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Aiming at the problem of low e�ciency and insu�cient accuracy of threshold solution in multithreshold sculpture image
segmentation, this paper proposes a threshold segmentation algorithm for sculpture images based on sparse decomposition. In
this paper, sparse decomposition is introduced to optimize the model to reduce the impact of local noise on segmentation
accuracy, and an energy functional based on pixel coconstraint is built to make up for the defect that pixels cannot retain local
details. At the same time, the weighted sum of elite solution sets is used to determine Neighborhood centers increase com-
munication between groups. Experiments show that compared with other algorithms, the above method has signi�cant ad-
vantages in convergence e�ciency and accuracy.

1. Introduction

�e in�uence of images on sculpture is �rst and foremost a
result of the shift in the manner in which art is disseminated.
Public sculptures in the classical period are always placed in
the heart of a city square or in front of signi�cant buildings
in order to hold the most prominent position in a city and
emphasize the crucial function that sculptures play in a
society. For people living throughout the classical period,
these public locations where sculptures could be found were
the best public places in which they could use word of mouth
as a means of communication in order to gain information,
spread knowledge, and investigate the truth. Because of the
necessities of the colossal setting, classical sculpture allows
the work to get attention and spread throughout the world.
Over time, the rise of modern industrial society has eroded
the monumentality and public visibility that sculpture
formerly possessed. While at the same time, the growth of
science and technology resulted in modern architecture
bursting out with an unparalleled amount of energy. Because
the interior space now has more possibilities and a greater
variety of changes, modern architecture has progressively

taken over the traditional role of sculpture from volume to
space, and has emerged as a key player in the development of
urban public space. While the public’s awareness of
sculpture is waning, the likelihood of it being propagated
and displayed in public spaces is becoming increasingly
remote as time goes on.

More sculpture works are being presented in galleries,
art galleries, and museums, and they are being spread
through albums as a result of the blooming of modernist art
and the changing of art ecology. �ey have an impact on the
entire public on a broad scale When the world entered the
postindustrial age in the second half of the twentieth cen-
tury, electronic media soon displaced text media as the
major mode of information dissemination and rose to be-
come the most in�uential mode of communication. �ese
days, the rapid arrival of the Internet era has been swiftly
characterized as an era of world images, in which the world
has been transformed into images. People’s primary source
of knowledge and understanding of the world has shifted
from written words to visual images. In the invasion and
transformation of art discourse, the features of image dis-
tribution have been increasingly important in recent years.
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,e sculpture as a three-dimensional art form must make
adjustments and new alterations to some notions and
principles that have been established since the classical
period in order to get access to today’s popular commu-
nication by absorbing some visual experience of images.

Image segmentation (IS) is a fundamental and difficult
scientific issue to understand. As a critical link in the image
processing chain, the accuracy of picture target extraction
and recognition, as well as the effectiveness of future work,
are all influenced by the quality of segmentation performed.
Because of its simplicity and efficacy, threshold segmenta-
tion is commonly employed in picture segmentation [1–8].
IS is a technique for dividing an image into several sections,
each having a distinct meaning, in order to retrieve the
portion of interest for further investigation. One of the most
important methods in IS, the ACM model, has been widely
applied in CV, PR, target tracking, and a variety of other
applications. In recent years, with the advancement of NN,
the combination of deep learning and active contour models
has become increasingly popular for solving complicated
segmentation and recognition challenges in medical pic-
tures. Deep learning and active contour models are being
used by some researchers to autonomously segment the left
ventricle from magnetic resonance imaging data. It is
possible to separate active contour models into two types:
active contour models based on global information and
active contour models based on local information [9–14].

3D feature extraction and automatic reconstruction of
sparse image sequences using 3D feature reconstruction and
sparse scattered point structure reorganization methods are
becoming more common as 3D image processing tech-
nology advances. ,ese methods can improve the automatic
resolution and feature recognition capabilities of sparse
image sequences as 3D feature reconstruction and sparsely
scattered point structure reorganization methods become
more common. In this paper, we investigate the 3D re-
construction method of the sparse image sequence, and we
combine the adaptive feature reconstruction (AFR) of image
and the point cloud data analysis method in order to realize
the AFR of the sparse image sequence and improve the
automatic recognition and detection ability of sparse images.
Research in related image processing technology is ex-
tremely important in the disciplines of medical image
processing, artificial intelligence recognition, and remote
detection, among other applications [15–24].

