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Based on the digital twin technology, this article investigates the physical rules fusion model of the turbine rotor operation in
thermal power plants, establishes the geometric behavior mapping method of the turbine rotor in the virtual scenario of thermal
power plants, and develops a real-time data-driven virtual monitoring system of the rotor operation, which realizes the virtual
control of the rotor operation process from the physical and geometric levels, respectively. The 3D model created by Creo was
imported into ADAMS in x_t format, constraints were added, and model data input and output interfaces were established in
ADAMS software to build its dynamics model. The foundation of the joint simulation with the AMESim model is laid. The
information fusion technology based on D-S evidence theory, fusing multisensor data and information from other channels, can
more accurately and comprehensively understand and describe the diagnostic object, to make correct judgment and decisions on
complex fault diagnosis. We propose an integrated modeling method for multiview control scenarios of manufacturing units
based on digital twins and finalize the construction of digital twin models of manufacturing units based on the definition of the
multiview model collaboration mechanism, which provides model support for the research of digital twin-driven manufacturing
unit control technology. For the twin data perception and interaction problem, a unified architecture-standardized commu-
nication protocol is established based on OPC UA technology to solve the problem of difficult data perception and interaction
caused by the nonuniform communication interface protocol of different devices on the automated production line. The model
change is intended to help improve the visualization level of digital production line monitoring and improve the operating
efficiency of the turbine rotor.The experimental results show that the application of digital twin to thermal turbine rotor operation
monitoring provides a new method for turbine rotor vibration fault diagnosis; D-S evidence theory can fuse information from
multiple aspects of the fault, thus improving the probability of fault diagnosis and reducing uncertainty.

1. Introduction

With the rapid development of the economy and society and
the further acceleration of the industrialization process, the
electricity demand is more, the power industry has seen
unprecedented development, and high parameters and
large-capacity generating sets continue to build and put into
operation one after another, while the structure and system
of the equipment are becoming increasingly complex.
Equipment work intensity is increasing production effi-
ciency, automation is getting higher and higher, and at the

same time, the equipment is more complex, the association
of various parts increasingly closely, often a small failure
somewhere on the outbreak of chain reaction, resulting in
the entire equipment and even its related equipment en-
vironment of catastrophic damage. All these accidents cause
huge economic and environmental losses and even casualties
[1]. Therefore, how to ensure the safe and reliable operation
of the unit is of great importance to the development of the
national economy. In the power plant, the turbine is one of
the three main engines, but also an important large rotating
machinery, is a machine, electricity, and liquid coupled

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 8527281, 11 pages
https://doi.org/10.1155/2022/8527281

mailto:vickysun@gdgm.edu.cn
https://orcid.org/0000-0002-8578-0215
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8527281


together in a complex system, is responsible for the con-
version of thermal energy into mechanical energy and then
into electrical energy key equipment, in the high speed, high
stress, high temperature working environment, the com-
ponents are subject to large loads, and often subject to a
variety of alternating stress. Due to the complexity of the
equipment structure and the special characteristics of the
operating environment, the failure rate of turbine generator
sets is high and the danger of failure is also high. The failure
of turbine generator sets accounts for a considerable pro-
portion of power plant failures, and once they occur, they
will cause huge economic losses and serious social impacts to
the enterprise and the country [2]. The problem of turbine
fault prediction and diagnosis has always been highly valued
by relevant research institutions, enterprises, and manage-
ment departments, and is an important aspect of the ap-
plication of modern fault diagnosis technology, in which the
turbine rotor becomes an important aspect of turbine fault
prediction and diagnosis due to its importance in the turbine
generator set and the special nature of the working envi-
ronment. As each part of the equipment becomes increasingly
closely related, oftena small fault somewherewill cause a chain
reaction, resulting in catastrophic damage to the entire
equipment and even its related equipment environment.

The use of digital technology helps to monitor faults, and
the method of condition monitoring and prediction by
building a simulation model highly like the operating entity
is still in its infancy. In this regard, a multidomain digital
model of the regulating oil engine can be built for appli-
cation in the study of regulating oil engine faults. This
improves the two ways of artificially injecting faults and
destroying parts to collect data in the future, as well as the
problem that some fault data are difficult to obtain. With the
remarkable improvement of information technology, in-
creased devices are also equipped with sensors and com-
munication capabilities. Big data analysis in the information
space enables computational intelligence [3]. And advances
in sensor and communication technologies provide the basis
for connecting the physical world of machines and equip-
ment with the information world of computers. New ways of
assembling and integrating information-physical systems
like this into manufacturing have led to a new focus on
digital twin technology. We have conducted a lot of research
and practice in emerging technologies such as Big Data, The
Internet of Things (IoT), Cloud Computing, Artificial In-
telligence, and Blockchain. As an enabling technology and
means to practice the concept of smart manufacturing,
digital twin technology can effectively solve the problem of
information-physical fusion in smart manufacturing, and it
has been paid more attention by scholars to study and use to
solve practical engineering problems. At present, in the field
of industrial process monitoring, the use of data in the
manufacturing process is mostly focused on production
management and control in the form of intuitive visuali-
zation, as well as historical data for traceability, but it is not
used to realize the mapping and interactive integration of
physical space and information space. The demand for real-
time display and online monitoring of equipment operation
status, product production quality, and other related status

