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In the current era of increasingly complex social life, as people’s demand quality is getting higher and higher, the solution of the
problem often has multiple indicators to achieve the optimum.  is forces the graph coloring problem (GCP) to become
complicated, and it is di�cult to directly obtain the optimal solution, which brings new challenges to the solution of the problem.
In response to this problem, the GCP �eld is of great research signi�cance. With the in-depth study of GCP, the research on
multiobjective optimization (MOO) in graph coloring algorithm (GCA) is gradually carried out. Its performance advantage is of
great signi�cance for solving multicondition constraint problems.  is paper aims to study the application of Genetic Algorithm
(GA) in GCA.  rough the analysis and research of GA, and the fusion of numerical analysis and scienti�c computing, it can be
applied to the construction of the neighbor distinguishable uniform V-full coloring algorithm (AVDEVTCA) to solve the
AVDEVTC problem.  is paper describes the basic theory of MOO and graph coloring. It conducts an experimental analysis of
the algorithm performance and uses the relevant theoretical formulas to explain it.  e results show that the algorithm takes
5754.142 S seconds to test 21325415 images and can color a large number of results that cannot be done manually in less time. It
has greatly improved in terms of time and manpower saving and greatly improved practicability and work e�ciency.

1. Introduction

 e modernization process is constantly evolving, and
various �elds are constantly developing at the same time,
and many numerical calculation problems are extended.
Ordinary human computing has been unable to solve huge
data or more accurate data. Numerical analysis and scienti�c
computing are the use of computers to perform numerical
calculations. Numerical analysis and scienti�c computing
have successfully solved a series of di�cult problems such as
the optimal solution of parameters in all walks of life, with
high accuracy.  e scienti�c computing power of computers
is still limited. For example, in numerical weather fore-
casting, only medium- and short-term forecasts can be
made. In the aerodynamic design of the aircraft, it can only
be carried out in parts, and in the oil exploration, only rough
mathematical models can be processed. More powerful

computers are required for long-term numerical weather
forecasting, overall aircraft aerodynamic design, and pro-
cessing of more accurate mathematical models in oil
exploration.

In today’s increasingly complex situation, how to quickly
and e�ciently obtain the optimal solution for problems with
multiple constraints has far-reaching signi�cance for the
development of all walks of life.  e concept of MOO is that
when multiple objectives need to be achieved in a certain
situation, due to the inherent con�ict between objectives, the
optimization of one objective is at the expense of the de-
terioration of other objectives, so it is di�cult to obtain a
unique optimal solution. Instead, there is coordination and
compromise among them to make the overall goal as op-
timal as possible.  e MOO idea has better e�ect on the
multiconstraint problem to be solved and has less restric-
tions, so its application range is very wide. In recent years,
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some scholars have used scientific computing to solve graph
coloring problems, but the application and research of MOO
algorithms in this area are relatively few. )erefore, it is of
great significance to apply genetic algorithm to the research
of solving the problem of average total color of graphs.

2. Related Work

With the progress of society, more and more people have
studied numerical analysis and scientific computing. Danaila
et al. proposed to use numerical methods to solve problems
in various fields of application and provided 12 computa-
tional projects [1]. )is point of view has aroused the
continuous attention of later scholars on the research of this
problem, but the application in other fields needs to be
expanded. )erefore, And Elman and Furnival applied
multigrid to solve the stochastic steady-state diffusion
problem [2]. Although his research has proved theoretically
and experimentally that the convergence rate is not related
to spatial discretization and random discretization. But the
research to solve the disk simulation problem has not been
carried out. Based on this, Wilber et al. described an al-
gorithm applied to define a smooth function on the unit disk
for numerical computation to solve-related problems [3].
However, although this study fills the gap of numerical
analysis applied to the disk simulation problem, it lacks a
strong practical example to prove it. Dlz et al. utilized
boundary integral equations to efficiently solve partial dif-
ferential equations of strong elliptic operators with constant
coefficients and stochastic Dirichlet data. But the values it
provides are not accurate enough [4]. Tonicello et al. ex-
plored some spectral analysis and typical fluid mechanics
problems. Although there is a certain progress significance,
but with the emergence of data, mining and data popular
learning problems can no longer meet the needs [5]. Based
on this, Druskin et al. proposed the application of graph
Laplacian dimensionality reduction based on data spectral
clustering [6]. While this is somewhat helpful for solving
related problems, the computational cost is too high. Karaa
et al. proposed the use of FEM to derive the solution of the
fractional time diffusion equation over a bounded convex
domain. Although there is some example data analysis, its
accuracy is not enough [7].