It is more robust to picture segmentation results with big
disparities in foreground and background gray levels when
the CV model is used, but it is more sensitive to high noise
when the CV model is used. Value filtering and Gaussian
filtering are used to regularize the level set technique. To
punish the level set function as a binary function, the level set
function is first transformed into a Gaussian smoothing
kernel and then regularized. ,is method combines the
advantages of the CV model with the characteristics of local
and global segmentation to provide a powerful tool for data
analysis [25–30]. ,e SPF function is created to drive the
contour evolution, which enhances the model’s resistance to
noise by increasing the number of iterations. ,e model, on
the other hand, is sensitive to the position of the beginning

contour, and it is simple to slip into the local optimum early,
failing to catch the remote target during the evolution of the
active contour during its evolution. Other researchers have
proposed a saliency-driven top-down level set model of the
region edge as a solution to this problem. Incorporating the
saliency feature map and color gray level to produce energy
functional, this model, which is based on the CV model,
increases the extraction of the model from complex back-
drops. As a result of the model’s reliance on saliency maps, it
is sensitive to changes in visual noise and intensity, among
other things [31–38].

As a result, the level set IS model’s segmentation re-
sults are not accurate enough and are sensitive to the
beginning contour position and noise, and the threshold
solution efficiency and accuracy in multithreshold
sculpture IS are both low. It is proposed in this paper that a
threshold segmentation technique for sculpture images
based on sparse decomposition be used to segment
sculpture photos. It is necessary to first introduce the pixel
extraction picture block information in order to develop a
symbolic pressure function in order to prevent the con-
tour from becoming stuck in its local optimum during the
evolution phase. To compensate for the fact that super-
pixels are incapable of preserving local features, a new
energy functional based on pixel coconstraints is devel-
oped. Additionally, this document introduces, for the
purpose of optimizing the model, a sparse decomposition
method which is applied to limit the impact of local noise
on segmentation accuracy.

2. Visualization of Sculpture

2.1. (e Reason for the Change. One of the most prevalent
problems facing conventional visual art in modern times is
that a single professional knowledge base cannot keep up with
the rapid development of modern society, which has seen
everything from printing to video to interactive media in the
last several decades. An increase in this kind of development
is sufficient evidence that the nature of art culture is shifting
from verbal to visual culture. It is more important for the
public that the sculptural culture be aesthetically pleasing to
the eye rather just providing traditional visual stimulation.
Sculpture, when viewed through the eyes of someone who is
accustomed to seeing images, can appear dull due to the
monotonous colors used in its creation. As a result, space art
that has lost its visual experience will be unable to convey its
original appeal. In this setting, the sculpture will move in a
direction of visualization that is extremely distinct from the
typical orientation of the discipline.

2.2. Performance of Transformation. Rodin’s prognosis is
now a reality, and sculpture has undergone profound
transformations in the setting of visual culture as a result. ,e
French scholar Baudrillard once divided cultural history since
the Renaissance into three stages based on changes in the
symbolic representation system: the first stage was the clas-
sical cultural period, during which imitation served as the
primary paradigm and which lasted from the Renaissance to
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the Industrial Revolution; the second stage was the modern
cultural period, during which imitation served as the primary
paradigm and which lasted from the Renaissance to the
Industrial Revolution; the third stage was the postmodern
cultural period, which lasted from the Renaissance to the
Industrial Revolution. ,e recreation of natural phenomena
was during the Industrial Revolution that the second stage
emerged, which was characterized by a production-oriented
mindset. ,ese days, symbols are not only restricted to the
imitation of reality but also possess a certain degree of au-
tonomy in their own right. ,e third stage is referred to as
digital control and is the current dominant paradigm in the
simulacrum stage, and symbols have complete autonomy,
manufacturing, and replicating according to their own logic
in order to create virtual reality. ,e third stage, sometimes
known as the visual culture stage, is concerned with the
cultural context of the current artist’s creation.

Visual culture can be defined as the representation of
culture in visual form.,ere are no restrictions on how it can
be used in the sphere of visual art. Visual phenomena have
spread to every sphere of social life, encompassing every-
thing from prints, television images, and mobile phone
interfaces to architectural styles and urban visual images,
among other things. ,e characteristics of this era are as
follows: the dominant mode of understanding the world is
not through direct touch with the real world but rather
through indirect interaction with the real world through
watching and experiencing images. According to Heidegger,
in essence, the world image does not refer to a vision of the
world but rather to the world as it is comprehended as an
image by the individual.

2.2.1. Color Realization of Sculpture. Many contemporary
sculpture artists place a strong emphasis on the use of color
in their work. Because traditional sculpture is regarded as the
art of mixing material and space, a single hue can usually be
used to better showcase the texture of the sculpture material
in order to attract the attention of onlookers. As a result,
when it comes to creating, color is not the most important
consideration for artists. Since the beginning of the Re-
naissance, sculptures built by artists have been painted only
on a few occasions, despite the fact that there has been a
creative way of painting sculptures since ancient times. A
single form of color expression was substituted for the use of
multiple colors in sculpture at that time, in order to better
portray the spiritual appeal of classicism and put the au-
dience in a state of concentration. However, the rationale
behind this aesthetic style does not allow it to match the
visual aesthetic standards of the contemporary public. Once
the artist has painted the sculpture with a variety of colors,
the texture of the sculptural material itself no longer has the
expressiveness of the past. If you look at modern sculpture’s
link between fishing and form, in particular, the shape of the
sculpture is frequently exhibited with vivid colors in order to
provide sufficient preparations for the ultimate color pre-
sentation. As a result, when we look at photographs of these
sculptures, we have no way of knowing if the photographer is
photographing a sculpture or a painting.

