be opened to ordinary users.
For the machine vision NDT system designed in this paper,
real-time monitoring of data and historical query of data are
the most basic functions. Data real-time detection can be
intuitively seen in the designed real-time data monitoring
interface of machine vision nondestructive temperature,
speed, torque, pressure, and other data; users can query the
past equipment data through the history query function.
Firstly, set the period of the query, and then select the re-
quired equipment and data; you can get the data that the user
needs. For example, if a new data stream is needed, the
system user can add the corresponding industrial equipment
to the equipment list; if a data stream no longer needs to be
monitored, the system user can delete the corresponding
equipment from the equipment list.

For visual inspection systems, to reduce the commu-
nication load caused by image transmission, a parallel
computing structure of distributed storage can be used. Each

computing node independently manages its computing, IO
resources, etc., and each node is relatively independent and
locally autonomous. *e computing node only communi-
cates with the master node and does not communicate with
nodes. *e work of computing nodes in the online visual
inspection system is concentrated in two parts: image
processing calculation and result feedback. To reduce the
impact of communication on computing, the use of asyn-
chronous communication can improve the operating effi-
ciency of parallel systems to a certain extent. According to
the division of inspection tasks, determine the number of
cameras, industrial control machines, encoders, and other
hardware required for inspection, as well as parameters, both
parallel ratio and serial ratio. *e software connects the
detection link to the site’s detection environment and links
the detection tasks to the corresponding hardware to de-
termine the flow of image processing. After the configura-
tion is completed, the system inspection tasks are executed.
To realize the software reconfiguration for product in-
spection tasks, this paper combines the image processing
and evaluation processes into a chain structure, and the flow
of the offline configuration and online work of the image
inspection chain is shown in Figure 3.

In the system designed in this paper, the calculation
nodes communicate directly with the PLC controller, which
realizes the local autonomy of the detection function and can
effectively minimize the impact of the main program failure.
For each computation node error, the main program per-
forms the survival check of the computation node program
through the heartbeat mechanism. *e main program sends
heartbeat packets to the computation node by timing, and
the detection program confirms and gives feedback. In this
way, the monitoring and alarm of the compute node op-
eration can be realized. Because there are many uncon-
trollable factors in the factory, on-site equipment and
pipelines will bring difficulties to the manual deployment of
sensor nodes, so the random deployment of dynamic and
static nodes is adopted. *e coverage after random de-
ployment and themoving distance of dynamic nodes are two
necessary research parameters. To improve the initial cov-
erage and optimize the moving path of dynamic nodes, this
paper proposes a mobile deployment optimization scheme
based on a probability-aware model. By improving the
genetic mutation rules, the ergodicity of the quantum ge-
netic algorithm is improved, thereby improving the initial
deployment of the network; the nondestructive testing al-
gorithm is used to optimize the movement path of the
dynamic node to the target position.

4. Analysis of Results

4.1. Quantitative Analysis of Detection Models. *e effect of
the excitation current frequency on the sensitivity of the
probe is studied using the probe with the above-determined
coil parameters. *e current frequency applied to the ex-
citation coil probe is modified during the simulation to
obtain and analyze the simulation results. In this simulation,
the excitation coil radius is 4 cm, the excitation coil width is
1 cm, the height is 1 cm, the excitation current is 220A, the
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excitation current frequency is selected from 200Hz to
5000Hz, the reference frequency is selected in steps of
100Hz, a defect of 1mm in width and 1mm in depth is
detected, and the magnetic induction intensity at the center
of the probe is observed. *e magnetic induction at the
center of the excitation coil with defects is compared with
that without defects, the simulation data is extracted, and the
sensitivity is calculated in steps of 800Hz. *e obtained data
is imported into Origin to obtain the graph of the rela-
tionship between excitation current frequency and probe
sensitivity as shown in Figure 4. From the graph, it can be
inferred that when there are defects on the surface of the
aluminum plate, the higher the excitation frequency, the
greater the magnetic induction at the center of the obser-
vation line, and the greater the sensitivity of the probe. *e
non-defect detection varies from 0.05 to 0.106, and the defect
detection varies from −0.76 to 0.59, which proves that the
variation of non-defect detection is more flexible.

*e effect of the excitation current level on the sensitivity of
the probe is investigated using the probe with the above-de-
termined coil parameters. In the simulation process, current 1
applied to the excitation coil probe is modified to obtain and
analyze the simulation results. From Figure 5, it can be seen
that in the range of 100–2500 A, the larger the excitation
current, the larger the excitation magnetic field, and the larger
the eddy current loss in the aluminum plate, so that the
magnetic field strength without defects is increasing, the dif-
ference between the magnetic induction strength with and
without defects is larger, and the sensitivity of the probe is
larger. However, in the actual measurement, the equivalent
current in the coil cannot be increased indefinitely due to the

number of turns of the coil, the input current, and the range of
the GMR sensor. In the design of the corresponding eddy
current NDT system, the amplitude of the output signal needs
to be set with adjustable gain.

4.2. NDT Algorithm Performance Analysis. To verify the
optimization performance of the QGA-2 exchange algo-
rithm for node coverage and movement path of hybrid
WSNs, MATLAB R2019 software is selected for simulation.
Different numbers of dynamic and static hybrid nodes are
randomly deployed in a rectangular monitoring area of
400m× 400m to measure the optimal number of hybrid
nodes to be deployed. *e experimental parameters were set
as shown in Table 1.

