
Research Article
Short-Term Prediction Method of Solar Photovoltaic Power
Generation Based on Machine Learning in Smart Grid

Yuanyuan Liu

Department of Mathematics, Lyuliang University, Luliang 033001, Shanxi, China

Correspondence should be addressed to Yuanyuan Liu; 20181029@llu.edu.cn

Received 1 August 2022; Revised 21 August 2022; Accepted 26 August 2022; Published 12 September 2022

Academic Editor: Baiyuan Ding

Copyright © 2022 Yuanyuan Liu. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to improve the accuracy of ultra short-term power prediction of the photovoltaic power generation system, a short-term
photovoltaic power prediction method based on an adaptive k-means and Gru machine learning model is proposed. �is method
�rst introduces the construction process of the model and then builds a short-term photovoltaic power generation prediction
model based on an adaptive k-means and Gru machine learning models. �en, the network structure and key parameters are
determined through experiments, and the initial training set of the prediction model is selected according to the short-term
photovoltaic power generation characteristics. And the adaptive k-means is used to cluster the initial training set and the
photovoltaic power on the forecast day.�eGrumodel is trained on the initial training set data of each category, and the generated
power is predicted in combination with the trained Gru model. Finally, considering three typical weather types, the proposed
method is used for simulation analysis and compared with the other three traditional photovoltaic power generation single
prediction models. �e comparison results show that the proposed short-term photovoltaic power generation prediction method
based on an adaptive k-means and Gru network has better e�ect, better robustness, and less error.

1. Introduction

In the 21st century, with the increasingly �erce global
economic competition, the demand for energy in various
countries is increasing, and the energy problem has become
a key factor a�ecting the international in�uence of countries
[1]. However, with the continuous growth of social and
economic development demand, the use and consumption
of traditional fossil energy are also increasing, which not
only causes the global shortage of traditional fossil energy
but also causes a lot of pollution to the environment, and
these pollution are serious and di�cult to control. �ere is
no doubt that this will run counter to China’s proposal to
build a resource-saving and environment-friendly society
[2–4].

�ere are many renewable energy sources on Earth,
including solar energy, wind energy, and many other energy
sources, but all renewable energy sources have a common
feature, that is, it is not easy to collect, and there is great
inconvenience. Compared with other energy sources, solar

energy is easy to obtain, the use conditions are unlimited,
and there are no major technical barriers to its application.
At the same time, it is inexhaustible. It is a new type of green
energy widely used in the world at present. �e most direct
use of solar energy is photovoltaic power generation [5–7].

As the largest developing country, China’s annual total
solar radiation is between 928 kWh/m2–2333 kWh/m2, and
the annual average solar radiation is 1626 kWh/m2. In most
regions of China, the daily average radiation can reach
4 kWh/m2, which shows that China has superior natural
conditions for photovoltaic power generation [8–11].
Globally, the newly added PV installed capacity increased
from 39.6 gw in 2010 to 580.16 gw in 2019. �e speci�c
growth of each year is shown in Figure 1.

With the policy support of encouraging the development
of photovoltaic power generation in various aspects, China
has made breakthroughs in photovoltaic power generation
technology in recent years. Especially for some central and
western regions of China, a�ected by other energy struc-
tures, they have to transform in this direction. At the same
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time, more and more difficulties are faced, and the research
on the prediction of photovoltaic power generation is also
increasing year by year.

Photovoltaic power generation is the most important
way for humans to use solar energy at present. It will not
affect the environment during this utilization process but it
has the advantages of short construction period, mature
technology, large-scale development, and sustainable de-
velopment. It has broad development prospects and is more
and more valued by people [12]. Since photovoltaic power
generation can only be carried out under sunshine, and there
are weather changes such as day and night alternation and
cloudy, sunny, rainy, and snowy on Earth, the photovoltaic
power station can only generate electric energy during the
day. It is a typical intermittent power supply. Its power
generation is affected by meteorological conditions such as
solar irradiation intensity and ambient temperature and has
great volatility and randomness [13–16].

