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The problem of how to use large amounts of historical data for tunnel safety management has a greater practical application value.
The association rule method in data mining technology can provide effective decision support for tunnel safety prevention by
mining historical data. To address the problem of large data volume and sparse data items in tunnel safety management, an
association rule method—Apriori algorithm—based on the Hadoop platform is proposed to improve the efficiency and accuracy
of data mining in cloud environment. First, the parallel MapReduce implementation steps are analyzed on the basis of the
distributed Hadoop framework. Then, the existing single-user data validation algorithm is improved by applying a multiuser
parallel validation algorithm to Apriori in order to reduce the number of validations. Next, the traditional association rule Apriori
algorithm is MapReduce optimized to generate a smaller set of useless candidate items. At the same time, Boolean ranking is used
to optimize the way transactional data are stored in the database, reducing the number of redundant subsets and the number of
times the database is connected, and shortening the task processing time. The experimental results show that the proposed method
is able to mine the relationships between tunnel safety hazards and provide effective decision support for tunnel safety prevention.

At the same time, the proposed method more efficiently operates than other association rule methods.

1. Introduction

China started building its first railway tunnels in 1888.
According to statistics from 2004, more than 7,400
tunnels with a total length of 4,200 km were in operation
in China’s railways, but over time, a large number of
tunnels have gradually started to present safety hazards.
Statistics from the Chinese railway authorities in 2015
show that 67.5% of the tunnels in Sichuan province, for
example, have varying degrees of safety hazards. Some of
these safety hazards have endangered normal working
safety and are tending to become more and more serious.
The railway authorities test tunnel safety indicator data
every year and have accumulated a large amount of
historical data. However, these data are basically idle and
do not play an effective role in the prediction of security
problems.

At this stage, the traditional management system only
performs some simple queries and statistical work on
these collected data [1-5]. Although, every year, the
railway authorities invest a lot of manpower and funds in
the maintenance and protection of tunnels, the safety
condition of tunnels still does not show any significant
improvement. This is because such manual statistical
methods cannot effectively uncover the safety risk pat-
terns’ latent in these data. Therefore, more advanced
analytical techniques are needed to extract the safety risk
characteristics of railway tunnels [6-8]. In addition, we
need to find some subtle relationships hidden between a
large amount of tunnel safety-related data, so as to provide
strong decision support for the daily maintenance and
safety inspection of railway tunnels [9, 10]. The associa-
tion rule approach in data mining techniques is a powerful
tool to help us achieve this.
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Data mining is the process of extracting potentially
useful information and knowledge from fuzzy, random real-
world application data [11-14]. The data source must be real
and noise-laden. Data mining discovers knowledge that is of
interest to the user. In a broad understanding, concepts,
rules, patterns, laws, and constraints are knowledge. Data
can be structured, such as data in a relational database. Data
can also be semistructured, such as textual, graphical, and
image data. The knowledge found can be used for infor-
mation management, query optimization, decision support,
and process control. Thus, unlike low-level simple queries,
data mining is a cross-cutting discipline [15-17] that can
provide more advanced decision-making. In contrast to
traditional analytical methods (e.g., query and online ap-
plication analysis), data mining mines information and
discovers knowledge without explicit assumptions.