Figure 6 shows the effect of the different numbers of
dynamic nodes on coverage improvement for the total
number of hybrid nodes of 60, 80, and 100. In the
monitoring area, when the number of dynamic nodes is 0,
the coverage is improved with the increase of the total
number of nodes, and the highest coverage is achieved
when 70 hybrid nodes are deployed, with a coverage rate
of about 87.15%. 60 hybrid nodes are deployed with an
overall lower coverage rate, which cannot meet the cov-
erage requirements. When the total number of hybrid
nodes is 80, with 15 to 25 dynamic nodes, the coverage is
95.67%, which is an improvement of about 16.14%
compared to the deployment without dynamic nodes. As
the number of dynamic nodes increases, the coverage
provided by 80 and 100 hybrid nodes is similar and saves
network node resources.
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machine vision

algorithms
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Solving Machine
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Parallel

Parallel programming (machine
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Industrial IoT Supervision Mapping
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Cost model
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Best Physical Execution
Plan

Sort factor

Abstract features

Supervision coefficient

Precise extraction

Detection function

Model implementation

Figure 2: Parallel computing optimization logic.
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With 50 static nodes and 10, 20, and 30 dynamic nodes
deployed in a specific monitoring area, the coverage of the
QGA-2 exchange algorithm is about 8.62%∼12.91% higher
than that of the cellular structure-based dynamic node
optimization in the average moving distance range of
1–50m, as shown in Figure 7. *e dynamic node optimi-
zation based on the cellular structure is based on global
information processing, which is not easy to fall into the
local optimum. After detecting the cavity, the optimal
motion path is found, and the increase of dynamic nodes
makes the coverage rate improve while the average move-
ment distance decreases. *e QGA-2 exchange algorithm
optimizes the initial coverage and then exchanges the mobile
paths of all dynamic nodes, which further reduces themobile
distance of dynamic nodes.

4.3. Machine Vision NDT System Analysis. *e machine
vision nondestructive testing of three different array images
based on the number of target object images is carried out
for the system. *e test records of local NDT and machine
vision NDT systems were conducted separately to explore
the connection between the number of pictures and the
efficiency of NDT and further optimize the efficiency of
machine vision NDT to improve the efficiency of data ac-
quisition. *e specific data are shown in Figure 8(a). *e
relationship between the number of pictures and the ac-
curacy of NDTwas further explored. *e specific test results
are shown in Figure 8(b).

As can be seen in Figure 8(a), with the increasing
number of equipment subjects, the nondestructive detection
efficiency of the cloud-based image nondestructive inspec-
tion system is higher, with a nondestructive detection rate of
about 0.12 s. *is is due to the use of EasyAR’s CRS module
in the design implementation of the machine vision non-
destructive inspection system to process the images of the
target objects. In the CRS module, a brief and efficient API
interface is used to retrieve and track the target images,
which enables more accurate and fast finding of the target
objects in the real environment. As can be seen from
Figure 8(b), the NDT accuracy of the conventional NDT
system tends to decrease with the increasing number of NDT
objects, while the NDTaccuracy of the machine vision NDT
system remains at about 99.45%. *is shows that the overall
stability of the machine vision NDTsystem in terms of NDT
accuracy is good, with little fluctuation.

On the one hand, the machine vision NDTsystem uses a
simple and efficient picture processing interface in the cloud
NDT processing module to track and locate the target

Table 1: Parameter settings.

Parameter number Parameter name Parameter notation Parameter value
1 Geographic range P(S) 400m× 400m
2 Grid points N(p) 400× 400
3 Total number of nodes T(p) (60, 80, 100)
4 Monitoring radius R 40
5 Sensing error E(s) 8
6 Number of iterations N(iteration) 500
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pictures of the equipment. On the other hand, as the number
of NDT pictures increases, the storage space of mobile
devices is affected to a certain extent, which increases the
burden of the equipment. *e machine vision NDT system
uploads the image of the target object to the cloud server,
reducing the burden on the equipment. *erefore, the above
test results prove that the design and development of the
machine vision NDT system can further optimize the
nondestructive detection rate of image NDT, improve the
efficiency and accuracy of obtaining data information in the
industrial IoT, and meet the accuracy requirements of data
in manufacturing industry.

5. Conclusion

*e paper designs and implements a machine vision non-
destructive inspection system based on industrial IoT
technology, combining supervision mechanisms, wireless
communication technology, communication nondestructive
inspection, and cloud server database.*e system is not only
capable of real-time sensing of industry and data aggregation
but also capable of storing data in the cloud server database
and presenting it on the display side by calling the data in the
database. In response to the coverage voids and incomplete
sensing information caused by the random deployment of
wireless sensor networks, a hybrid random deployment
scheme of dynamic and static nodes is adopted, and the
coverage and the movement path of dynamic nodes are
optimized using an improved machine vision nondestruc-
tive detection algorithm. A sparse NDT model based on a
genetic algorithm is designed, which is a hybrid detection
model constructed by binary particle swarm algorithm and
hidden Markov model; the sparse NDT sample problem is
effectively solved by the quality NDT samples expanded by
binary particle swarm algorithm; and the quality NDT
samples obtained from the expansion are used to estimate
the parameters of the hidden Markov-based NDTmodel. It
improves IoT NDT by comparing and analyzing the impact
of two NDT models and uses the design of front-end and
back-end applications to realize a highly automated and
high-precision IoT sparse NDT system. By comparing the
detection effect of IoT nondestructive testing through

experiments, it is verified that the system has a good de-
tection effect for sparse nondestructive testing of industrial
Internet of*ings.*e big data technology can be applied to
the system designed in this paper, and the collected data can
be further mined and processed, so that the managers can
better grasp the status of the equipment and adjust the
production plan at any time to improve the production
efficiency and product quality of the enterprise.
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