monitoring data in the manufacturing process is becoming
increasingly urgent [4]. Digital twin technology can accu-
rately simulate and portray the behavior of physical entities
in the real world, and the establishment of digital twin
models of automated production linemanufacturing process
can make the manufacturing process more “digital” and
“transparent,” which is essential for enterprise production
process optimization, cost reduction and efficiency im-
provement, and quality improvement. The establishment of
a digital twin model of the manufacturing process of the
automated production line can make the manufacturing
process more “digital” and “transparent,” which is of great
practical significance for the optimization of the production
process, cost reduction, and efficiency increase, and quality
improvement of enterprises.

As an enabling technology and means to practice the
concept of smart manufacturing, digital twin technology can
effectively solve the problem of information-physical inte-
gration of smart manufacturing and has become a hot spot of
attention in academia and industry worldwide. At present, in
the field of industrial process monitoring, the use of data in
the manufacturing process is mostly focused on intuitive
visualization for production management and control, as
well as historical data for traceability, but it is not used to
realize the mapping and interactive integration of physical
space and information space [5]. The demand for real-time
display and online monitoring of equipment operation
status, product production quality, and other related status
monitoring data in the manufacturing process is becoming
increasingly urgent. Digital twin technology can accurately
simulate and portray the behavior of physical entities in the
real world. The establishment of digital twin models of
automated production line manufacturing process can
characterize and map the manufacturing process in real-
time, which is of great practical significance for enterprise
production process optimization, cost reduction and effi-
ciency increase, and quality improvement [6]. Therefore,
based on digital twin technology, this article will build a
digital twin model of the equipment from the perspective of
production line equipment by building a physical rule fusion
model of the equipment and establishing a geometric be-
havior mapping method of the equipment in the virtual
scene to realize the virtual monitoring of the production line
operation process from the physical level and geometric
level, respectively. It will help to improve themonitoring and
management level of the digital production line, then im-
prove the production efficiency of enterprises and accelerate
the transformation and upgrading rate of China’s
manufacturing industry.

2. Related Works

It is widely believed that the concept of the digital twin was
first introduced by Professor Michael Grieves of the Uni-
versity of Michigan, USA, who proposed the concept of
“virtual digital representation with physical product
equivalence” for Product Lifecycle Management (PLM) in a
slide presentation to the industry at the inception of the PLM
Center in 2002.The concept of “virtual digital representation
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with physical product equivalence” was introduced in his
presentation to the industry at the inception of the PLM
Center in 2002 [7]. In related research, NASA has pioneered
the introduction of digital twin technology in the health
maintenance and assurance of aerospace vehicles to analyze
and evaluate the condition performance of the vehicle and to
predict whether the load will be able to complete the next
mission. Takizawa et al. analyzed the concept of the digital
twin, applied digital twin technology to the monitoring of
production processes, outlined a multifunctional production
process approach, and finally proposed a digital twin-based
manufacturing process monitoring algorithm [8]. To ad-
dress the problem of the interconnection of complex discrete
manufacturing systems, a modeling method is designed to
quickly create a virtual model and a data interaction
mechanism between the production system in the physical
world of the workshop and its mirror virtual model, and
finally, a digital twin model of a complex discrete
manufacturing workshop is built. As the level of mechanical
manufacturing continues to improve, the manufacturing
process of process products becomes more complex, and
possible abnormalities in the production process will occur
more frequently [9]. The traditional production process
monitoring method based on manual records, two-di-
mensional reports, and configuration monitoring is no
longer sufficient for the increasingly advanced and complex
manufacturing processes. To improve the visualization and
transparency of the manufacturing process, many scholars
have conducted research related to the visualization and
monitoring of the production process. Wang et al. developed
a Web-based 3D visualization and real-time monitoring
system of the dam material transportation process based on
3dsMax and ActiveX technologies, which realized the visual
representation of the vehicles and the surrounding envi-
ronment, and the system is networked, digitalized, and vi-
sualized [10]. Tao et al. realized the 3D visualization
inspection of the tunnel based on OpenGL and VB tech-
nology and visually represented the inspection data, which
made the inspection results more intuitive and clearer [11].
Thiruvasagam et al. developed a remote monitoring system
with 3D virtual reality technology based on B/S architecture,
using VRML and Java language, which provides a technical
guarantee and implementation solution for the application
of 3D virtual monitoring technology in the industry [12].