After a period of research, it is found that MOO provides
new ideas for solving new problems in numerical computing
and scientific computing applications. )erefore, some
scholars turn their attention to the research ofMOO. Rashidi
and Khorshidi developed a MOO method based on differ-
ential evolution algorithm and local unimodal sampling
technique. He applied it to a biomass gasification system to
calculate the optimal values of system parameters for
multiple generations [8].)is is an important attempt on the
application of MOO to problem solving. But it only exists as
an auxiliary function and is not the main research object.
)erefore, Zille et al. proposed a new method called a
weighted optimization framework to solve MOO problems
with a large number of decision variables [9]. )is study
takes MOO method as the main research object and fills the
research gap. However, it was found in the study that this

method relies on the grouping mechanism to be solved. Do
et al. successfully solved the MOO problem of turning
process through Taguchi combination method andMOORA
technology. However, the authenticity of the experimental
data needs to be verified [10]. Onler et al. proposed a method
to determine the ideal process parameters for Co-Cr-Mo
alloy binder jetting [11]. )is method solves the problem of
high-speed and low-cost manufacturing of high-volume
defect-free products. But the range of conditions of appli-
cation is very limited. Kazi et al. developed a hybrid powder
blending EDM technology [12]. Although this technology
improves the problem of increasing the corresponding
amount of powder in mixed powder processing, it does not
solve the problem in essence. Babaelahi et al. made parabolic
fin (convex) heat sinks through MOO to maximize thermal
efficiency and minimize entropy generation [13]. It applies
multiproblem optimization to the field of LED lamps and
broadens the application scope of this technology, but the
control accuracy is not enough. Yadav et al. used a multi-
objective genetic algorithm to optimize the rotational speed
of the equipment. He determined optimal values of design
parameters related to active magnetic bearing (AMB) ge-
ometry and electromagnetic actuators [14]. However, the
experimental process is not rigorous enough, ignoring the
influence of different environments. )e above research
attempts to apply MOO to the solution of numerical
problems in various fields. However, the application re-
search of fusion MOO in graph coloring algorithm needs to
be supplemented.

In order to solve the application research problem of
fusion MOO in graph coloring algorithm, this paper uses
MOO to analyze the graph coloring algorithm. )e algo-
rithm performance test is simulated to achieve the highest
accuracy and the lowest time loss. )e innovation of this
paper is (1) the theoretical knowledge of MOO and graph
coloring algorithm are introduced. It also uses MOO and
graph coloring algorithm to analyze how genetic algorithms
and graph theory shading algorithms play a role in the
application research of MOO integrating numerical analysis
and scientific computing in graph coloring algorithm. (2)
)e performance of the proposed algorithm is described
below. Experimental results show that the algorithm has
excellent performance and practicability and significantly
improves the coloring efficiency.

2.1. Methods. When solving graph coloring problems using
common intelligent algorithms, there is a limitation that is
limited to solving graph coloring problems with a single
constraint, for example, ant colony algorithm, BP neural
network algorithm, tree algorithm, etc. However, when faced
with the problem of multiconstraint graph coloring, the
effect of common algorithms is often unsatisfactory [15].
)rough the investigation, it is found that there are very few
introductions that combine scientific computing with graph
coloring algorithms. So this paper proposes an algorithm to
solve this multiconstraint problem. )e algorithm designs a
total objective function and four subobjective functions to
accommodate the various constraints of AVDEVTC.
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)rough the repeated exchange operation of the color set of
each point on the coloringmatrix, each subpurpose function is
optimized, and then the overall objective function require-
ments are satisfied. Extensive experiments and analysis show
that the algorithm obtains correct and less time-consuming
results for AVDEVTCN and graph adjacency matrix. )e
organizational structure of this paper is shown in Figure 1:

As can be seen from Figure 1, the full text of this study
consists of five parts. )e first part mainly introduces the
research background of numerical computation and MOO
problems. It leads to the fact that conventional intelligent
algorithms cannot solve multiconstraint problems well to
illustrate the purpose and significance of this research. )e
second part makes a general analysis of the research status in
the fields of numerical analysis, scientific computing and
graph coloring, and explains the content and innovation of
this paper. )e third part describes the organization
structure and method of this research and shows it through
the structure diagram. It also introduces the related methods
of graph coloring and MOO. It also provides an algorithmic

description of the random graph generation algorithm and
the proposed new algorithm. )e fourth part obtains the
result by simulating the random graph and testing a large
number of graphs and draws the conclusion that the al-
gorithm can improve the work efficiency after analyzing the
result data. )e fifth part concludes and reflects.