The association rule mining is one of the key research
directions in data mining and is used to discover interesting
associations between sets of items from large amounts of
data. A typical example of association rules is the shopping
blue analysis. For example, in the transaction database of a
supermarket, association rules exist as follows: 20% of
customers buy both item A and item B in one shopping trip;
80% of customers who buy item A also buy item
B. Association rules have a wide range of applications
[18, 19]: in business, association rules can assist companies
in market analysis and customer relationship management;
in genetics in biology, association rules can be used to
analyze the correlation between gene expressions; and in
cyber security, association rules can reveal the relationship
graph between different attacks. The classical Apriori al-
gorithm, proposed in the early 1990s [20], offers a com-
pletely new way of working with data for analysis. The basic
idea of Apriori is to find relationships between different
items from a database of historical transactions. The core of
Apriori is to discover relationships between items by re-
peatedly scanning the data [21]. “Google predicts the flu,”
“beer and nappies,” and “predicting pregnant women” are
typical examples of the association rule algorithm—Apriori.
Djenouri et al. [22] effectively reduced the number of
candidate itemsets by using the Apriori algorithm in the
process of generating candidate itemsets, so the performance
of data mining has been greatly improved. Li et al. [23]
proposed a multilevel association rule mining algo-
rithm—cumulate. The cumulate algorithm adds the ancestor
of each item to the transaction database and then uses the
Apriori algorithm to mine the extended database. The cu-
mulate algorithm avoids the generation of redundant fre-
quent patterns in the mining process. Javed et al. [24]
proposed an improved algorithm based on Apriori. This
algorithm starts mining at the higher levels of the concept
hierarchy tree and then proceeds down to the lower levels in
turn. The Apriori algorithm is still used when mining on
different concept layers, but a different support threshold
can be used for each concept layer. However, the above
algorithm still needs to generate a large number of candidate
sets and needs to repeatedly scan the transaction database to
verify the frequency of these candidate sets, which seriously
affects the efficiency of the algorithm.
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There is no doubt that the weak storage and computa-
tional capacity of individual computer nodes can no longer
meet the needs of big data mining. The Hadoop system has
the two main advantages of distributed storage and parallel
computing when dealing with large amounts of data. De-
velopers can easily develop applications on the Hadoop
platform [25-28], and the Hadoop system is able to perform
distributed analysis of huge amounts of data on a cluster of
computers using a simpler programming model. In recent
years, there has been a proliferation of Hadoop-based ap-
plications. Yahoo built the largest Hadoop cluster at the time
in February 2008 using 2,000 nodes, and Facebook built a
Hadoop cluster to perform machine learning-based data
analysis research. Alibaba (the world’s largest B2C provider)
built a Hadoop system to store and analyze huge amounts of
transaction data. The Apriori algorithm in the association
rule model is mainly used to find out frequent patterns or
association relationships between items in a large amount of
historical data. However, due to the inherent problems of the
Apriori algorithm [29], when the volume of data is huge, it
generates a complex computing process. At this point,
continuing to use the Apriori algorithm to analyze and
process the data would result in a less efficient system ex-
ecution. Therefore, more and more researchers have started
to try to improve the Apriori algorithm in order to improve
the efficiency of data mining.

A similar problem exists in the historical tunnel safety
data. Due to the complex topography of China and the fact
that China is also a large tunnel country, the railway tunnel
management has to carry out several inspections of railway
tunnels across the country every year. The long-term in-
spection process has accumulated a large amount of his-
torical tunnel safety data. However, these data have largely
been left unused and have not played an effective role in the
prediction of safety risks. The Hadoop system provides a new
way to solve this problem.

The aim of this research is to implement data mining
algorithms integrated with a Hadoop system and applied to
the task of mining historical tunnel safety data. The proposed
method can provide effective decision support for tunnel
safety prevention by mining historical data.

The main innovations and contributions of this study
include the following:

(1) Dividing the larger tunnel history security data
database into several very small databases so that
these smaller databases can be run under Hadoop. In
other words, when the Apriori algorithm operates on
large amounts of data, the large amount of tunnel
history safety data is divided so that it can perform
parallel computational operations.

(2) In order to run association rule mining on the
Hadoop system framework, the existing single-user
data validation algorithm was improved by applying
the multiuser parallel validation algorithm to Apriori
in order to reduce the number of validations.

(3) The traditional association rule Apriori algorithm is

improved by reducing the number of redundant
subsets and the number of times the database is
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linked. Also, Boolean permutations are used to
preprocess the optimized database, thus reducing the
task processing time.

The rest of the study is organized as follows: In Section 2,
the cloud-based Hadoop systems are studied in detail, while
Section 3 provides the Hadoop-based optimization of as-
sociation rule mining. Section 4 provides the experimental
results and analysis. Finally, the study is concluded in
Section 5.

2. Cloud-Based Hadoop Systems

2.1. Cloud Computing Theory and Related Technologies.
Cloud computing is currently a research hotspot in com-
puter science and technology, which has gained the attention
of many enterprises and related internet experts, and is an
important trend in the future development of computer
network technology. The concept of cloud computing was
first introduced by Google’s CEO, Eric Schmidt, at the
Internet Conference in 2006. A typical cloud computing
platform needs to have (1) a gridded data storage matrix
network; (2) firewall devices; and (3) computing resource
devices. A cloud computing platform allows users to re-
motely use a scalable cloud storage space for cloud appli-
cation services through a lease, as shown in Figure 1.