The development of fault diagnosis technology has be-
come an independent and interdisciplinary comprehensive
information processing technology today.The integration of
equipment fault diagnosis technology and current frontier
science is the development direction of equipment fault
diagnosis technology. The development trend of diagnosis
technology is the precision and multidimensionality of
sensors and the diversification of diagnosis theory and di-
agnosis model [13]. Since the turbine unit is working under
the special environmental conditions of high temperature,
high pressure, high speed, and high stress, the performance
of the sensor is very demanding in the turbine unit fault
diagnosis system. At present, the research on sensors is
mainly focused on improving the reliability of sensor per-
formance, developing new sensors, and studying how to fuse

sensor faults to reduce the misdiagnosis rate and leakage
rate. Currently, many scholars are studying the use of
multisensor information fusion technology to diagnose
faults and improve the resolution and accuracy of faults.
Currently, the research methods for turbine unit fault
mechanisms include the field test method, laboratory sim-
ulation method, and computer simulation method. The
laboratory simulation research method is to first establish a
physical model of the unit, i.e., a simulation test bench, and
then artificially preset the fault of the unit on the simulation
test bench, detect the fault signal under the preset fault state,
extract the fault characteristics, and then establish the
mapping relationship between the fault signs and the fault.
This method overcomes the shortcomings of the field ex-
periment method and is a widely adopted fault studymethod
[14]. However, the fidelity of the fault state of this method is
reduced and the range of simulated faults is limited. Gray
analysis, time series analysis, cepstrum analysis, holographic
spectrum analysis, artificial intelligence expert system for
fault diagnosis, and artificial neural network system have
been applied to mechanical equipment fault diagnosis in
large numbers, and many techniques have become mature.
In the field of turbine fault diagnosis, the commonly used
diagnostic strategies are comparative diagnosis, logical di-
agnosis, statistical diagnosis, pattern recognition, diagnosis
based on gray theory, fuzzy diagnosis, expert systems, and
diagnosis based on artificial neural networks. Bailey estab-
lished a Bayesian network model, which is mainly used to
deal with the damage mechanism of the dynamic blades of
turbines and the interaction of failure modes [15]. The
experimental results showed that the cracks were closed in
the case of the compression part expansion rate of the fatigue
cycle. Xie et al. predicted the local strain life of the turbine’s
final stage at low flow conditions based on the elastic-plastic
analysis. The three-dimensional transient flow field, strain
distribution, and stress distribution of the final stage blade
were calculated using a two-way fluid-structure coupling
method considering the nonconstant flow steam force and
the local high temperature of the blade [16].

3. Construction of an Automated Monitoring
Model for Turbine Rotors in Thermal Power
Plants Based on Digital Twins

3.1.Digital TwinModelDesign. Under the trend of intelligent
and informative development, the application of big data, the
Internet ofThings, and intelligent algorithms, based on digital
twin technology can realize the interconnection and inter-
active mapping of transformer physical space and digital
space, and establish a full-factor, hyper-realistic transformer
digital twin in virtual space to simulate the operation state of
physical entities in real-time for online monitoring. Digital
twin technology can accurately simulate and portray the
behavior of physical entities in the real world. Digital twin
technology can make the manufacturing process more
“digital” and “transparent,” which has important practical
significance for enterprise production process optimization,
cost reduction and efficiency improvement, and quality
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improvement, and plays a substantial role in promoting
traditional manufacturing to intelligent manufacturing. The
establishment of a digital twin model for the manufacturing
process of automated production lines can make the
manufacturing process more “digital” and “transparent,”
which is of great practical significance for enterprises to
improve quality, control risks, and reduce costs. To realize the
digital twin of the manufacturing process of the automated
production line, this chapter focuses on the analysis of the
digital twin system architecture of the relevant manufacturing
workshops and establishes the architecture of the digital twin
system for the manufacturing process of the automated
production line based on the existing digital twin technology
theory. At the same time, a test platform for monitoring the
status of the manufacturing process of the automated pro-
duction line was built. The automated production line is a
complex and complete mechatronic device system with
comprehensive and systematic characteristics, which inte-
grates multiple technologies [17]. In this article, based on the
existing research on the digital twin workshop system, the
concept of a digital twin five-dimensional model is proposed
concerning the previous results, and the architecture of the
digital twin system for the manufacturing process of the
automated production line is proposed. The digital twin
technology-based turbine rotor automation monitoring
model for thermal power plants is shown in Figure 1. The
architecture mainly consists of four parts: physical entity
layer, virtual model layer, twin data layer, and application
service layer, and the information interaction is realized
through the connection between each layer.

