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In this study, the existence and uniqueness of the solution for a system consisting of sequential fractional di�erential equations
that contain Caputo–Hadamard (CH) derivative are veri�ed. To study the existence and uniqueness of these solutions, some of the
most important results from the �xed point theorems in Banach space were used. A practical example is also given to support the
theoretical side that was obtained.

1. Introduction

Many problems in various �elds can be successfully for-
mulated by fractional di�erential equations, such as theo-
retical physics, Biology, viscosity, electrochemistry, and
other physical processes (see [1–7].) In the last decade, the
fractional di�erential equation has attracted the attention of
mathematicians, physicists, and engineers as well [8, 9].

A fractional di�erential equation is an equation that
contains fractional derivatives and di�erentials of some
mathematical functions and appears in the form of variables.
�e goal of solving these equations is to �nd these math-
ematical functions whose derivatives achieve these equa-
tions. Before starting to search for solutions to these
equations, studying the conditions of existence and
uniqueness is a major matter. To study these conditions,

most researchers use the most important �xed point the-
orems in Banach space, such as Banach contraction principle
and Leray Schauder’s theorem (see [10–24]).

In 2014, Zhang et al. [19] published a study investigating
the existence results for

HDp
1

x(t)
g(t, x(t))( ) ∈ G(t, x(t)), t ∈ [1, e], x(1) � x′(e) � 0,{

(1)

where HDp
1 , p ∈ (1, 2] is the Hadamard fractional derivative,

g ∈ C([1, e] × R,R\ 0{ }).
In 2016, Algoudi et al. [25] published a study investi-

gating the existence results for the following boundary value
problem (sequential Hadamard type):

HDp
1 + λHDp-1

1( )x(t) � f1 t, x(t), y(t),
HDr

1y(t)( ),
HDq

1 + λHDq-1
1( )y(t) � f2 t, x(t),

HDv
1(t), y(t)( ),

x(1) � 0, x(e) � HIθ1

y(η), y(1) � 0, y(e) � HIθ2x(ξ),




(2)
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where HD
(·)
1 , p, q ∈ (1, 2], r, v ∈ (0, 1) is the Hadamard

fractional derivative and HIθ1 is the Hadamard fractional
integral with order θ1, θ2 > 0,

f1, f2 ∈ C([1, e] × R3,R), η, ξ ∈ [1, e].

Some researchers went deeper into their research and
verified the stability of the solutions to these equations (see
[26, 27]). Furthermore, many specialists in the field have
paid attention to hybrid fractional differential equations; the
importance of fractional hybrid differential equations is that
they have a different dynamic than ordinary differential
equations and that the hybrid type describes the nonlinear
relationship in the derivative of the hybrid function (see
[28–31]).

Some focus on having solutions to a system of equations
(see [32–36]).

Based on what has been studied in the articles mentioned
above, existence and uniqueness of the following nonlinear
coupled differential equations are investigated. Unlike the
previous studies, the main results of this article are different;
that is, we generalize the problem mentioned in [36] by
converting one single fractional differential equation into a
system, using different fractional derivatives; here, we
consider the problems in the context of sequential type.

HD
q
a+ + λHD

q− 1
a+ 

x(t)

f(t, x(t), y(t))
  � ψ(t, x(t), y(t)),

HD
q
a+ + μHD

q− 1
a+ 

y(t)

g(t, x(t), y(t))
  � φ(t, x(t), y(t)),

x a
+

(  � x′ a
+

(  � 0,

y a
+

(  � y′ a
+

(  � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where HDc, c � p, q  is the Hadamard fractional derivative
of order 1<p, q< 2 , a≤ t≤T,

f, g ∈ C([a, T] × R2,R\ 0{ }), and λ, μ ∈ R.
In this work, we will follow the steps of researchers and

specialists in the field. By organizing our results on existence
of a solution to the problem as follows, Section 2 contains
some fundamental results of fractional calculus and im-
portant result for establishing our main results. In Section 3,
we introduce our main results. In Section 4, a practical
example shows the applicability of our results is given. In
Section 5, conclusion and future work are presented.