A complete cloud computing architecture should in-
clude the following: an access layer, a core layer, a resource
aggregation layer, an API interface layer, and an application
layer, as shown in Figure 2.

2.2. Distributed Hadoop Framework. Hadoop is a framework
consisting of different software libraries (also known as
functional modules). The most important components of
Hadoop include Common, HDFS, and MapReduce. The
Hadoop cloud platform has shown excellent performance
when solving big data mining problems. As one of the three
major distributed computing systems, Hadoop can easily
accomplish the fusion of different structural types of data.
Hadoop can provide a computing environment with dis-
tributed storage across computer clusters. Hadoop has
unique advantages in data analysis. Information resources in
the big data environment are characterized by openness. In
addition, considering the problem of big data throughput,
the fluency of resource interaction is particularly important
in the process of user behavior data mining. As big data is
more frequently uploaded and downloaded, the Hadoop
platform is better suited to the management of historical
tunnel security data.

The core architecture of a Hadoop ecosystem is shown in
Figure 3.

Common is a functional module at the bottom of the
Hadoop core architecture [30] and is the basis for other
software libraries. Common provides tools for various
Hadoop subprojects, such as system configuration tools,
remote procedure calls, and serialization mechanisms.
HBase is an open-source distributed database based on
Hadoop Distributed File System (HDFS), and HBase has the
advantage of being able to read and write large datasets

FIGURE 1: Principle of cloud computing services.
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FiGure 3: Distributed Hadoop framework.

randomly in real time. Hive is a data warehouse tool for
Hadoop that maps structured data files into a single data
table. Pig’s data processing is transformed into a MapReduce
job designed to analyze plain text input files. Lmpala is a
unified platform for real-time queries. Flume is a distributed
data collection system that addresses the collection, aggre-
gation, and transfer of large volumes of logs.

2.3. Analysis of MapReduce Working Principles. First, we
need to analyze the steps of a parallel MapReduce imple-
mentation based on the distributed Hadoop framework.
MapReduce greatly simplifies and improves programming
efficiency while ignoring the underlying hardware. For the
tunnel history safety data database to work in a MapReduce
model, it must be split. Each small piece of data after splitting



requires that it be able to perform operations independently
and in parallel. Each MapReduce job performs a split of the
input large dataset as it performs its operations. The
MapReduce framework consists of a master job tracker and a
number of Slave job trackers together, where the number of
Slave job trackers depends on the number of nodes in the
cluster. The MapReduce working in the mechanism of
MapReduce is shown in Figure 4.

When data or information is exported, the Map function
will apply a DAG map to save it to memory.

DAG = (W, E, DAG,,)

W ={w Map}, {Reduce}, Param, Input, Output},

(1)

where W denotes the output of the DAG graph, Wyame
denotes the name of the output sequence, (Map) denotes all
Map tasks, (Reduce) denotes all Reduce tasks, Param de-
notes the task-related system configuration parameters,
Input denotes the input sequence, and Output denotes the
output sequence. e denotes the coefficient between the 2 jobs
in MapReduce. DAG;,, denotes labeled data.

E = (Path, StartTK, EndTK), (2)

name’ {

where Path denotes the path where the memory buffer is
saved, StartTk denotes the target of the current Map
function, and EndTk is the target of the subsequent Map
function.

3. Hadoop-Based Optimization of Association
Rule Mining

3.1. Tunneling Security in Hadoop Mode. The cloud Hadoop
platform breaks geographical and time constraints to unify
the management of tunnel security. Hadoop stores tunnel
security data on the cloud, thus enabling data sharing. The
mining of data on Hadoop requires advanced association
rule technology to support it, especially as the volume of
tunnel safety data is large and the data items are sparse. The
Hadoop-based tunnel security management model has the
following three main changes: (1) the system architecture
model has changed; (2) data sharing in the cloud computing
environment has changed the traditional way of working
with statistics; and (3) the security risks of tunnels have
become more prominent. In order to improve the efficiency
of association rule mining in the Hadoop model, a tunnel
security data storage system in the cloud environment has
been designed, as shown in Figure 5, to guarantee the in-
formation connectivity between data nodes.