The digital twin model interaction mode describes the
flow of physical data between the physical entity of the rotor,
the digital twin, the data center, and the rotor fault diagnosis
system. Real-time physical data is extracted from the rotor
physical entity, including state-aware information and gas-
in-oil data, where the state-aware information is used to
dynamically update the rotor digital twin in real-time to
bring it closer to the physical entity; the gas-in-oil data is
used to diagnose rotor faults and to know the rotor fault
conditions, enabling the real-time simulation of rotor op-
eration [18]. The data center houses the rotor lifecycle data,
the physical entity real-time data, the digital twin simulation
data, the gas in oil data, and the data derived from the
computational iterations. Through the analysis of the gas in
oil and input to the fault diagnosis model of the digital twin,
the fault diagnosis results are output and uploaded to the
diagnostic system, and the fault results and maintenance
solutions are provided to the engineers for reference.

The three ontology description languages recommended
by the World Wide Web Consortium (W3C) are RDF,
RDFS, and OWL, in which RDF is a resource description
framework to describe the resource information on the web
and the relationship between them. OWL can describe the
ontology semantically. The advantage of OWL is that it not
only maintains the compatibility of RDF and RDFS but also
has stronger semantic expression and more powerful rea-
soning and logical description ability, compared with RDF
and RDFS, OWL can describe the knowledge more fully.
Therefore, this article adopts OWL as the transformer

ontology modeling description language to build the
transformer ontology model.

c �

c1, p c1, x1( 􏼁,

c2, p c2, x2( 􏼁,

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩

h(t + 1) � F xij(t)􏼐 􏼑 + xi − xj(t)􏼐 􏼑.

(1)

The variation factor F determines the convergence and
diversity of the population and takes a value between [0,2].
When the value of F is small, the degree of variation between
populations becomes smaller, and the evolutionary process
of the population becomes inconsistent, causing the pop-
ulation to converge prematurely. When F is large, the search
process can easily jump out of the local extremes, but the
convergence speed will become slower.

F �
Fmax − Fmin( 􏼁

(T − t)
, (2)

where t is the current algebra, T is the maximum algebra,
Fmax and Fmin are the maximum and minimum values. In
the early stage of the search, the value of F is larger, which is
more favorable to expand the search space of the operation
and maintain the diversity of the population; in the late stage
of the search, the value of F is smaller, which is more fa-
vorable to the algorithm to search in the optimal region and
thus improve the accuracy and convergence speed.

The digital twin model needs to be highly modular, well
scalable, and dynamically adaptable, and the construction of
the model can be done in the information space using
parametric modeling methods. Virtual models of physical
entities are built-in software such as Tecnomatrix, Demo3D,
and Visual Components. The virtual models contain a
complete dynamic engineering information description of
each physical object, in addition to a description of the
geometric information and topological relationships of the
automated production line. Then, multiple dimensional
attributes of the model are parametrically defined to achieve
real-time mapping of the manufacturing process of the
automated production line [19]. Virtual-real mapping is to
objectively describe the real physical space hydraulic system
with ontology and semantic network and construct its
knowledgemap, which can clearly show the relative position,
connection relationship, and semantic structure of each
component of the real hydraulic system, to perform full-el-
ement mapping (including semantic matching and semantic
mapping) to form a digital twin of the virtual space hydraulic
system composed of geometric, rule, structural, and behav-
ioralmodels. Based on the establishment of the physical space
entity model and information space twin model, the virtual-
realmapping association between them is further established,
and the formal modeling language is used to model the
virtual-real mapping association relationship.

PS � PE × PP × PW,

CS � DE × DP × DW,

PS↔CS,

⎧⎪⎪⎨

⎪⎪⎩
(3)
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where↔ denotes the bidirectional real mapping between the
physical space entity model and the information space twin
model and× denotes the natural connection between dif-
ferent models. From this, it can be derived that entity devices
and twin devices, entity products, and twin products, and
entity personnel and twin personnel should all keep syn-
chronized with each other in a bidirectional real mapping.