2.2.2. Image Expression of Sculpture. ,e trend of “imagi-
nation” can be seen in sculptural works created in the
context of current people’s visual culture. ,e usage of
images as inspiration for artists to produce sculptures can be
said to be a given, and images are also closely associated with
the materials that are used in the construction of artistic
sculptures. A sculpture is first and foremost an artistic
creation based on a certain image. A sculpture, from a
specific point of view, is a three-dimensional representation
of an idea in three dimensions. In traditional sculpture
creation, artists are frequently inspired by the real world;
some of these inspirations are objects found in nature, while
others are the hands of humans. Crafts, for example, the
sculptural artist Rodin is preoccupied with the human body,
and the artist Henry is obsessed with the many forms of
coastal pebbles, all of which might express a specific rela-
tionship between the sculptural artist and the world in which
they live. As a result of this shift in aesthetic perceptions,
sculpting artists are no longer able to draw the resources
needed for production from their surroundings and are
instead turning to various pictures recognized by the general
public to obtain those resources needed for creation. ,at is
to say, when artists create sculptures, they frequently draw
inspiration from cultures in the developing world and
transform flat pictures into three-dimensional artistic forms
of expression. Wang Du, a sculptor who lives in France, is a
good example of this. ,e artist transforms a specific image
seen in magazines and newspapers into a three-dimensional
creative sculpture with the use of digital technology. ,e
prominent sculpture artist Xu Hongfei was influenced by the
Guangzhou Daily and developed a series of sculpture works
with themotivation of creating “Lovely Soldier,” which had a
significant impact on the area of art.

2.2.3. (e Presentation Method of Sculpture. In the world of
contemporary art, the sculpture is seen as a notion that is
extremely open to interpretation. For example, the iconic
piece “Spiral Breakwater” by artist Robert Smith, as well as
artist Heizer’s book “Double Negative,” are both considered
works of art. Because of different limits in terms of space and
time, some ordinary audiences are unable to access the world
of sculpture art at all; additionally, because these works of art
are on a monumental scale, even those audiences who are
present at the sculpture site are unable to use a typical camera.
,e piece can only be seen in its whole if viewed from a
specific angle, and only through an image captured from that
specific angle can you appreciate its complete face. As a result,
the works generated by these writers are frequently offered to
the public through contemporary means such as photographs
and videos. ,erefore, the image is vital in the understanding
of sculptures and is crucial and decisive in the process of
distributing the art form, according to this point of view.

3. Method

First of all, this paper introduces the traditional segmen-
tation method, CV model, LIF model, and SBGFRLS
method. ,e energy function of the CV model is
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where H(α) is the Heaviside function.
,e energy function of the LIF model is
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where x ∈ Ω and the local image fitting formula is
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,e symbolic pressure function of SBGFRLS is
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,e evolution equation of SBGFRLS is
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ACM based on global information can handle images
with simple intensity information well, but ACM based on
local information may be used to extract targets from
complicated scenes with more image details, and both
methods are effective. As a result, integrating image local
information with ACM-based global information can in-
crease the segmentation ability of ACM-based global
information.

Next, we introduce the OTSU segmentation method.
OTSU can help us determine the threshold. ,e probability
pi that a pixel appears in the image is
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Let ut be the average gray level of the image; then, the
interclass variance is expressed as

σ2B t1, t2, · · · tk(  � 
k

i�0
wi × uj − ut 

2
. (13)

ut � 
L−1

i�0
ipi. (14)

ACM only evaluates the global information of the image
throughout the process of contour evolution, which makes it
simple to fall into local optimum and to be affected by noise
in the process of contour evolution. However, introducing
local image information into ACM on the basis of global
information requires a significant amount of iterative time.
,e superpixel algorithm is a widely used image pre-
processing algorithm that divides an image into several
visually meaningful and spatially disjoint regions while
retaining the effective information of the image for more in-
depth image analysis. It divides an image into several visually
meaningful and spatially disjoint regions while retaining the
effective information of the image for more in-depth image
analysis. It performs an analysis while at the same time
preserving the boundary information of the target in the
image. Given that superpixels retain the image’s nonglobal
information, the use of superpixels in the segmentation
process can reduce the influence of local grayscale differ-
ences on contour evolution, improve the segmentation
accuracy of the image, and reduce the amount of compu-
tation required to accelerate the evolution of contours in the
image. Simple linear iterative clustering is one of the most
extensively used superpixel segmentation methods currently
available, owing to its quick running time and ability to
maintain ideal outlines in the image. Calculating the pixel
gray difference between pixels and centroids is accomplished
through the usage of the metric function. In addition to
distance difference, a clustering operation is conducted on
pixels, and a small number of superpixels is utilized to
describe picture attributes in place of a large number of
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pixels, therefore reducing the complexity of image
processing.