2.2. Figure Staining. )is paper mainly focuses on the al-
gorithm research for the solution of GCP. Graph coloring
problem (GCP), also known as coloring problem, is one of
the most famous NP-complete problems. Mathematical
definition: given an undirected graph G � (V, E), where V is
the set of vertices and E is the set of edges.)e graph coloring
problem is to divide V into K color groups, each of which
forms an independent set, that is, there are no adjacent
vertices in it. Its optimized version is to hope to obtain the
smallest K value. )erefore, the following describes the
definition and introduction of the principle of graph col-
oring to prepare for the subsequent optimization algorithm.

Part 1: Introduction
Research background issues, purpose and

significance

Part 5: Conclusion

Part 4: AVDEVTC algorithm experiment and
analysis

Part 3: Research Methods

Part 2: Related Work
An overview of the research status in related fields

and the specific content and innovations of this
research

graph coloringFull text
organization

Random graph
generation
algorithm

AVDEVTC
algorithm

random graph
test

Data analysis of
experimental results

Figure 1: Full-text organizational chart.
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2.2.1. Definition of Strongly Distinguishable Coloring. T (Q,
W) is a simple connected graph with order greater than or
equal to 2. )e mapping of E (Q)∪R (W) to positive integer
Y� {1, 2, . . ., k} is f, and for ∀ui, uo ∈W(T), i≠ o, f(ui)≠
f(uo), for ∀ui ∈W(T), u≠ i, f(u)≠f(i), f(u)≠f(ui),

f(i) ≡ f(ui), for ∀ui ∈W(T), u≠ i, Y(u)≠Y(i), it is
expressed by formula (1):

f � k − ASDTC · of(T). (1)

)en the strongly distinguishable panchromatic number
of adjacent points is defined as formula (2):

Past(T) � min k|k − ASDTC · of(T){ }. (2)

Among them, Past (T) is the strongly discriminative
panchromatic number of adjacent points in the graph T and
Y(u) � f(u)􏼈 􏼉∪ f(i)􏼈 􏼉|ui ∈W(T)}.

If there is a connected graph whose order T is not less
than 3, then there is formula (3):

Past(T)≥Δ(T) + 1. (3)

When the graph T has more than two adjacent maxi-
mum degree vertices, it is shown in formula (4):

Past(T)≥Δ(T) + 2. (4)

Suppose An is a complete graph of order n with n≥ 3,
then there is formula (5):

Past An( 􏼁≥ n + log2 n􏼂 􏼃. (5)

Among them, [log2n] is the smallest integer not less than
log2n in formula (5).

)en according to the above principles, it is guessed that
there is a simple connected graph with order T of at least 3,
and there is formula (6):

Past(T)≤ n + log2 n􏼂 􏼃 + 1. (6)

For the plane graph T of order not less than 3, there is
formula (7):

Past(T)≤Δ(T) + 3. (7)

)ecombination degree of graphT is shown in formula (8):

αi(T) � min I|
I

i + 1
􏼠 􏼡≥ ni, β≤ i≤Δ􏼨 􏼩. (8)

Among them, i is the number of points; ni is the moderate
degree of E (T); αi(T) is the combination degree of graph T;
and the Past of part of the graph T is shown in Table 1:

)ere is a simple connected graph whose order T is at
least 3, then there is formula (9):

Pvst(T)≥Δ(T) + 1. (9)

When the graph T has a maximum degree vertex of ≥2,
then there is formula (10):

Pvst(T)≥Δ(T) + 2. (10)

Assuming that there is a complete graph F when n≥ 3,
then there is formula (11):

Pvst Fn( 􏼁≥ n + log2 n􏼂 􏼃. (11)

In formula (11), [log2n] is the smallest integer of ≥log2n.
)ere is a simple connected graph of order T (Q, W) not

less than 2, f is the mapping fromQ (T)∪WW(T) to positive
integer Y� {1, 2, . . . k}. And for ∀ui, uo ∈W(T), i≠ o,

f(ui)≠f(uo), ∀ui ∈W(T),u≠ i,f(u)≠f(i),f(u)≠f(ui),

f(i) ≡f(ui), and ∀ui ∈W(T), u≠ i,Y(u)≠Y(i), the point-
intensity distinguishable complete colors of the graph are
shown in formula (12):

f � k − VSDTC · of(T). (12)

)en the strongly distinguishable panchromatic number
of adjacent points is defined as formula (13):