2. Preliminaries

In this section, we introduce some useful definitions,
lemmas, and notations of fractional calculus.

Definition 1 (see [36]). (e Hadamard fractional integral of
order θ for a continuous function ψ: [a,∞)⟶ R is de-
fined as

H
I
θψ(t) �

1
Γ(θ)


t

a
ln

t

x
 

θ− 1ψ(x)

x
dx, θ> 0. (4)

Definition 2 (see [36]). (e Hadamard fractional derivative
of order θ> 0 for a continuous function ψ: [a,∞)⟶ R is
defined as

H
D

θψ(t) � δn H
I
θψ (t)

� t
d
dt

 

n 1
Γ(n − θ)


t

a
ln

t

r
 

n− θ− 1ψ(r)

r
dr, n − 1< θ< n, n � [θ] + 1,

(5)

where δ � t(d/dt), [θ] denotes the integer part of the real
number θ.

Let C([a, T],R) denote the Banach space of all real
valued continuous functions defined on [a, T] and
Cn
δ([a, T],R) denote the Banach space of all real valued

functions φ such that δnφ ∈ C([a, T],R) (see [38]).

Lemma 1 (see [37]). Let z ∈ Cn
δ([a, T],R),whereCn

δ[a, T] �

z: [a, T]⟶ R:{ δnz ∈ C[a, T]}.
1en,

H
I
θ H

D
θ
z (t) � z(t) − 

n

j�1
lj ln

t

a
 

θ− j

. (6)
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Lemma 2. Given x ∈ C2
δ([a, T],R), and h1 ∈ C([a, T],R),

and

HD
p
a+ + λHD

p− 1
a+ 

x(t)

f(t, x(t), y(t))
  � h1(t), 1<p< 2 , 0< a≤ t≤T,

x a
+

(  � x′ a
+

(  � 0, λ ∈ R.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

(en, the solution of problem (7) is given by

x(t) � f(t, x(t), y(t)) × t
− μ


t

a
s
μ− 1H

I
p− 1
a+ φ(s, x(s), y(s))ds . (8)

Proof. Applying HI
p
a+ to (2), we get

H
I

p
a+ h1(t) �

x(t)

f(t, x(t), y(t))
  + b1 ln

t

a
 

p− 1

+b2 ln
t

a
 

p− 2
+ λH

I
1
a+

x(t)

f(t, x(t), y(t))
  + c1 ln

t

a
 

p− 2
 ,

(9)

where b1, b2, c1 ∈ R. (e condition x(a+) � 0 implies that
b2 � 0. (e first derivative of (4) is calculated as follows:

1
t

H
I

p
a+ h1(t) �

x(t)

f(t, x(t), y(t))
 

′
+ b1(p − 1) ln

t

a
 

p− 2

+
λ
t

x(t)

f(t, x(t), y(t))
  + c1 ln

t

a
 

p− 2
 .

(10)

Note that x′(a+) � 0 implies
(x(t)/f(t, x(t), y(t)))′|t�a+ � 0, and b1 � 0 � c1.

(e integrating factor η(t) � e
 (λ/t)dt; then, multiplying

η(t) by (10), we get

d
dt

t
λ x(t)

f(t, x(t), y(t))
   � t

λ− 1H
I

p− 1
a+ h1(t), (11)

then integrating (11) and again using x(a+) � 0, we con-
clude that

x(t)

f(t, x(t), y(t))
  � t

− λ


t

a
s
λ− 1H

I
p− 1
a+ h1(s)ds , (12)

consequently,

x(t) � f(t, x(t), y(t)) × t
− λ


t

a
s
λ− 1H

I
p− 1
a+ h1(s)ds . (13)

In a like manner of Lemma 2, one can easily find the
solution y(t) as

y(t) � g(t, x(t), y(t)) × t
− λ


t

a
s
λ− 1H

I
p− 1
a+ h1(s)ds . (14)

□

Remark 1. For λ � 0, the solution is still valid, as HIθh1(t) �
HI1HIθ− 1h1(t) � 

t

a
(Iθ− 1h1(x)/x)dx similar logic is applied

for the case when μ � 0. Here, these cases will not be taken
for consideration in this study.