3.2. Thermal Power Plant Turbine Rotor Automation Moni-
toring Model Construction. The experiment was conducted
to simulate four common faults of turbine rotors, namely,
unbalance, misalignment, friction, and bearing loosening
faults. The experiments were performed on the same test
bench at different times using the Bently standard test bench,
which has easy adjustment means. First, the drive motor
shaft is aligned with the experimental shaft, the connection
nuts are tightened, and then the balance is found so that the
system is in the initial state. Since the experiments are
performed sequentially, the initial state for each fault is the
simulated state before the elimination of the various faults,
including the operation of “aligning the drive motor shaft
with the experimental shaft, tightening the connecting nuts,
and returning the system to the balanced state.” The sam-
pling frequency is 2000Hz, the filtering frequency is
1000Hz, and the sampling points are 20 k. A total of 10
groups of unbalanced experiments were made, 7 groups of
friction faults were made, 4 groups of misalignment faults
were made, and 5 groups of bearing loosening faults were
made. In other words, 4 to 10 sets of tests were made for each
fault, and each set of the fault data file contains data of 5
channels. Through the interconnection and interactive

mapping between the physical space and the digital space of
the digital twin technology, a full-element, hyper-realistic
digital twin of the transformer is established in the virtual
space to simulate the running state of the physical entity in
real-time, to achieve the purpose of online monitoring.

In the rotor vibration test bench preset fault settings, the
rotor rotation when the transverse displacement of the rotor
shaft, after thedisplacement sensorwill bedisplacement signal
into electrical signals, and then after the power supply and
signal bias, into the filter for filtering, by the high-speed
synchronous sampling board for sampling, to get the required
data files [20]. The hardware of the experimental system
mainly includes an analog rotor test bench, eddy current
sensor, signal pre-processing board, A/D board, and com-
puter.The rotor vibration signal is sampled by the sensor and
sent to the signal pre-processing board for filtering and
straightening, and the pre-processed vibration signal is
converted fromanalog signal todigital signalby theA/Dboard
and analyzed and processed by the computer. The rotor is
driven by the motor and its speed control device to rotate at a
certain speed, and the sensor probes in three positions are
mountedon theprobemountingbracket at the corresponding
measurementpoints.Probes inx-directionandy-directionare
available at measurement point 1 and measurement point 2.
The signals are input to the computer through a pre-pro-
cessing board and A/D digital-to-analog conversion.

X(jϖ) � 􏽘
n�0

xj(ϖ)
n
. (4)

With different observation perspectives, the signal
analysis domain is also different, and a signal can be analyzed
from time domain analysis, frequency domain analysis, or

The first stage The second stage The third phase The fourth stage

Rotor physics body
Interactive mapping

Rotor Digital
Twin

Digital twin
database

Fault diagnosis
system

Iterative
optimization

Iterative
optimizationDriveData

Drive

Data Drive

Data

Physical sp
ace

Information

space

Information

space

Information

space

Physical sp
ace

Physical space

Physical space

1 2 3 5

64

Figure 1: Digital twin model interaction pattern.
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both time and frequency perspectives. The time domain
analysis of a signal refers to the analysis of the signal per-
formance in the time domain (i.e., waveform), such as
amplitude analysis (including the analysis of parameters
such as the maximum value, minimum value, and mean
value of the signal) and correlation analysis (refers to the
analysis of the degree of self-similarity or mutual similarity
of the signal at a certain moment). Similarly, the frequency
domain analysis of the signal is the analysis of the signal in
the frequency domain (i.e., spectrum, which reflects the
energy distribution of the signal), such as amplitude spec-
trum analysis, phase spectrum analysis, power spectrum
analysis, and various density spectrum analysis. The time-
frequency domain analysis of the signal can be analyzed in
both the time domain and frequency domain, such as
wavelet analysis.The different expressions of the signal in the
frequency and time domains reflect two different aspects of
the signal [21]. Observing the signal in the time domain is
more emotional and easier to understand while observing
the signal in the frequency domain is more rational and
difficult to understand, but often leads to deeper and more
essential things. As shown in Figure 2, shows the situation of
observing a continuous-time signal from the perspective of
the time domain and frequency domain, respectively.