Past(T) � min k|k − VSDTC · of(T){ }. (13)

Among them, Past (T) is the k-point strongly dis-
tinguishing panchromatic number of graph T, and Y(u) �

f(u)􏼈 􏼉∪ f(i)􏼈 􏼉|ui ∈W(T)∪f(ui)|uo ∈W(T)}.
Assuming that there is a complete bipartite graph Fnm,

there is formula (14):

n + 2≤Pvst Fnm( 􏼁 � n + 3. (14)

Among them, 2≤m≤ n.
Assuming that there is a complete bipartite graph Fnm,

there is formula (15):

n + 3≤Pvst Fnm( 􏼁 � n + 4. (15)

Among them, n≥ 4.
According to the above derivation, for the complete

graph Fn (n≥ 3), there is formula (16):

Pvst Kn( 􏼁 � Past Kn( 􏼁. (16)

)e Pvst of part of the graph T is shown in Table 2.

3. MOO and Genetic Algorithm That Integrates
NumericalAnalysis andScientificComputing

)is paper combines the MOO idea with the graph coloring
algorithm and combines numerical analysis and scientific
computing to propose a new algorithm.

Table 1: Past of part of graph T.

Figure T To meet the conditions Past
Zn n is odd and n≥ 3 4
Zn n is even and n≥ 3 5
Xn n≡ 0 (mod2), n≠ 4, 10, n≥ 3 4
Xn n≡ 1 (mod2), n� 4, 10, n≥ 3 5
Cn n≥ 3 n+ 1
Vn n� 2, 3 5
V5 ⊗ 6
Vn n≥ 5 n+ 1
Bn n� 2k, k� 2, 3, 4, 5 n+ k
Bn n≥ 3, and ≠6, 14 n+ [log2n]

N ∆(N)≥ 4 and there is no maximum degree
point neighbor ∆(N) + 1

N ∆(N)≥ 4and there is maximum degree
point neighbor ∆(N) + 2
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3.1. MOO. Multifunctional optimization (decision-making)
problems often do not have a single globally optimal so-
lution, but there are multiple optimal solutions [16]. )e
elements of the optimal solution set for a multipurpose
problem cannot be compared with all subobjectives. In
general, this is called the Pareto optimal solution set, and the
elements of the solution set are called nongood and bad
optimal solutions. Assuming that for any two solutions S1
and S2 for all objectives, S1 is better than S2, then S1 is said to
dominate S2. If S1 is not dominated by other solutions, then
S1 is called a nondominated solution (undominated solu-
tion), also known as a Pareto solution.

Objective functions and constraints in multifunctional
optimization problems are generally functions with inde-
pendent variables [17]. Its optimization definition is shown
in formula (17):

M: y � g(x) � g1(x), g2(x), . . . , gz(x)

S: d(x) � d1(x), d2(x), . . . , dc(x)( 􏼁≤ 0

Wx � x1, x2, . . . , xn( 􏼁 ∈ x, y � y1, y2, . . . , yn( 􏼁 ∈ Y.

(17)

Among them, X is the independent variable space; Y is
the target space; the independent variable vector is x; and the
target vector is y, and the feasible solution set is determined
by d(x)≤ 0.

A feasible set is a set of independent variable vectors that
satisfy the constraints as shown in formula (18):

Xg � x ∈ X|d(x)≤ 0{ }. (18)

Among them, in the feasible region of the target space,
Yg is the phase of Xg Numerical analysis can be used to
study its error bounds, iterative scheme convergence, con-
vergence order and speed, and computational complexity.

Numerical analysis is the study of mathematical analysis
algorithms (as opposed to general symbolic operations) that
use numerical approximations (as opposed to discrete
mathematics).

Scientific computing uses advanced computing capabilities
to understand and solve complex problems. Practical aspects
of obtaining an exact solution to a multiobjective optimization
problem can be obtained through scientific computing.

3.2. Genetic Algorithm. Genetic algorithm is an efficient
optimization method that can be used to solve and deal with

complex optimization problems [18]. Genetic algorithm is a
stochastic intelligent optimization algorithm based on
natural selection and natural genetic mechanism. In real life,
when using the genetic algorithm to solve the optimization
problem, the chromosome size of the population is first
determined according to the feasible region. )e encoded
fitness value is then calculated by constructing a fitness
function. )en, according to different fitness values, the
chromosomes are selected, crossed, and mutated to generate
more populations that meet the conditions and search for
the best solution in a wider range of feasible space. In this
paper, the idea of genetic algorithm is used to improve the
full coloring algorithm. )e basic process of genetic algo-
rithm is shown in Figure 2:

As shown in Figure 2, the optimization problem is solved
by a genetic algorithm. First, the size of the chromosome is
determined, and second, the fitness of the code is calculated.
It again performs regular operations on chromosomes based
on the fitness value. Finally, a population that satisfies the
conditions is generated to complete the entire algorithm and
obtain the optimal solution of the problem.