3. Main Results

In this section, we will present the main results to be ob-
tained from this study.

(e space H � (x(t), y(t)): (x, y) ∈ C2
δ × C2

δ  is a
Banach space with the norm defined as ‖(x, y)‖H � ‖x‖ +

‖y‖ ∀(x, y) ∈ H. Based on Lemma 1, we define an operator
ℵ: H⟶ H as

ℵ(x, y)(t) �
ℵ1(x, y)(t)

ℵ2(x, y)(t)
 , (15)
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where

ℵ1(x, y)(t) � f(t, x(t), y(t)) × t
− μ


t

a
s
μ− 1H

I
p− 1
a+ φ(s, x(s), y(s))ds ,

ℵ2(x, y)(t) � g(t, x(t), y(t)) × t
− μ


t

a
s
μ− 1H

I
q− 1
a+ φ(s, x(s), y(s))ds .

(16)

To obtain our results for problem (3), we assume that the
following conditions hold:

(C1) Assume that both f, g are continuous and
∃λf, λg > 0 such that

|f(t, x, y)|≤ λf, |g(t, x, y)|≤ λg∀(t, x, y) ∈ [a, T] × R
2
.

(17)

(C2) Suppose that ψ,φ are continuous and
∃υi, τi > 0, (i � 1, 2) such that

ψ t, x1, y1(  − ψ t, x2, y2( 


≤ υ1 x1 − x2


 + υ2 y1 − y2


,

φ t, x1, y1(  − φ t, x2, y2( 


≤ τ1 x1 − x2


 + τ2 y1 − y2


,∀t ∈ [a, T], xi, yi ∈ R, (i � 1, 2).
(18)

(C3) ∃ω0, θ0 > 0, andωi, θi ≥ 0(i � 1, 2) such that

|ψ(t, x, y)|≤ω0 + ω1|x| + ω2|y|,

|φ(t, x, y)|≤ θ0 + θ1|x| + θ2|y|, ∀t ∈ [a, T], x, y ∈ R, (i � 1, 2).
(19)

(C4) Define a bounded subset S ⊂ H, that is,
∃σi > 0, (i � 1, 2) such that |ψ(t, x(t), y(t))|≤ σ1, and
|φ(t, x(t), y(t))|≤ σ2, ∀(x, y) ∈ S.

Using (C4), note that

t
− λ


t

a
s
λ− 1H

I
p− 1
a+ |ψ(s, x(s), y(s))|ds




� t

− λ


t

a
s
λ− 1H

I
p− 1
a+ |ψ(s, x(s), y(s))|ds,

� t
− λ


t

a
s
λ− 1H

I
p− 1
a+ |ψ(s, x(s), y(s))|ds≤ σ1

(ln t/a)
p− 1 1 − (a/t)λ





|λ|Γ(p)
.

(20)

To ease our computations, we set

Λ1 � sup
a≤t≤T

− λ


t

a
s
μ− 1


s

a
ln

s

r
 

q− 2 dr

r
ds ≤

(lnT/a)
p− 1 1 − (a/T)

λ




|λ|Γ(p)
,

Λ2 � sup
a≤t≤T

t
− μ


t

a
s
μ− 1


s

a
ln

s

r
 

q− 2 dr

r
ds ≤

(lnT/a)
q− 1 1 − (a/T)

μ


|μ|Γ(q)
.

(21)

Theorem 1. Assume that (C1) and (C2) hold if
[λfΛ1(υ1 + υ2) + λgΛ2(τ1 + τ2)]< 1. 1en, problem (1) has a
unique solution.