3.2. Parallel Verification Algorithms. Traditional data vali-
dation algorithms can only complete data integrity valida-
tion for one user during a single validation calculation. The
above analysis of the MapReduce working principle shows
that this problem can seriously affect the efficiency of
running association rule mining on the Hadoop framework.
Therefore, a parallel validation algorithm is proposed in this
study. The proposed parallel verification algorithm can
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verify the data of multiple users in parallel during the
computation of a single verification. The proposed parallel
verification algorithm not only reduces the number of
verifications in the verification computation but also reduces
the data transfer bandwidth required for authentication
between the user (third-party verifier) and the cloud storage.
The cloud storage security architecture is shown in Figure 6.

The specific steps of the proposed parallel validation
algorithm are as follows:

Step 1. Generate relevant files. Matching secret keys
(public and private) are generated for all users and stored in
a third-party trusted certification authority. We set the file
signature for each file block in the verification file
F = (m;,m,,...,m,) to o;.

o;=(H3 - -u™), (3)

where H (i) is a hash function, and x and u are both random
numbers.

Step 2. Send a validation request. We generate a sequence
CHAL of validation requests for each file block.
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FiGure 6: Cloud computing storage security architecture.

CHAL ={(i,v;)}, (4)

where i is the sequence number of the file block, and v; is the
corresponding random number.

Step 3. Generate authentication messages. In order to
achieve multiuser parallel authentication, it is first necessary
to complete the grouping and merging of all user files first.

Hie = Z Vity; + Py (5)

i=1

where p, represents the random number generated for each
user during each verification by the cloud storage server. The
signature is then computed.

K n
0=H( lazii~rk>, (6)

k=1 \i=

where 0}, indicates the digital signature of a single docu-
ment, and r; = i,

Step 4. Complete verification of the results of the group
merge and determine whether the cloud storage is correct.

3.3. Database Preprocessing Optimization. In this study, the
rotation method is used to realize the partition operation of a
parallel database. We scan the relationship sequentially and
store the ith tuple on the disk labeled Dimod, thus ensuring
that the tuples are evenly distributed on multiple disks. The
Hadoop cloud platform has shown excellent performance in
solving such big data mining problems, but centralized
processing can easily cause network congestion problems as
data become more complex and databases become larger. As
a result, traditional cloud computing systems are no longer
able to effectively solve big data processing tasks. Currently,
parallel MapReduce job stream processing techniques on a
distributed Hadoop platform are the mainstay of research
today. In order to effectively implement Apriori on the
distributed Hadoop platform and further improve the ac-
curacy of recommendations, an Apriori optimization al-
gorithm based on the Hadoop platform is proposed.

A variety of improvements to the Apriori algorithm have
been proposed by many. Most of the improvement algorithms
increase the speed but decrease the accuracy. For example, data
filtering improvement algorithms often filter out some

important data, which affects the final frequent set obtained.
Other improvement algorithms, such as the hash tree technique,
focus only on running the algorithm process. Huge hash trees
can be problematic when dealing with collisions. Almost all of
the improved algorithms focus on the algorithm itself and often
neglect to look at database preprocessing.

In the first step of the traditional Apriori algorithm,
multiple scans of the database are required. When the amount
of data stored in the database is large, this way of recording
and mapping the data takes a lot of time. In order to reduce
the number of database scans and thus improve the efficiency
of the algorithm, this study uses Boolean alignment to pre-
process and optimize the way in which transactional data are
stored in the database. When reading transactional infor-
mation from the database, the method only needs to perform
one scan of the database, which greatly improves the efficiency
of the algorithm. Let I be the set of items and D be the set of
task-related transactions in the database. Each transaction T'is
the set of items satistying the condition T C I. The matrix of
the set of items I is shown as follows:

dy dyy ... dy,

dy dy ... d
D=(D,D,,...,D,)=| > "7 L

Ay dpy .. dyy

where m is the total number of transactions, and 7 is the total
number of items.
The vector of each term I jis calculated as follows:

D= | (8)

where «;; is defined as follows:

ij

0l ¢ T,

o = . (9)
! 1, €T,

Therefore, the support of I; for support (I;) is cal-
culated as follows:

support (Ij) = Z"‘ij' (10)

In addition, we can obtain the k-item set support, which
is also a fuzzy criterion for multiattribute decision-making.