Genetic algorithm has the advantages of self-organi-
zation, self-adaptation, self-learning, and intrinsic paral-
lelism, so it can search multiple regions at the same time.
But at the same time, the genetic algorithm also has
shortcomings, such as when the scale of the graph in-
creases, the chromosome subspace increases sharply, and
the design of the crossover operator and mutation operator
is blind. )is greatly affects the optimization efficiency of
the graph coloring problem. Genetic algorithm has good
global search ability, but still has some shortcomings in
local search ability.

4. Algorithm for Generating Random Graphs

)e two random graph generation algorithms provided basic
research data to demonstrate the test of the result set, sta-
tistics and related additions, and conjectures of a series of
coloring algorithms, laying the foundation for subsequent
research on coloring algorithms [19].

4.1. ER Model. In 1959, Hungarian mathematicians pro-
posed a random network model that randomly connected
points and edges with the same probability to form a random
network, namely the ER model. When a number of fixed
points are given, it is assumed that each vertex is connected
by edges, and a random graph can be obtained by randomly
selecting edges from these edges. )e number of random
graphs that can be generated is shown in formula (19):

L
h
g(g−1)/2. (19)

Among them, g is the number of vertices; g(g − 1)/2 is
the number of edges; and h is the number of edges randomly
selected from them.

4.2. Binomial Model. )e probability of its existence is
shown in formula (20):

Table 2: Pvst of partial graph T.

Figure T To meet the conditions Pvst
M3 ⊗ 4
Mn 4≤ n≤ 11 5
Nn 5≤ n≤ 16 5
Nn 15≤ n≤ 48 6
Bn n≥ 5 n+ 1
Bn n� 3, 4 6
Vn n≥ 5 n+ 1
Pn n� 2k, k� 2, 3, 4, 5, 6 n+ k
Pn n≥ 3, and ≠6, 14 n+ [log2n]

Mathematical Problems in Engineering 5



G(i) � g
B
(1 − g)

m
(m − 1)

2 − m .
(20)

Among them, m is the number of vertices; g is the
connection probability; and B is the average value of all
connections.

)e random graph algorithm is designed, and the basic
process of the random graph algorithm is obtained, as shown
in Figure 3:

As can be seen from Figure 3, the random graph is
generated by the random graph algorithm. First determine
the number of vertices to get the random matrix of the
adjacency graph, and then randomly generate the edge-
filling array of the graph. It fills the edges according to the
rules, 1 means there is an edge, and 0 means no edge. Next,
judge whether it is a connected graph, if not, return to the
previous step, if yes, output the adjacency matrix of the
random graph, and the algorithm ends.

4.3. Spanning Tree Algorithm. In the mathematical field of
graph theory, if a subgraph of a connected graph G is a tree
containing all vertices of G, then the subgraph is called a

spanning tree of G. A spanning tree is a minimal connected
subgraph of a connected graph that contains all vertices in the
graph.)e spanning tree of a graph is not unique. By traversing
from different vertices, different spanning trees can be obtained.
)is algorithm can realize all spanning trees within a limited
number of points, which brings convenience to the problem of
graph generation and graph coloring studied in this paper [20].

)e weight Q (S) of the tree is written as formula (21):

Q(S) � 􏽘
(z,x)∈S D

z(z, x). (21)

Among them, SD is the edge set of S; Q (z, x) is the
weight of the edge (z, x).

4.4. Solving Matrix Eigenvalue Algorithms. Although there
are many ways to solve the eigenvalues of mathematical
matrices, this paper uses the QR decomposition method to
solve the corresponding eigenvalues and eigenvectors. )e
QR algorithm is an algorithm that uses a recursive method to
solve the eigenvalues and eigendirections of a matrix. When
the number of recursive rounds is appropriate, the QR al-
gorithm will obtain an upper triangular matrix, and then

start

Initialize,
generate
the initial

population

Calculate
individual

fitness

whether to get the
optimal solution

new generation
population

Finish

genetic manipulation

output
optimal
solution

Yes

No

Figure 2: Basic flowchart of genetic algorithm.
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Randomly
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arraywith
operations