'ese characteristics of photovoltaic power generation
will have a severe impact on the stable operation of the
power grid when large-scale photovoltaic power generation
is connected to the grid and have a negative impact on the
entire power system, which is one of the important chal-
lenges faced by large-scale photovoltaic power generation.
Relevant research shows that when the grid-connected ca-
pacity of photovoltaic power generation accounts for more
than 15% of the total power generation of the power system,
its fluctuation may cause the paralysis of the power system
[3]. If the photovoltaic power generation power can be
predicted timely and accurately, the impact of the fluctua-
tion of photovoltaic power generation on the power grid will
be greatly reduced, which is of great significance to the
power grid dispatching and the operation of photovoltaic
power stations [17, 18]. It is an important topic for re-
searchers in relevant fields at home and abroad to use some

energy transfer equations or mathematical statistical algo-
rithms to predict the photovoltaic power generation power
in the future, know the output of photovoltaic power stations
in advance and provide a reference for power grid dis-
patching and power station operation [19–24]. However,
errors will inevitably occur in the prediction of photovoltaic
power generation. If the error of the prediction method used
is too large, it will pose a serious threat to the reliability of the
photovoltaic output prediction system developed and can-
not be popularized. As the proportion of photovoltaic power
generation capacity in the total power generation capacity of
the power system increases, the impact of these prediction
errors on the stability of the power system also increases.
'erefore, in order to increase the proportion of photo-
voltaic power generation capacity in the power system and
improve the scale of photovoltaic power generation to ex-
pand its economic and social benefits, it is of great signif-
icance to make a short-term prediction of photovoltaic
power generation [25–27].

'e existing short-term photovoltaic power prediction
methods can be roughly divided into two kinds, one is the
physical method, the other is the statistical method. 'e
physical method is generally to establish the prediction
model through the solar radiation transfer equation and the
operation equation of photovoltaic equipment; Statistical
methods use the relationship between historical operation
data to establish prediction models [28]. Because the
physical prediction model needs to know the specific pa-
rameters of solar radiation equation and photovoltaic
modules, its generalization ability is not strong, and the
prediction accuracy is significantly lower than that of sta-
tistical methods, which have been less used. With the
continuous breakthrough of human beings in the process of
intellectualization and the continuous investment in re-
search, scholars from various countries began to extend the
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Figure 1: Global cumulative and newly added PV installed capacity (2010–2019).
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research on photovoltaic power prediction methods from
traditional statistical methods to artificial intelligence al-
gorithms and achieved good results in photovoltaic power
prediction research based on the neural network. Now the
process of intellectualization has been deeply rooted in the
hearts of Chinese and foreign people. No matter in any field
or anywhere, people expect to realize intellectualization as
soon as possible. 'is is also an important field of current
research, and its performance is more superior and advanced
than other methods. However, the traditional ANN is easy to
fall into a trap called local extremum during training, and its
accuracy still has great room for improvement. Moreover,
the existing high-precision ANN prediction methods need
high-precision input data, and it needs to manually select the
factors that have a great impact on the photovoltaic power as
the input samples, and a lot of preprocessing work needs to
be performed on the sample data before training the neural
network. When the sample is complex and the feature
density is low, the shallow Ann may not be able to effectively
learn the internal relationship between the input data and
the output data, resulting in low prediction accuracy [29].

By comprehensively analyzing the research status of the
above two different directions of point prediction and in-
terval prediction, it can be found that the research and
prediction with the increasing demand for photovoltaic in
the world, and the research results emerge in endlessly.
Among them, the model established by using the deep
learningmethod has high prediction ability, and it is also one
of the main directions of photovoltaic generation point
prediction in the future.

2. Theoretical Basis of Photovoltaic
Power Prediction

2.1. Adaptive k-Means %eory. In the case of three typical
weather types, clustering the photovoltaic output power,
respectively, can build a more targeted prediction model and
further improve the prediction accuracy. Traditional
k-means cannot actively determine the number of clusters
without knowing the data set, so it is not suitable to cluster
the input data set directly. 'erefore, this paper introduces
an adaptive k-means, which can automatically set the
number of clusters according to the input data set. Its main
idea is an iterative process based on distance [30]. 'e steps
of k-means algorithm are as follows:

(1) First, according to our prediction needs, we build
targeted models, mainly to determine the number of
inputs, outputs, and interneurons

(2) 'e second step is to screen the constructed data set
and randomly select k data as a center of our initial
blood drug clustering, which is recorded as:
λ1, λ2, . . . , λk 

(3) 'e third step is to calculate the Euclidean distance
between the remaining samples and the cluster
center through the algorithm and assign it to the
nearest cluster center to form K clusters. 'e

distance measurement formula is given in the fol-
lowing formula:

D(a, b) �

�����������


n

k�1
ak − bk( 

2




. (1)

(4) In the fourth step, the cluster center is updated by the
distance measurement method to be the mean value
of all the samples belonging to the cluster

(5) After the above four steps are completed, a basic unit
step is completed. After that, only steps (1), (2), and
(3) need to be repeated until the algorithm converges

In addition, in order to reduce some unnecessary errors
caused by manual operation to the calculation of the model,
we have also made appropriate improvements to this
method, mainly through some optimization methods of
quantitative search samples to realize the automatic opti-
mization of clustering. K-means selected in this paper is one
of these methods, and its specific definition is shown in the
following formula:

DBI �
1
k



k

i�1
maxj≠i

Ci + Cj

Di,j

 . (2)

In order to avoid generating too many clusters, a
threshold is used to limit the number of clusters, which is
recorded as kmax. 'e adaptive k-means clustering process is
shown in Figure 2.

'e strong randomness and large fluctuation of pho-
tovoltaic power generation are largely related to meteoro-
logical and environmental factors. Temperature, humidity,
wind speed, total radiation, air pressure, and other factors
have varying degrees of influence on photovoltaic power
generation. 'erefore, in this process, it is important to
choose the right method, and this method can correctly
express our impact on the short-term prediction of pho-
tovoltaic power generation. 'rough the expression of
reference 28, we can find that this kind of influence factors
are numerous and vary greatly and are related to various
factors such as regions, among which the biggest influence
factor is climate, which is mainly reflected in the variable
factors of sunshine in the region. If the sunshine is sufficient
and long, the photovoltaic power generation efficiency is
high, otherwise the opposite is true. 'erefore, when we
choose variables and determine factors, we mainly rely on
the above views.

2.2. GRU. GRU is a new neural network model developed
from the deficiency of LSTM. 'e proposal of LSTM solves
the problem of the RNN model. 'ere is also a gated cyclic
unit network in the cyclic neural network, which also solves
the problem that RNN cannot deal with the dependence of
large time step distance. GRU is a variant of LSTM and can
also well capture long-distance dependency problems. 'e
difference between GRU and LSTM lies in the number of
gate units. GRU network simplifies the three gates of LSTM
into gate units: the update gate and the reset gate. 'e reset
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gate is a combination of a memory cell and a hidden layer. Its
function is to control the transmission of the hidden state
information of the previous time to the candidate hidden
state of the current time and then reset the candidate hidden
state information at the current time. 'e update gate is a
combination of the forgetting gate and the input gate. Its
function is to realize the hidden function that the original
structure does not have through its own designed structure
and to update this hidden information through its own
special structure. By simplifying the gate structure, the
network model parameters are reduced, the operation be-
comes simpler, and the performance of the network model is
improved. GRU network structure is shown in Figure 3.

As shown in Figure 3, GRU network is divided into reset
gate rt, update gate zt, Ht, and Ht. 'e calculation ex-
pressions for updating doors, resetting doors, and hidden
states are as follows.

2.2.1. Update Gate. 'e input is the input Xt at the current
time and the Ht−1 at the back time, and the output of the
update gate is zt. zt is the linear combination of Xt and Ht−1,
and then input to Sigmoid function to get a value from 0 to 1.

zt � σ WzXt + UzHt−1 + bz( . (3)

2.2.2. Reset Gate. 'e input is still the input Xt at the Ht−1 at
the back time, and the output of the reset gate is rt. rt is the
linear combination of Xt and Ht−1, and then input to Sig-
moid function to get a value from 0 to 1.

rt � σ WrXt + UrHt−1( . (4)

2.2.3. Candidate Hidden State. Multiply the reset gate
output rt and the Ht−1 at the previous time by elements, and
input the operation result into the tanh function after linear
combination with the current input Xt, so that the value of
the Ht is between −1 and 1.

Ht � tanh WXt + U rt ⊙Ht−1(  + bh( . (5)

From the above formula, we can see the function of reset
gate rt. When rt � 0, the result of element multiplication
between the reset gate output rt and the previous hidden
state Ht−1 is 0. It means that the Ht−1 has no effect on the Ht,
which is equivalent to discarding the Ht−1 information.'en
theHt at the current time is only related to the inputXt at the
current time, which resets the hidden state. Because of this,
resetting the gate at this time helps to capture short-term
dependencies.