We further introduce superpixels, and the pressure
function in this paper is

spf Iour(x)(  �
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, (15)
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Although superpixels keep the regional information of
an image and can make greater use of the link between
distant pixels, relying solely on superpixel features to pre-
serve picture details would result in a loss of image details.
As a result, when the superpixel is undersegmented, it is
possible that the target contour will not be accurately re-
trieved. We present an IS approach based on pixel/super-
pixel cooperative constraints in this study in order to
compensate for the flaw that a single superpixel is incapable
of preserving local features. Sparse constraints are included
in the model in order to reduce the influence of over-
segmentation and local noise on contour evolution, and the
evolution equations are provided in equations (17) and (18)
to illustrate how this is accomplished.
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Equations (17) and (18) can be simplified to
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Furthermore, this paper introduces a sparse decompo-
sition method to solve the scaled coordinates.

xk+1 � xk + cRexk, (21)

xk+1 � xk + ςRaxk, (22)

where Ra is a sparse random diagonal matrix with nonzero
values from a standard normal distribution.

Using the local mean noise reduction approach, the
collected original three-dimensional sculpture point sparse
image is isolated from noise. ,e feature points’ thresholds

are then set, and the noise separation processing is carried
out in accordance with the threshold judgment result. ,e
feature point set that has been formed is as follows:

x y z

0 0 0
  �

(H + τ · I)

P
T

P

O
 

c θ ω

a b c
 . (23)

4. Sculpture Image Threshold
Segmentation (SITS)

,e simulation experiment analysis is carried out in this
research in order to evaluate the performance of the
threshold segmentation algorithm of a sculptured picture
based on sparse decomposition in terms of performance. For
the experiment, the MATLAB simulation tool is used to
design the experiment, and Visual Studio 2020 is used to
create the image processing software platform for the 3D
reconstruction of sparsely scattered points. ,e pixels col-
lected for sparse images of sculpture points are 20 million,
the number of connection points of feature lines is 500, and
the feature resolution is 640× 400, the interference noise is
Gaussian noise, and the intensity is −12 dB. ,e original
point cloud feature sample is achieved as illustrated in
Figure 1 using the simulation parameter settings described
above.

Using the sampled image in Figure 2 as input, the de-
tection result is shown in Figure 1. ,e three-dimensional
point cloud feature of the sculpture point sparse image is
detected and shown in Figure 3.

,e gradient operation method is used to decompose the
feature detected in Figure 3 as the input of the threshold
segmentation of the sculpture point image, and the infor-
mation enhancement and fusion filtering of the sparse image
of the sculpture point are realized, and the image is
reconstructed, and the reconstructed output is obtained as
shown in Figure 4.

JS and Dice coefficients are employed in order to study
and evaluate the segmentation quality of the suggested SITS
model. ,is allows us to validate the effectiveness of our
strategy.

,e JS and DICE values for the four approaches are
depicted in Figures 5 and 6, respectively. It can be observed

Figure 1: Original image cloud feature sampling.
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in Figures 5 and 6 that CV and LIF are susceptible to strong
noise and weak boundaries; their average JS values are 0.845
and 0.869, and their average DICE values are 0.848 and
0.788, respectively, indicating that they are susceptible to
strong noise and weak boundaries. ,e SBGFRLS model is

Figure 3: Sparse scattered point features.

Figure 4: Sculpture image reconstruction output.
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Figure 2: Edge profile feature.
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unable to capture pixels at the extreme end of the spectrum.
As a result of this, the relationship between them is sus-
ceptible to falling into a local maximum, with an average JS
value of 0.715 in the experiment.

5. Conclusion

In order to address the issue that the segmentation results of
the sculpture IS model are not accurate enough and are
sensitive to the initial contour position and noise, this paper
proposes a threshold segmentation algorithm for sculpture
images based on sparse decomposition. ,is algorithm re-
alizes the adaptive structural reorganization of sparse image
sequences and improves the automatic processing of sparse
images by reducing the sensitivity to the initial contour
position and noise with the ability to identify and notice
potential dangers. In order to address the issue of sluggish
evolution of the active contour model based on nonglobal
information, the model makes use of superpixel blocks to
accelerate the evolution of the active contour model. ,e
findings of this study demonstrate that the method described
in this paper requires less prior knowledge for sculptural
picture segmentation, and that both the JC and DICE in-
dicators perform much better than traditional comparison
methods.
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