Yes
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Figure 3: Flowchart of random graph algorithm.
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obtain the eigenvalues. )e basic idea is to generate the same
repeating sequence as matrix J by orthogonal decomposition
of the matrix, as in formula (22):

Jx � YxPx

Jx+1 � PxQx

􏼨 (x � 1, 2, . . .). (22)

Among them, J is the matrix to be solved.
)e basic flow of the spanning tree algorithm is shown in

Figure 4:
As can be seen from Figure 4, all spanning trees for a

given point are output using the spanning tree algorithm.
First determine the number of vertices, then input the star
map of the vertex to obtain the first layer of the decision tree,
and then continue to generate the decision tree according to
the rules, count the active node set and number, and then
judge whether it is an isomorphic graph. If yes, return to the
previous step without output, otherwise, output the adja-
cency matrix of the graph and record it. )en judge whether
there is an active node, if yes, then return to continue to
derive the decision tree, otherwise the algorithm ends.

4.5. Neighbor Distinguishable Uniform V-Full Coloring
Algorithm of Graphs

4.5.1. AlgorithmDescription. First randomly color the vertex
and then the same color on any two points. After the random
vertices are colored, the related vertices are colored with the
remaining colors. After half of the objective function, if it is
not correct, continue to adjust until it fully meets the re-
quirements after adjustment.

)e flow of the MOO algorithm is shown in Figure 5.

It requires that the difference in the number of times
every two colors is used is not more than 1. Adjacent vertices
have different colors, adjacent edges have different colors,
and vertices and associated edges have different colors. )en
the multiobjective function satisfying these conditions is
shown in formula (23):

F(G) � f1 g1( 􏼁 + f g2( 􏼁 + f g3( 􏼁 + f g4( 􏼁. (23)

Among them, the decision vector is G � (G1, G2, G3, G4).

4.5.2. Build the Objective Function. )e edge coloring ob-
jective function is constructed as shown in formula (24):

α1 b1, b2( 􏼁 �
1, f b1( 􏼁 � f b2( 􏼁

0, other
􏼨

f1 g1( 􏼁 � 􏽘
b1b2∈H(K)

α1 b1, b2( 􏼁.

(24)

Among them, b1 is any two adjacent edges and ∈ H(G);
)e point-edge objective function is constructed as

shown in formula (25):

α2(m, i) �
1, f(mi) � f(m)orf(mi) � f(i)

0, other
􏼨

f2(g) � 􏽘
mi∈

α2(m, i).

(25)

Among them, mi is any two edges and ∈ H(G). )e
number of edges for vertex color conflict is f2(g).

)e objective function of constructing the color set is
shown in formula (26):

start
Enter the

number of
vertices

Enter this
vertex
map

isomorphism judgment

Finish
Output the adjacency matrix of

the graph and record the
information

Connect
vertices to
get the first

level
decision

tree

Yes

No

Derive
decision
tree and

count
numbers

Isomorphism with the previous
figure does not output

Is there an active node

Yes

No

Figure 4: Flowchart of spanning tree algorithm.
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f3 g3( 􏼁 � 􏽘
mi∈H(G)

α3(m, i). (26)

Among them, m, i are two adjacent points, ∈V(G).

α3(m, i) �
1, mi ∈ H(G) andP(m) � P(i),

0, other􏼨 ; g3� (P1,

P2, . . ., Pn). )e number of color set collisions for neighbor
pairs is f3(g3).

)e limitation of the unified objective function is that the
difference in the number of uses of any two colors is less than
1. Its function is shown in formula (27):

f4(g) � 􏽘
mi∈H(G)

y4(e, r). (27)

)e number that does not satisfy that the difference in
the number of times of use of each two colors is not greater
than 1 isf4(g).

According to the above subobjective functions, the total
objective function is obtained as shown in formula (28):

Z � minF(G). (28)

Among them, F(G) � f1(g1) + f2(g2) + f3(g3) +

f4(g4). When F(G) � 0, the staining was successful.

5. Experimental Simulation and Analysis

In the random graph test, the algorithm is tested by choosing
a random graph with 8 vertices. Initialize the random graph:
first, an adjacency matrix of a random graph with 8 vertices
is generated by using the random graph generation algo-
rithm. )en count the degrees of each vertex and determine
the initial chromatic number. )e initial graph adjacency
matrix is shown in Table 3:

It can be seen from Table 3 that the maximum degree
of the graph is 7, and the chromatic number required for
full dyeing can be obtained as 7 + 1� 8. )e number of
graphs obtained for each of the other vertices is 3 for 3

degrees, 2 for 4 degrees, and 2 for 5 degrees. Among them, Q
(Vi) is the degree of each vertex, and Vi represents each
vertex of the graph.
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Figure 5: Flowchart of MOO algorithm.