When the sampling rate of x(t) reaches twice the highest
spectral component contained in x(t), the spectrum of the
sampled signal can be completely separated, so that only the
data within one cycle in its frequency domain are retained to
reconstruct the original time domain signal without dis-
tortion. From the theory of the continuous-time system, it is
known that the frequency of continuous, periodic time
function is discrete and nonperiodic, the spectrum of
continuous, nonperiodic time function is continuous and
nonperiodic, and the spectrum of discrete, nonperiodic time
function is continuous and periodic, the discrete and pe-
riodic nature of the signal shows a strong symmetry in the
time and frequency domain signals. It is inferred that when
the signal is the discrete and periodic form in the time
domain, its corresponding frequency domain form must be
periodic and discrete. This gives a digital implementation of
the Fourier integral (transform), the discrete Fourier
transform (DFT). The digital twin model interaction model
describes the flow of physical data between the rotor physical
entity, the digital twin, the data center, and the rotor fault
diagnosis system.

Based on the structural characteristics of the actual
turbine rotor, a three-dimensional model of the rotor was
created using the software. Since the 3Dmodeling is closer to
the actual operation results, ANSYS was used to analyze the
3Dmodel of the rotor. In the 3Dmodeling process, the rotor
part was reasonably simplified to save some calculation
costs, provided that the accuracy of the results was guar-
anteed. The 3D model was analyzed using ANSYS, and the
temperature distribution and stress distribution of the 3D
model were calculated. The reading time density was ad-
justed to 60 S, i.e., 1-minute interval, so that a total of 600
minutes of analysis time was available, making it easier to
analyze the turbine rotor material of 30Cr1Mo1V steel. The
rotor model in this article does not have a central hole, and

the stresses in the rotor without a central hole are mainly
concentrated on the rotor surface [22]. During the whole
starting process, the stress at the center of the rotor is less
than the stress at the rotor surface. The maximum stress
trend of the rotor is that the stress increases with temper-
ature. After starting and reaching 3000 r/min, the temper-
ature does not increase and the stress decreases as the
temperature is maintained. When ANSYS was used to an-
alyze the rotor start-up process, it was found that the stresses
in the rotor were mainly concentrated at the regulating stage,
the front slot of the regulating stage, and the blade root, and
each point was named A, B, C, and D. A, B, C, and D were
marked as monitoring points and should be paid attention to
during the whole start-up process. If the stress at these four
points does not exceed the maximum stress that the material
can withstand, the stress in other parts is also safe. The stress
change curve of the turbine rotor in the thermal power plant
is shown in Figure 3.

The four points A, B, C, and D were monitored in turn,
and the variation of thermal stresses in the regulating stage,
the front slot of the regulating stage, and the leaf root can be
seen. It can be seen from Figure 3 that the maximum stress
value appears at point A with a maximum stress value of
446.24Mpa during the entire start-up of the rotor. The
maximum thermal stress appears in the rotor after medium-
speed preheating. As the speed increases, the derivative of
the external surface temperature increases. By analyzing the
thermal stress value of the starting process, it was found that
the maximum thermal stress was far from the limit stress
value, which led to a long starting process time, a too smooth
starting curve under the initial conditions, and poor starting
efficiency of the whole unit [23]. During the start-up of the
unit, the start-up time of the unit was too long and the
original start-up plan was conservative. During the starting
process, the rotor is greatly influenced by the temperature,
and the temperature derivative is proportional to the
thermal stress. Therefore, reasonably shortening the start-up
time and appropriately increasing the life loss of the turbine
rotor can reduce the energy consumption during the start-
up process while supplying power to the outside world
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Figure 2: Time and frequency domain diagram of a continuous
signal.
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faster, thus improving the efficiency index of the power
plant. Through the interconnection and interactive mapping
between the physical space and the digital space of the digital
twin technology, a full-element, hyper-realistic digital twin
of the transformer is established in the virtual space to
simulate the running state of the physical entity in real-time,
to achieve the purpose of online monitoring.

4. Analysis of Results

4.1. Digital Twin Model Performance Testing. The first is the
cost of equipment downtime, including planned downtime
and sudden failure downtime, maintenance can reduce
downtime, but the need for downtime for maintenance, and
failure will cause equipment downtime, so frequent main-
tenance and inadequate maintenance will lead to higher
downtime costs. Second, is the need for some maintenance
preparation in equipment maintenance, such as parts spare
parts Based on this, the maintenance cost can be decom-
posed into four parts, maintenance preparation cost C

p
i ,

parts fixed cost Ck
i , performance waste cost Cr

i , and
downtime loss costCs

i . In a period, now if a component is the
first to reach its preventive maintenance threshold, pre-
ventive maintenance is performed on it, and it is judged
whether to perform maintenance simultaneously or in
combination with other components. Therefore, economic
relevance and structural relevance are introduced, where
economic relevance is used to refer to the possible overlap of
repair preparation costs in maintenance, and structural
relevance is used to refer to the part of the maintenance
process in which there is an overlap of time in the repair
process.