2.2.4. Hidden State. 'e update gate output zt is linearly
combined with the Ht−1 at the previous time and the
candidate hidden state at the current time.

Ht � 1 − zt(  Ht + zt ⊙Ht−1. (6)

From the above formula, we can see the function of the
update gate zt. When zt � 1, then 1- zt � 0. At this time, the
hidden state Ht−1 of the previous time completely gives the
hidden state Ht of the current time and completely retains
the hidden state of the current time. At this time, if there is a
long-term dependency, the hidden state information can
also be transmitted and retained. Because of this, GRU can
capture long-term dependencies, which is also the most
critical part of the GRU network. 'en updating doors helps
capture long-term dependencies.

3. Construction of the Joint Prediction
Framework Based on Adaptive K-Means
and GRU

3.1. Construction of the Joint Prediction Model. Because the
photovoltaic output power curve has obvious similarity
characteristics under similar weather conditions, this paper
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Figure 3: GRU network structure.
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Figure 2: Adaptive k-means clustering flow chart.
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forecasts the photovoltaic output power under three typical
weather conditions. 'e main steps of model construction
are as follows:

Step 1: according to the input and output of the model,
determine the basic input and output units of the
model, as well as the number of neurons and the type of
activation function;
Step 2: considering the weather conditions of the day to
be predicted, select the historical similar day data as the
initial training set;
Step 3: normalize all data to obtain the training set and
the test set;
Step 4: use adaptive k-means for clustering analysis of
historical data and predicted daily data under each
weather and combine Gru for training and prediction;
Step 5: get the results of the photovoltaic power gen-
eration prediction model through model training.

'e specific process of the model constructed by this
process is shown in Figure 4.

3.2. Establishment of the Photovoltaic Power Generation
Prediction Data Set

3.2.1. Introduction to Original Data. 'e experimental data
set in this paper is a photovoltaic power generation data set
in a certain region. 'is data set records the relevant power
generation data of more than 100 users equipped with solar
power generation devices in 2020, and the data sampling
frequency is 1 hour. 'at is, taking the power station as the
unit, the respective power and meteorological data are
recorded. 'e fields used in the power generation data table
are shown in Table 1. 'e relationship between the three is:
use� gen + grid. Use is the total power consumption of each
part of the photovoltaic power station; Gen refers to the
power generated by solar photovoltaic power generation
itself; Grid refers to the power that the power station is
connected to the power grid. A positive value indicates that it
is connected to the power grid, and a negative value indicates
that it is output to the power grid. 'e other two powers are
always positive.

'e format of the above power generation data set is
different due to the different types of sensors configured by
each household, and the format of the power consumption
field is also different. When the time information is
recorded, it mainly includes some data sets in the following
three formats: type I data set contains a Gen (generated
power) field, which can be directly used in the prediction
experiment of photovoltaic output; Type II does not contain
a Gen field, which needs to be obtained by subtracting grid
data from use field;'e third type is automatic accumulation
during recording. To obtain the generated power of this
period, you can obtain it by subtracting the data of adjacent
periods. 'e unit of the three is kW, so the unit of pho-
tovoltaic output power in the full text is also kW.

'e weather data matches the power generation data,
and its specific description is shown in Table 2.

Figure 5 shows the photovoltaic output power in one
week. It can be seen that photovoltaic power generation has
obvious diurnal periodicity, volatility, and randomness.
'erefore, we will rely on the powerful feature learning
ability of the deep learning algorithm to analyze and predict
it and realize the effective capture of its characteristics.

3.2.2. Data Preprocessing. It can be seen from Figure 5 that
the power generation data generally has the characteristics of
stable change trend and relatively concentrated values.
However, in some special times and stages, a part of the data
is usually incomplete (lacking some interesting attribute
values), inconsistent (including code or name differences),
and vulnerable to noise (errors or abnormal values). At the
same time, when the database is too large, the data sets often
come from multiple heterogeneous data sources, showing
low-quality data, and the results obtained from network
training are often poor. 'erefore, it is necessary to pre-
process the original power generation data to eliminate the
influence of the dimension of the data itself and other useless
features to ensure the effectiveness of the sample data
training, and it is necessary to carry out standardized
processing.