P
support (I, L., 1) = Y {(dy A dih .o Adyy)dy)s

t=1
(11)

where the symbol “A” indicates a logic operation.

3.4. MapReduce Parallelization of the Apriori Algorithm.
The traditional Apriori algorithm steps require repeated
execution of the join and scan database operations, which



significantly reduces the efficiency of the execution.
Therefore, in order to reduce the number of redundant
subsets and databases being concatenated, in this study, the
process (join step) for generating the candidate itemsetCyhas
been improved as shown in Table 1.

In order to implement the optimized Apriori algorithm
concretely in the Hadoop framework, the traditional Apriori
algorithm process is optimized for MapReduce processing in
this study, as shown in Figure 7.

With the above steps, it is possible to reduce the number
of database connections (only one scan is required) while
generating as few useless candidate sets as possible in order
to improve the accuracy and efficiency of the association rule
mining. Although the time complexity of the new algorithm
has increased, the computational efficiency has been greatly
improved. The new algorithm is significantly more efficient
in memory operations than the traditional algorithm for
database I/O operations.

The execution process of the MapReduce function
mainly includes two parts:

(1) The execution of the Map function. A Slave assigned
with map task reads a data block to get key/value
pairs, and then, the Map function processes the-
se < TID, ITEM > to get local Ly.

(2) The execution of Reduce tasks. When all the data
blocks are analyzed, Reduce Slave starts to work.
According to the arrangement of Master, each Re-
duce reads the files (local frequent itemsets) in the
local disk of Map Slave, and generates the global
frequent itemsets after calculating and merging by
the Reduce function.

4. Experimental Results and Analysis

4.1. Experimental Environment Setup. There are three ways
to build Hadoop [31]: local mode, pseudodistributed mode
(the Java processes corresponding to Hadoop run on a single
physical machine), and clustered mode (the Java processes
corresponding to Hadoop run on multiple physical ma-
chines). Since the cluster mode built on a virtual machine is
close to the actual production environment, we will use this
deployment mode to build the Hadoop system in the fol-
lowing. This experiment uses 20 servers to build the Hadoop
runtime environment, and all 20 servers use CentOS 7 as the
operating system. We take six servers as an example, and the
hardware configuration and IP and other information are
shown in Tables 2 and 3.

We use the WinSCP tool to upload the jdk-8u45-linux-
i586.bin downloaded from Oracle’s official website to the/
usr/local directory of the Linux operating system. We unzip
and complete the JDK8 installation, then configure the
following environment variables in the profile file in the etc
directory: export JAVA_HOME =/home/jdk; export
PATH =$JAVA_HOME/bin:$PATH. save and exit, and we
use the source/etc/profile command to refresh the envi-
ronment variables you just configured. To ensure that the
hostname and IP address of each node in the cluster are
correctly resolved, we need to bind each node hostname to
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TaBLE 1: Optimization algorithm for association rules.

(1) for each Ix Lk- 1;

) {

3) for each ly lk- I;

4) {

(5) if (Ix [1] =1y [1]Alx [2] =1y [2]Alx [k- 2] =1y [k-2]Alx [k- 1]
<ly [ k- 1])

(6) {

7) c=Ix U ly; //Complete the concatenation of the two
item sets;

(8) ck=cU ck;

) t

10) else break;

(11 1}

(12) }

(13) end for

(14) return ck//Returns the item sets of generated by the join;

its corresponding IP address. Execute the #ssh-keygen-t
command on each machine to generate an encrypted file.
Execute the scp /root/.ssh/authorized_keys command on the
namenode to generate the configuration file.

The first time you start Hadoop, you must first format
the NameNode node. On the master node Hadoop0, we
execute the #hadoop namenode format command to ma-
nipulate the formatting. Then, we use the command to start
the cluster, as shown in Figure 8.

4.2. Results of Mining Railway Tunnel Safety Data. The ex-
perimental data were derived from tunnel safety inspection
data provided by the Sichuan Railway Bureau in China. A
total of 2,787 tunnel safety inspection data in total were
available in 2016. The raw data cannot be directly analyzed
by association rule mining. Prior to the data mining work,
preprocessing of the data, such as removing redundant
information from the data based on intuitive experience, is
required. The final training set obtained for the 2016 tunnel
safety data mining part is shown in Table 4.