Table 3: Adjacency matrix of initial graph.

Vi V1 V2 V3 V4 V5 V6 V7 V8 Q(vn)

V1 1 0 1 1 0 1 0 0 4
V2 1 1 1 0 1 1 1 1 7
V3 0 0 1 0 1 1 0 0 3
V4 1 0 1 1 0 0 1 1 5
V5 0 0 1 0 1 1 1 0 4
V6 0 0 1 1 0 1 0 0 3
V7 1 1 0 0 1 0 1 1 5
V8 0 0 1 0 1 0 1 0 3

Table 4: Initial staining matrix.

Vi V1 V2 V3 V4 V5 V6 V7 V8 Q(vn)

V1 5 0 3 1 0 4 0 8 4
V2 4 7 6 2 3 5 8 1 7
V3 0 5 3 0 1 7 0 0 3
V4 6 4 8 7 0 0 1 0 5
V5 1 0 6 0 3 7 5 0 4
V6 0 0 4 8 0 3 0 6 3
V7 5 7 0 8 4 0 6 3 5
V8 0 5 4 0 3 0 8 0 3

Table 5: Conflicting set lookup.

Vn Q(vn) S(vn) Q(vn)+ S(vn) Is it normal?

V1 4 3 7 Yes
V2 7 0 7 Yes
V3 3 5 8 No
V4 5 2 7 Yes
V5 4 4 8 No
V6 3 6 9 No
V7 5 2 7 Yes
V8 3 4 7 Yes
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Vertex coloring: color vertices are randomly selected
from colors 1 to 8, and the vertex colors can be the same.

Edge prestaining: it does random coloring and vertex-
associative edge coloring for edges after removing the color
used for vertex coloring. )e obtained coloring matrix is
shown in Table 4:

From Table 4, the color complement sets S (V1)∼S (V8)
of each vertex can be obtained as follows: {2, 6, 7, 8}; {⊘}; {2,
4, 6, 8}; {2, 3, 5}; {2, 4, 8}; {1, 2, 5, 7}; {1, 2}; {1, 2, 6, 7}.

Find conflict sets: if there is a conflict, there is
Q(Vn) + |S(Vn)|≠ k − 1, and the conflict situation is shown
in Table 5.

It can be seen from Table 5 that when the color number k
is 8, Q (Vn) + S (Vn)� k− 1� 7. Among them, V3, V5, and
V6 are in conflict, and the staining is abnormal.

Adjust the coloring conflict: it swaps conflicting colors
according to the rules, and then modifies the set of color
complements. )e new nonuniform dyeing results obtained
are shown in Table 6:

As can be seen from Table 6, the staining
conflict has been resolved. )e color complement sets
S (V1)∼S (V8) of each vertex are obtained as follows: {2,
4, 7}; {⊘}; {2, 4, 5, 6}; {4, 6}; {2, 4, 6}; {3, 6, 7}; {1, 2}; {1, 2,
6, 7}.

Table 6: Nonuniform dyeing results.

Vi V1 V2 V3 V4 V5 V6 V7 V8 Q(vn)

V1 5 3 0 1 0 6 0 8 4
V2 7 4 8 2 1 5 6 3 7
V3 8 1 3 0 0 7 0 0 3
V4 5 2 8 7 0 0 1 3 5
V5 7 0 3 0 8 5 1 0 4
V6 5 0 8 0 0 4 0 2 3
V7 5 7 0 8 4 0 6 3 5
V8 0 5 4 0 3 0 8 0 3

Table 7: Final uniform dyeing results.

Vi V1 V2 V3 V4 V5 V6 V7 V8 Q(vn)

V1 5 7 0 3 0 2 0 1 4
V2 7 4 8 2 1 5 6 3 7
V3 4 0 5 3 0 6 0 0 3
V4 5 2 8 7 0 4 0 3 5
V5 7 0 3 0 6 5 1 0 4
V6 7 0 8 0 0 4 0 2 3
V7 5 7 0 8 1 0 6 2 5
V8 0 5 4 0 3 0 6 0 3
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Check whether the chromatic number is uniform: as you
can see from the table data, the use of color is not uniform.
)e use of color should continue to be adjusted. After
adjusting the use of color according to the algorithm, the
final uniform dyeing results are obtained, as shown in
Table 7:

According to the data in Table 7, the difference between
the number of used colors of any color is less than or equal to
1. It is already average and meets full staining conditions.
)e color complement sets S (V1)∼S (V8) of each vertex are
obtained as follows: {4, 6, 8}; {⊘}; {1, 2, 7, 8}; {1, 6}; {2, 4, 8};
{1, 3, 5, 6}; {3, 4}; {1, 2, 7, 8}.