At present, the normalization of maximum and mini-
mum values based on numerical linear transformation is
often adopted at home and abroad, which restricts the

Photovoltaic data

Units =
50 k value

Hidden
layer=2

Dropout
=50

Batch size = 16

Parameter setting Output

Model training and
testing

Establish Gru model

Adaptive Kmeans
clustering

Data preprocessing

InPut

Figure 4: Prediction framework of photovoltaic output power
based on adaptive k-means and GRU.

Table 1: Field description of photovoltaic power generation data.

Category Full name
Date & time Time
Use (kW) Power consumption
Gen (kW) Generating power
Grid (kW) Grid power
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original data values to [0,1], that is, normalizing the data
through the following formula:

X
∗

�
X − Xmin

Xmax − Xmin
, (7)

where Xmax and Xmin and X∗, respectively, represent the
maximum and minimum values of photovoltaic data types
of the overall data set, as well as the standardized data
obtained from the standardization of this formula, whose
size is not greater than 1 and not less than 0.

3.3. Selection of Prediction and Evaluation Indicators for
Photovoltaic Power Generation. 'e evaluation methods of
the prediction algorithm mainly include: root mean square
error RMSE, average absolute percentage error MAPE,
square sum error SSE, mean square error MSE, and average
absolute error MAE. In this paper, the root mean square
error RMSE and average absolute percentage error MAPE
are used to evaluate the prediction results.

(1) 'e formula of root mean square error RMSE is as
follows:

RMSE �

�������������


N
i�1 Pf
′ − Pa
′ 

2

N



, (8)

where N is the predicted quantity; Pf
′ is the pre-

diction data; Pa
′ Is the actual data; i is the prediction

time.

(2) 'e average absolute percentage error MAPE, whose
formula is as follows:

MAPE �
100
N



N

t�1

Pf
′ − Pa
′



0
Pa
′

%, (9)

where N is the total number of sample data; Pf
′ is the

ith predicted value; Pa
′ is the ith actual value. 'e

MAPE evaluation criteria for evaluating the pre-
diction accuracy are shown in Table 3.

3.4. Model Input Feature Selection. 'is paper selects the
photovoltaic power data in a certain interval of a photo-
voltaic power generation system and collects 24 sample
points every day. It can only select the period of stable output
of photovoltaic power for analysis. 'e photovoltaic power
generation power under different weather is shown in
Figure 6. When the weather is relatively stable, the photo-
voltaic power generation power is the highest in sunny
weather, and the others are cloudy, cloudy and rainy, and
snowy weather in turn. In stable weather, the power fluc-
tuation of the photovoltaic system is small, and the output is
relatively stable, which is close to the parabola as a whole. In
sudden change weather, photovoltaic power generation
fluctuates greatly, which has a great impact on the stable
operation of the entire power grid. 'erefore, distinguishing

Table 2: Description of meteorological data.

Category Temp Dewpt Hum Wgust Wdird Wdire

Description Temperature Dew time Humidity Wind speed Wind direction
azimuth angle Wind direction

Category Vis Press Windchill Heatindex Precipm Conds
Description Visibility Pressure Wind-chill index Calorific value Precipitation Weather type
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Table 3: Description of meteorological data.

Evaluation value Evaluation results
<15% Excellent accuracy
16%–25% Good accuracy
25%–50% Average accuracy
>50% Unreasonable accuracy
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Figure 6: Photovoltaic power generation under different weather
conditions.
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weather types is of great significance for the prediction of
photovoltaic power generation.

To sum up, we can know that there are many factors that
can affect photovoltaic power, but it mainly includes weather
and time period. 'erefore, the characteristic input of
photovoltaic power prediction in this paper mainly includes
the above two kinds.

3.5. Prediction Steps of Photovoltaic Short-Term Power
Generation. 'e combined neural network prediction
model established in this paper mainly highlights the impact
of day type on the output power of the photovoltaic power
generation system. When establishing the model, we need to
focus on this point and improve the weight of day type index
and do not need to consider the impact of weather factors
when predicting. It can adapt to all kinds of weather and has
strong adaptability and good prediction ability.

3.5.1. Determining Input Data. 'e number of nodes in the
input layer corresponds to the input variables of the pre-
diction model. 'e prediction model in this paper has a total
of 12 input variables. Considering the specific geographical
location of the photovoltaic power station selected in the
paper, combined with historical data, the power generation
between 18 : 00 a.m. in a day and 8 : 00 a.m. in the next day is
almost 0, so the power generation of 10 power generation
time series from 9 : 00 a.m. to 18 : 00 a.m. on the day before
the prediction day is selected as the input to the prediction
model.