The Hadoop-based association rule algorithm was used
to mine the relationships between security hazards at a
support level of 0.3%. After processing by Java program,
frequent I-item sets were obtained by scanning the data. The
training set was also sorted according to the value of the I-
item set from largest to smallest, while pruning (removing
the nonfrequent I-item set from the training set) was per-
formed. The key safety hazards of the tunnels that were
mined are shown in Table 5.

As can be seen from the excavation results shown in
Table 6, most railway tunnels occur with more than one
safety hazard. These safety hazards occur in groups. One
safety hazard can often cause the occurrence of another or
several safety hazards, as shown in Figure 9. The traditional
approach is to treat the safety hazards according to their
severity, which makes them ineffective and inefficient. If the
railways were able to treat the hazards sequentially and in
parallel according to their association, this would greatly
improve the effectiveness and efficiency of the treatment.

Compared to traditional simple statistical and query
work, we have obtained correlation results that are not
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FIGURE 7: Apriori algorithm optimization based on MapReduce.

available with data comparison or query statistics through
improved association rule mining algorithms, and found
some hidden knowledge in the data, which will provide
effective decision support for railway tunnel management
departments.

4.3. Validation of Database Preprocessing. The performance
comparison results for the data parallel verification algo-
rithm are shown in Figure 10.

It can be seen that as the number of nodes in the Hadoop
environment increases, the average time required to update
each file remains constant in the traditional single-user
verification algorithm, but the average time required to
update each file gradually decreases in the multiuser parallel
verification algorithm. Therefore, the parallel verification
algorithm is computationally more efficient than the single-
user verification algorithm in a shared Hadoop-based model.

4.4. Data Comparison Tests. A cluster of 20 nodes was used
in this experiment to test the performance of the algorithm

before and after improvements. Transactions in the dataset
are stored as files. Each transaction occupies one record in
the file. The data items contained in each transaction are
separated from each other by tabs. The traditional serial
Apriori algorithm and the MapReduceized improved al-
gorithm of this study are set to the same support of 0.3%
when processing the dataset. The results of several experi-
ments with a constant number of nodes and increasing
number of transactions are shown in Table 6.

Based on the results of the experiments in the table
above, a line graph of the traditional algorithm and the
MapReduce parallelization algorithm is derived, as shown in
Figure 11.

At support levels of 0.4%, 0.5%, 0.6%, 0.8%, 1.0%, 1.2%,
and 1.4%, respectively, the traditional serial Apriori algo-
rithm and the improved Apriori algorithm found the same
frequency patterns, and therefore, the improved Apriori
algorithm was feasible. A comparison of the running times
of the traditional serial Apriori algorithm, the MFP-growth
algorithm [32], and the improved Apriori algorithm with a
constant database and varying support is shown in Figure 12.
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TaBLE 2: Machine hardware configuration information.

CPU Memory (G) Hard disk NICs
Hadoop0 Intel Xeon E5-2620 32 4TB SATA +256 GB Intel 82574L
Hadoopl Intel Xeon E5-2620 32 2TBSATA +128 GB Intel 82574L
Hadoop2 Intel Xeon E5-2620 32 1TB SATA+128 GB Intel 82574L
Hadoop3 Intel Xeon E5-2620 32 1TB SATA+128 GB Intel 82574L
Hadoop4 Intel Xeon E5-2620 32 1TB SATA+128 GB Intel 82574L
Hadoop5 Intel Xeon E5-2620 32 1TB SATA+128 GB Intel 82574L
TaBLE 3: Node allocation information table.
Allocation information 1P

Hadoop0 Master 10.10.108.50
Hadoopl Slave 10.10.108.62
Hadoop2 Slave 10.10.108.63
Hadoop3 Slave 10.10.108.64
Hadoop4 Slave 12.12.12.74
Hadoop5 Slave 12.12.12.75

File Edit View Search Terminal Help

[root@hadoop® confl# start-all.sh &

Warning: $HADOOP HOME is deprecated.

starting namenode, logging to /usr/local/hadoop/libexec/../logs/hadoop-root-na

menode-hadoop®.out

hadoopl: starting datanode, logging to /usr/local/hadoop/libexec/../logs/hadoo

p-root-datanode-hadoopl.out

hadoop2: starting datanode, logging to /usr/local/hadoop/libexec/../logs/hadoo

p-root-datanode-hadoop2.out

localhost: starting secondarynamenode, logging to /usr/local/hadoop/libexec/..