βi � 􏽘
N

i�1
whi + 2( 􏼁. (5)

The experiments are carried out by wavelet denoising of
the original signal generated from the rotor operation
process and then input to the deep learning neural network
model after sampling and cropping. To further verify the
performance of the proposed algorithm, the CNN network
for bearing fault diagnosis, the Bi GRU network for bearing
and gear life prediction, and the CBLSTMs network for tool
life prediction are implemented and compared with the
CABGRUs deep learning neural network proposed in this
article, and the same training parameters are set for the four
models during training. The specific training results of the
models are shown in Figure 4. Digital twin technology can
make the manufacturing process more “digital” and
“transparent,” which has important practical significance for
enterprise production process optimization, cost reduction
and efficiency improvement, and quality improvement, and
plays a substantial role in promoting traditional
manufacturing to intelligent manufacturing.

The loss function value of the training set of the network
model decreases with the increase of the number of itera-
tions and eventually stabilizes, and the loss function value of
the validation set fluctuates periodically. The accuracy of the
validation set of CNN and Bi GRU network models were
89.75% and 88.02%, respectively, with low prediction ac-
curacy, indicating that the deep learning network alone can
predict the rotor wear state, but it cannot capture the deeper
features hidden in the rotor operation vibration signal due to
the limitation of the network model capability [24]. Com-
pared with the deep CBLSTMs network model, the
CABGRUs network model proposed in this article achieves
higher prediction accuracy. CBLSTMs construct a two-layer
Bi LSTM network, using bi-directional LSTM network ac-
cess to access past and future information, i.e., it can extract
timing signal features from both forward and reverse di-
rections simultaneously, mining richer information features.
The accuracy of the validation set is stable above 96%, and
the accuracy is 96.75% after 50 iterations.

y
k
j � f xj+β􏼐 􏼑 + f xi + θ( 􏼁. (6)

Firstly, we need to input the training set to the BP neural
network model, normalize the data, and map the data of
different types and scales to the same range of values. If the
error is less than the set error value or has reached the set
number of iterations, the weight matrix of each layer is
output to end the neural network model training, otherwise,
the weight matrix of each layer is updated using the gradient
descent method to repeat the model training until the mean
square error of the output value is less than the set error
value. After completing the model training, the disordered
test set is substituted into the neural network for validation,
and the error between the predicted and expected values is
compared, and the results are shown in Figure 5.

TheUnity3D engine provides a Transform component to
transform the geometry of each object in the virtual scene,
including translation, rotation, and scaling of the object. To
reduce the motion delay of the devices in the virtual scene of
the production line, this article implements the geometric
motion behavior of the devices in the 3D virtual
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Figure 3: Stress curve of turbine rotor in thermal power plant.
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environment by calling the Update function and combining
the local position and localEulerAngles methods. The Up-
date method can update the position of the equipment in the
virtual scene of the production line every frame, thus im-
proving the real-time operation of the virtual monitoring
system. Firstly, the collected real-time data of the production
line equipment are transferred to the virtual scene of the
production line, and then the Update method is used to
update the values of the local position and localEulerAngles
properties under the Object Transform component in real-
time so that the production line equipment can perform
geometric motion in the virtual scene and achieve the
purpose of synchronizing the virtual production line with
the physical production line. The UGUI component of the

Unity3D engine is used to realize the visual display of the
device status data. By analyzing the geometric transfor-
mation relationship of the 3D model of the equipment in
space, the motion control of the equipment model in the
virtual scene of the production line is completed based on
the Unity3D engine and real-time data.

4.2. Simulation Test of the Turbine Rotor Automation Mon-
itoring Model for Thermal Power Plants. The ACLMD
method is used to extract features from the vibration signals
of seven typical turbine faults (rotor unbalance, rotor
misalignment, bearing seat looseness, oil film oscillation,
rotor crack, oil film vortex, and bearing wear). It should be
noted that considering a large amount of sample data for
classifier training and testing, 10 sets of vibration signals are
extracted for each of the seven typical faults, and the energy
entropy of the PF component of each set of vibration signals
is calculated separately. The a, b, . . ., g English numbers are
used tomark the different fault states; the 1, 2, . . ., 6 numbers
are used to mark the energy entropy of the 6 PF components
decomposed from each fault state; the Roman numerals I, II,
..., X is used to mark the different groups of signals. For
example, the energy entropy of the first PF component of the
fifth set of data for the third set of loose bearing seat faults
can be represented by Ve1. To further illustrate the feasibility
of using energy entropy as a feature quantity for fault pattern
recognition, the energy entropy of PF components in dif-
ferent fault states of the turbine is analyzed separately for
variability and repeatability. As shown in Figure 6, the
variability of the energy entropy of PF components under
seven states is shown (taking the first set of signals as an
example).