In the prediction of photovoltaic power generation
output, it is usually necessary to divide the sub models
skillfully according to the type of day, otherwise the pre-
diction model may fail. According to the factors that affect
the photovoltaic power generation system, because the type
of day has a large influence factor in the influencing factors
of photovoltaic power generation output, the paper further
increases the weight of the type of day index when estab-
lishing the prediction model.

3.5.2. Determining the Output Layer. 'e prediction result is
to predict the generation output power in each period of the
day, so there are n nodes at the output end, corresponding to
the hourly output power between 9 : 00 and 18 : 00,
respectively.

4. Case Analysis

4.1. Sample Data Selection. Considering the weather type,
the photovoltaic power in sunny, cloudy, and rainy days is
predicted by using the prediction model in this paper. 'e
data comes from the field measured data of a city in China,
including total radiation, humidity, temperature, and pho-
tovoltaic power generation. 'e data is the real data of 2020.
'e selected time period is between 9 : 00 and 18 : 00, and the
sampling interval is 15 minutes, that is, the number of
sampling points in a day is 40.'e predicted days are the first
period in the period, i.e., sunny days. 'e second period was

cloudy and the third period was rainy. Due to the lack of
snow data, it is not included in the analysis and prediction.
'e power fluctuation caused by meteorological factors in
adjacent periods is small. 'erefore, the data of similar days
with the same weather similar to the forecast day is selected
as the initial training set. According to the type of forecast
days, the similar 10 days are selected as the initial training
set.

4.2. Cluster Analysis. Taking the total radiation, humidity,
and temperature of similar days and forecast days as inputs,
the photovoltaic power generation power under three
weather types is clustered, respectively. 'e initial training
set is 400 time sampling points, plus the data of the forecast
day, a total of 520 data. According to the previous analysis,
adaptive k-means are used for clustering. Considering the
length of the data, kmax is set to 10. Take time period 1
(sunny) as an example for analysis. 'e value range of K is
[2, 10]. DBI when k takes different values is shown in
Figure 7.

According to Figure 7, when k is taken as 6, DBI is the
largest, which is 1.61; When k takes 4 and 8, DBI is the
smallest, which is 1.28. At this time, the clustering effect is
the best. 'erefore, the data of the initial training set and the
forecast day on sunny days are divided into three categories,
which are called class 1, class 2, and class 3 here. Similarly,
adaptive k-means are used to cluster the data of the initial
training set and the predicted day in cloudy and rainy days,
respectively. When k is taken as 4 when it is cloudy, DBI is
the smallest, which is 1.12. In rainy days, K is taken as 4, and
DBI is the smallest, which is 1.46.

4.3. Analysis of Prediction Results. In order to compare the
advantages of the model constructed in this paper, in ad-
dition to the training of the constructed model, this paper
also selects two other commonly used short-term prediction
models (LSTM and BP) and a single GRU model for
comparative analysis.

Among them, the photovoltaic power prediction results
in sunny weather are shown in Figure 8, and the prediction
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Figure 7: DBI with different k values.
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error is shown in Table 4. In sunny, the fluctuation of
photovoltaic output curve is small, and the power change has
a certain regularity. 'e four models show good prediction
results. By analyzing MAPE and RMSE, it can be found that
the error of the proposed adaptive k-means GRU prediction
model is smaller than that of the single prediction model and
the other two models, and the accuracy of the single model

prediction is slightly reduced when the power curve fluc-
tuates slightly at noon. Compared with GRU, LSTM, and BP
model, the proposed prediction model based on adaptive
k-means GRU can be better close to the actual power curve
as a whole, and the fitting effect is the best.

'e photovoltaic output power prediction results and
RMSE and MAPE results under cloudy weather conditions
are shown in Figure 9 and Table 5, respectively. In cloudy
weather, the sunshine is obviously lower than that in sunny
weather due to the influence of weather. It is also due to the
change of such complex factors that it is difficult for each
model to control such variable factors, thus it is easy to lead
to a series of prediction errors. 'e prediction results and
RMSE and MAPE results are prone to large deviations, and
the comparison of the prediction accuracy of various models
is thus revealed. It reduces the influence of power data
fluctuation on the accuracy of the model and improves the
prediction performance of the model during the period
when weather conditions fluctuate. In cloudy weather, the
MAPE value of k-means Gru is lower than that of Gru,
LSTM, and BP, and the values of each model are 0.04, 0.13,
0.21, and 0.37, respectively. It can be seen that the error value
of the k-means Gru model is significantly lower than that of
other models and is 10.81% of that of the BP traditional
neural network model. 'erefore, according to the above, it
can be concluded that the prediction performance of the
k-means Gru model for photovoltaic is better and the
prediction deviation is the lowest.