/logs/hadoop-root-secondarynamenode-hadoop0.out

starting jobtracker, logging to /usr/local/hadoop/libexec/../logs/hadoop-root-

jobtracker-hadoop0.out

hadoop2: starting tasktracker, logging to /usr/local/hadoop/libexec/../logs/ha

doop-root-tasktracker-hadoop2.out

hadoopl: starting tasktracker, logging to /usr/local/hadoop/libexec/../logs/ha

doop-root-tasktracker-hadoopl.out

[ root@hadoop® confl]# jps

3415 Jps

3239 JobTracker

3005 NameNode

3166 SecondaryNameNode

[root@hadoop® confl# | H

F1GURE 8: Starting a Hadoop cluster from the command line.
TABLE 4: Selected training sets for tunnel safety data mining in 2016.

Tunnel number Safety hazard code Association rule codes TID
1 “S0102, S0202, S0303, S0401, S0501” 258912 T001
2 “s0102, s0103, s0202, s0302, s0401, s0403” 2357911 T002
3 “s0101, s0103, s0303, s0304, s0403” 1381011 T003
4 “s0101, 0202, s0302, s0401, s0501” 157912 T004
5 “S0102, S0202, S0303, S0401, S0501” 258912 T005
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TaBLE 5: Key safety hazards in tunnels.

Association rule codes Safety hazard code Name of safety hazard

2 50102 Cracking in the wall

5 $0202 Water leaks

9 $0401 Gauge limits

12 S0501 Damage to the base of the paving

8 S0303 Slumped rock fall at the cave entrance

TaBLE 6: Performance comparison before and after algorithm improvement.

Number of transaction records Traditional serial Apriori Improved Apriori
2000 6.351 6.406
4000 9.167 9.002
6000 12.592 11.166
8000 15.036 13.421
10000 17.809 15.914
12000 21.134 19.037
14000 23.028 20.135
16000 26.167 23.443
18000 29.472 25.128
20,000 35.503 31.601

1.00
$0102 0.80
0.60
50202 0.41
0.21
50401 0.01
-0.91
S0501 < -0.39
-0.58
S0303 -0.78
-0.98

FIGURE 9: Statistical analysis between association rule codes and safety hazard codes.

2200
2000
1800
1600 +
1400
1200
1000
800
600
400
200

Time of each file update (ms)

0 2 4 6 8 10 12 14 16 18 20

Number of nodes

—e— Single user authentication
—m— Multi-user parallel verification

FIGURE 10: Performance comparison of data integrity verification algorithms.
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F1GURE 11: Comparison of traditional algorithms with MapReduce
parallelization algorithms.
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FIGURE 12: Running time of each algorithm.

It can be seen that the smaller the support degree, the more
obvious the performance advantage of the proposed im-
proved Apriori algorithm.

5. Conclusions

To address the tunnel safety management problem, this study
proposes a MapReduce parallelized Apriori algorithm based on
the Hadoop platform. By integrating association rule data
mining techniques with the Hadoop system, the relationships
between tunnel safety hazards are mined. The larger database of
historical tunnel safety data is divided into several very small
databases so that these smaller databases can run under
Hadoop. In order to run association rule mining on the
Hadoop system framework, the existing single-user data val-
idation algorithm was improved by applying a multiuser
parallel validation algorithm to Apriori in order to reduce the
number of validations. The following conclusions were drawn.

(1) There is more than one safety hazard that occurs in
most railway tunnels. One safety hazard can often

Mathematical Problems in Engineering

lead to the occurrence of another or several safety
hazards. If the railway authorities can treat the de-
fects sequentially and in parallel according to their
association, this will greatly improve the effective-
ness and efficiency of the treatment.

(2) Parallel verification algorithms have higher com-
putational efficiency compared to single-user veri-
fication algorithms in a shared Hadoop-based model.

(3) Compared with other association rule methods, the
MapReduce parallelized Apriori algorithm runs more
efficiently. The smaller the support, the more obvious
the performance advantage of the proposed method.
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The experimental data used to support the findings of this
study are available from the corresponding author upon
request.
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