Experimental result data, it tests graphs with vertices
ranging from 100 to 1000 and obtains graphs with chromatic
numbers of △+ 1 and △+ 2, as shown in Figure 6:

As can be seen from Figure 6, the number of Δ+ 1
chromatic numbers with vertices ranging from 100 to
1000 is 6.51, 6.15, 5.53, 6.33, 4.85, 3.42, 3.12, 3.73, 4.33, and
2.85, respectively. )e overall number of graphs with ∆ + 1
chromatic number decreases as the number of vertices
increases. )e number of Δ+ 2 chromatic numbers from
100 to 1000 for fixed-point numbers has risen from 3.26 to

7.25. )e overall number of graphs with ∆ + 2 chromatic
number tends to increase as the number of fixed points
increases.

All graphs within 3≤ n≤ 8 were tested, as shown in
Figure 7:

It can be seen from Figure 7 that there are 2, 14, 21, 113,
and 853 nonisomorphic graphs with vertices 3 to 7, re-
spectively, and the number of vertices 8 is all numbers.)ere
are 21325188 isomorphic images in it.

Test the degree sequence with the chromatic number and
the number of edges. Due to space limitations, the test results
of some graphs are shown in Figure 8:

In Figure 8, the vertex degree distributions in the graph
are represented as degree sequences. )e number of uses of
the color number is reflected in the number of uniform
dyeing. Each of the small graphs represents a graph test
result.

It tests the graph between 20 and 400 points. Due to the
large number of samples, in order to obtain the change curve
of color number and edge density, only the coloring results
of a part of the chart are listed. )e change curve is shown in
Figure 9:
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As can be seen from Figure 9, as the edge density and the
number of points continue to increase, the structure of the
connected graph becomes more complex, and more colors
need to be used. So the number of colors increases with edge
density and number of dots. )rough the analysis of the test
results, it can be seen that all simple connection graphs
within 8 vertices have AVDEVTC.

Calculation of running time: all graphs of random
graphs with 8 vertices were tested using this algorithm, and
the running time is shown in Figure 10:

As can be seen from Figure 10, the corresponding
running times for the 2, 6, 21, 113, 853, 21325415 graphs are
0.0005 S, 0.042 S, 0.16 S, 0.632 S, 3.117 S, 5754.142 S. As the
number of graphs increases, the computation time also
increases, and the computation speed tends to decrease. )is
is due to the reason that the data are to be written to the text
file after the result. It can be seen that the algorithm can
obtain the dyeing results in a relatively short time.

)rough comprehensive experimental tests, it can be
seen that the operation speed of the dyeing algorithm based
on MOO is faster than that of the traditional method, and it
can complete the test results that cannot be obtained

manually in a short time. )e algorithm can be used to
obtain a large amount of research data. Of course, there may
be some uncertain factors, such as the instability of the use
environment, the difference of operators, and the use time
and frequency. )e results of this experiment are not
completely accurate and reliable and have certain
differences.

6. Conclusions

With the continuous upgrading of computer computing,
people have higher requirements for the efficiency and ac-
curacy of obtaining data. )e development of the field of
graph coloring problems is inseparable from the contribu-
tion of scientific computing. MOO methods have been
widely used in many fields because of their multiconstraint
advantages. )is article first gives a general introduction to
graph coloring and genetic algorithm, so that people can
understand their functions and principles. It then analyzes
their function using the relevant principle formulas. In the
end, it was found that both have great advantages in
function. In the experimental part, this paper tests the
uniform dyeing algorithm based onMOO.)e conclusion is
that the algorithm can reduce labor and time consumption
while performing uniform full dyeing. Compared with
traditional dyeing methods, it is more practical and efficient.
)e dyeing algorithm proposed in this study based on MOO
thinking provides a reference for solving the full dyeing
problem with multiple conditions and has certain progress
significance. However, the test conditions of this study are
limited, and the multicondition constraint graph coloring
problemwill be more complicated in reality.)is application
of combining the MOO idea with the graph coloring al-
gorithm will be more valuable and more difficult.

Data Availability

)e data used to support the findings of this study are
available from the author upon request.
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