'e prediction results of photovoltaic output power and
RMSE andMAPE results under rainy weather conditions are
shown in Figure 10 and Table 6. Under the condition of rainy
weather, the influence of weather is more obvious than that
of overcast weather, and its sunshine is significantly lower
than that of overcast weather, accompanied by the inter-
ference of rain. Under the change of this more complex
factor, the conditions for controlling this variable factor are
more stringent, which leads to more prediction errors, and
its prediction results and RMSE andMAPE results are prone
to large deviations. 'e comparison of the prediction ac-
curacy of various models is thus easier to show. When
weather condition fluctuates from time to time, it is also
called sudden change weather, which is found through the
prediction results. Under the sudden change weather of
rainy days, the MAPE value of k-means Gru is lower than
that of GRU, LSTM, and BP, and the values of each model
are 0.08, 0.17, 0.27, and 0.42, respectively. In contrast, other
models jump out of the predictable range and the acceptable
error range. Only the model error constructed in this paper
is still within the controllable range, and the intelligent
k-means Gru model has a better prediction performance for
photovoltaic, with the lowest prediction deviation.

Table 5: Photovoltaic power prediction error in cloudy weather.

Model RMSE MAPE/(%)
GRU 19.17 0.17
LSTM 23.16 0.27
BP 35.44 0.42
Kmeans-GRU 10.12 0.08
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Figure 8: Photovoltaic power prediction results of different models
on sunny days.

Table 4: Photovoltaic power prediction error in sunny weather.

Model RMSE MAPE/(%)
GRU 16.33 0.13
LSTM 19.24 0.21
BP 27.18 0.37
Kmeans-GRU 8.15 0.04
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Figure 9: Photovoltaic power prediction results of different models
for overcast world.
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Based on the short-term prediction results of the above
four models for photovoltaic power generation, it can be
found that the adaptive k-means Gru model constructed in
this paper has better advantages than other models in terms
of the prediction of sudden weather, such as sunny, cloudy,
or rainy days. Its errors are lower than other models, and its
accuracy is higher, which verifies the effectiveness of the
adaptive k-means Gru short-term photovoltaic power
generation prediction model constructed in this paper.

5. Conclusion

In order to solve the short-term prediction accuracy tem-
perature of photovoltaic power, this paper divides the
weather types and proposes a photovoltaic power ultra-
short-term prediction model based on the adaptive k-means
GRU method. 'e adaptive k-means is directly used to
cluster the initial training set and the photovoltaic power of
the prediction day and find out the local characteristics of
the data and predict the power. 'ree single models are
established to compare with the proposed model, and the
prediction error is evaluated according to MAPE and RMSE.
'e proposed model solves the problem of low accuracy of
traditional prediction methods in power fluctuations. 'e
main conclusions are as follows:

(1) Photovoltaic output power has great randomness,
among which there are many influencing factors,
including injection time and weather, especially the

weather type has a great impact on photovoltaic
output power.

(2) By using the combination of adaptive k-means and
Gru models, the data preprocessing and clustering
analysis of the initial training set and the photo-
voltaic power generation on the forecast day can
significantly improve the prediction accuracy of the
model.

(3) 'rough comparison with other models, it is found
that the prediction performance and stability of the
model proposed in this paper are better in sunny
days and cloudy days, and the prediction perfor-
mance is improved in rainy days. 'e prediction
error value of the model is significantly lower than
that of other neural network models, and only
10.81% of that of the BP neural network, thereby
indicating the reliability of the model.

(4) According to the prediction results of sunny, cloudy,
and rainy days, the prediction accuracy of the
adaptive k-means and Gru combined model meets
the ultra-short-term prediction requirements of the
output power of the photovoltaic power generation
system. 'e difference between predicted power and
actual power is small, and the prediction error value
does not affect the normal operation of the system.
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