Proof. Consider ℵ defined by (9) and let Bc � (x,{

y) ∈ H: ‖(x, y)‖≤ c} be a closed ball inHwith c≥ λfΛ1Nψ +

λgΛ2Nφ/1 − (λfΛ1(υ1 + υ2) + λgΛ2(τ1 + τ2)), where Nψ �

supa≤t≤T |ψ(t, 0, 0)|, Nφ � supa≤t≤T |φ(t, 0, 0)|.
Observe that |ψ(t, x, y)| � |ψ(t, x, y) − ψ(t, 0, 0)+

ψ(t, 0, 0)|≤ υ1‖x‖ + υ2‖y‖ + Nψ ≤ (υ1 + υ2)c + Nψ .

First, we show that ℵBc ⊂ Bc. For any
(x, y) ∈ Bc, t ∈ [a, T], we have

4 Mathematical Problems in Engineering



ℵ1(x, y)(t)


 � |f(t, x(t), y(t))| × t
− λ


t

a
s
λ− 1H

I
p− 1
a+ ψ(s, x(s), y(s))ds




,

� λf × t
− λ


t

a
s
λ− 1H

I
p− 1
a+ |ψ(s, x(s), y(s))|ds,

≤ λf υ1 + υ2( c + Nψ  × sup
a≤t≤T

− λ


t

a
s
λ− 1


s

a
ln

s

r
 

p− 2 dr

r
ds ,

≤ λfΛ1 υ1 + υ2( c + Nψ .

(22)

In a same manner, we find that

ℵ2(x, y)
����

����≤ λgΛ2 τ1 + τ2( c + Nφ . (23)

From (14) and (15), we deduce that ‖ℵ(x, y)‖≤ c

Next for (x1, y1), (x2, y2) ∈ H,∀t ∈ [a, T], we have

ℵ1 x1, y1( (t) − ℵ1 x2, y2( (t)


≤ λf

× sup
a≤t≤T

t
− λ


t

a
s
λ− 1H

I
p− 1
a+ ψ s, x1(s), y1(s)(  − ψ s, x2(s), y2(s)( 


ds 

≤ λf υ1 x1 − x2
����

���� + υ2 y1 − y2
����

����  sup
a≤t≤T

− λ


t

a
s
λ− 1


s

a
ln

s

r
 

p− 2 dr

r
ds ,

≤ λfΛ1 υ1 x1 − x2
����

���� + υ2 y1 − y2
����

���� ,

≤ λfΛ1 υ1 + υ2(  x1 − x2
����

���� + y1 − y2
����

���� .

(24)

Similarly, we can find

ℵ2 x1, y1(  − ℵ2 x2, y2( 
����

����≤ λgΛ2 τ1 + τ2(  x1 − x2
����

���� + y1 − y2
����

���� . (25)

Combining (24) and (25) yields

ℵ2 x1, y1(  − ℵ2 x2, y2( 
����

����≤ λfΛ1 υ1 + υ2(  + λgΛ2 τ1 + τ2(   × x1 − x2
����

���� + y1 − y2
����

���� . (26)

□
Theorem 2. . Assume (C1) and (C3) and (C4) hold if
(λfΛ1ω1 + λgΛ2θ1)< 1 and (λfΛ1ω2 + λgΛ2θ2)< 1. 1en,
problem (1) has at least one solution.

Proof. We first prove that the operator ℵ: H⟶ H is
completely continuous; obviously, the operator is continuous
as a result that f, g,ψ, and φ are all assumed to be continuous.
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By (C4), ∀(x, y) ∈ S, we have

ℵ1(x, y)(t)


≤ λf × sup
a≤t≤T

t
− λ


t

a
s
λ− 1H

I
p− 1
a+ |ψ(s, x(s), y(s))|ds ≤ λfΛ1σ1, (27)

ℵ2(x, y)
����

����< λgΛ2σ2. (28)

Combining inequalities (27) and (28) yields
‖ℵ2(x, y)‖≤ λfΛ1σ1 + λgΛ2σ2; that is, the operator ℵ is
uniformly bounded.