As a result, the energy entropy of different fault PF
components is significantly different, and the entropy value
in a specific frequency band is much larger than that in other
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frequency bands when a fault occurs and the entropy values
of different components in the same fault state are also
different, so an intelligent algorithm is needed for pattern
recognition of turbine vibration faults.

The particle swarm algorithm is a stochastic search al-
gorithm based on the collaboration of group instances de-
veloped based on the foraging behavior of birds. It is also a
kind of group intelligence. The particle swarm algorithm is
an evolutionary algorithm [25]. The nature of the evolu-
tionary algorithm is an adaptive algorithm. It is an evolu-
tionary algorithm that compares the solution of an
optimization problem with the solution of an individual and
applies it to the recombination, selection, and mutation of
the solution during optimization. By simulating the re-
production, compilation, and competition of organisms to
reflect the optimization problem, the variables are contin-
uously updated and the optimal solution is finally obtained.
This section uses the Particle Swarm Optimization (PSO)
algorithm to obtain a set of start-up time parameters. With
the optimal cold start parameters, the start-up time of the
unit under the original conditions was reduced by 32min or
5.3%, and the temperature part of the optimized start-up
curve was changed. The steam turbine is responsible for the
key equipment that converts thermal energy into mechanical
energy and then into electrical energy. Under the working
environment of high speed, high stress, and high temper-
ature, the components bear a large load and are often
subjected to various alternating stresses. The rotor stresses
during the new start were calculated using ANSYS software.
the positions of the four monitoring points were kept
constant and the stress results are shown in Figure 7. From
Figure 7, the maximum stress value of the rotor under the
new starting scheme is 464.72MPa, which occurs during the
temperature rise period after the medium-speed turbine
warm-up. The thermal stress of the turbine rotor changes as

the temperature rises at the rate of the turbine, and the
temperature difference on the surface starts to become larger
after the temperature rise rate is large, and the drastic
temperature change will directly affect the size of the thermal
stress worth of the turbine rotor, that is, the thermal stress of
the turbine rotor increases when the temperature rise rate
changes a lot.

The image of the stress field clearly shows the location of
the stress concentration, which is mainly at the root of the
turbine rotor blade. According to the above data, the time
parameters after the adaptive particle swarm optimization
meet the accuracy requirements. According to the optimized
starting scheme, the whole starting process of the unit is
shortened by 32 mins, and the unit load is greatly increased.
The optimization results are satisfactory. It reduces the start-
up time and energy consumption of the unit, ensures the
safety of the unit, improves the economy, and further in-
creases the efficiency of the plant. The time parameters after
particle swarm optimization meet the accuracy require-
ments. According to the optimized start-up plan, the entire
start-up process of the unit was shortened by 32 min and the
unit load was greatly increased. The optimized start-up
scheme was verified using ANSYS software. The stress value
of the maximum stress concentration point of the turbine
rotor meets the requirements.

5. Conclusion

Based on digital twin technology, this article develops a real-
time data-driven virtual monitoring system for turbine rotor
operation in thermal power plants. By building a physical
rule fusion model of rotor operation and establishing a
geometric behavior mapping method for rotor operation in
virtual scenarios, the physical state monitoring, and ab-
normal rotor operation state prediction are realized. Finally,
by analyzing the geometric transformation relationship of
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the 3D model of the equipment in space, the motion control
of the equipment model in the virtual scene of the pro-
duction line is completed based on the Unity3D engine and
real-time data, and the collision detection of the equipment
in motion is realized by building the collision body of the
equipment in the virtual scene. This provides a theoretical
approach to realizing the digital twin of the device at the
geometric level. The real-time physical data of rotor oper-
ation is uploaded into the digital twin, where the real-time
status information is used for dynamic updating of the
digital twin, and the rotor operation fault gas data is di-
agnosed through the fault diagnosis model stored in the
behavioral model of the digital twin, and the rotor operation
fault results and the maintenance plan are displayed on the
system interactive interface for reference and timely
maintenance by engineers. Although this article has studied
the fault diagnosis of turbine rotor operation in thermal
power plants based on digital twin, optimized the relevant
algorithms, performed experimental verification, and finally
designed the fault diagnosis system, some issues need to be
further investigated due to time constraints. The application
of data science and simulation technology in this article is
not sufficient, and further consideration of the application
scenarios and matching of data science and simulation
technology in manufacturing unit control is needed.
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