Next, we prove equicontinuity for the operator ℵ; for
this, we let t1, t2 ∈ [a, T], (t1 < t2).

(en,

ℵ1(x, y) t2(  − ℵ1(x, y) t1( 


≤ λf

×

sup
a≤t≤T

t2
− λ


t2

a
s
λ− 1H

I
p− 1
a+ |ψ(s, x(s), y(s))|ds 

− sup
a≤t≤T

t1
− λ


t2

a
s
λ− 1H

I
p− 1
a+ |ψ(s, x(s), y(s))|ds 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤
λfσ1

|λ|Γ(p)
t
λ
1 − a

λ
  ln

t1

a
 

p− 1
+ t

λ
2 ln

t2

a
 

p− 1
  · t

λ
2 − t

λ
1



,

(29)

ℵ2(x, y) t2(  − ℵ2(x, y) t1( 


≤ λg

×

sup
a≤t≤T

t2
− μ


t2

a
s
μ− 1H

I
q− 1
a+ |ψ(s, x(s), y(s))| ds

− sup
a≤t≤T

t1
− μ


t1

a
s
μ− 1H

I
q− 1
a+ |ψ(s, x(s), y(s))|ds 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤
λgσ2

|μ|Γ(q)
t
μ
1 − a

μ
(  ln

t1

a
 

q− 1
+ t

μ
2 ln

t2

a
 

q− 1
  · t

μ
2 − t

μ
1


.

(30)

R.H.Ss are both independent on (x, y); in addition,
R.H.Ss of both (29) and (30) approach to zero when
t1⟶ t2 and they imply that the operator ℵ(x, y) is
equicontinuous; consequently, the operator ℵ(x, y) is
completely continuous.

To finish, we establish the bounded set given by
Ω � (x, y) ∈ H: (x, y) � βℵ(x, y), β ∈ [0, 1] , and then
∀t ∈ [0, 1], with (x, y) � βℵ(x, y), we obtain

x(t) � βℵ1(x, y)(t),

y(t) � βℵ2(x, y)(t).
(31)

By (C3), we get

‖x‖≤ λfΛ1 ω0 + ω1‖x‖ + ω2‖y‖( , (32)

‖y‖≤ λgΛ2 θ0 + θ1‖x‖ + θ2‖y‖( . (33)

Consequently, we have

‖x‖ +‖y‖≤ λfΛ1ω0 + λgΛ2θ0  + λfΛ1ω1 + λgΛ2θ1 ‖x‖ + λfΛ1ω2 + λgΛ2θ2 ‖y‖. (34)

Inequality (34) can be written as follows:

‖(x, y)‖ ≤ λfΛ1ω0 + λgΛ2θ0 /Λ0, (35)

where Λ0 � min 1 − (λf Λ1ω1 + λgΛ2θ1), 1 − (λfΛ1ω2+

λgΛ2θ2)}. By (35), we conclude that Ω is bounded. Hence,

Leray–Schauder alternative applies; that is, problem (1) has
at least one solution. (is completes the proof. □

4. Example

Consider the following initial value problem:

6 Mathematical Problems in Engineering



HD
7/4
a+ + HD

3/4
a+ 

x(t)

1/3|sin x(t)| + 2
  � 3 ln t +

1

11
������
t
3

+ 15


|x|

1 +|x|
+

1
44
tan− 1

y , 0< 1≤ t≤ e,

HD
5/4
a+ + μHD

1/4
a+ 

y(t)

1/3|sin y(t)| + 1
  � e

− t cos t +
1
20

tan− 1
y + tan− 1

x ,

x(1) � x′(1) � 0,

y(1) � y′(1) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

Here, 1 � λ � μ, p � 7/4, q � 5/4,

f(t, x, y) � 1/3(|sin x| + 2), g(t, x, y) � 1/3(|cos y| + 1),

ψ(t, x(t), y(t)) � 3 ln t +
1

11
������
t
3

+ 15


|x|

1 +|x|
+

1
44
tan− 1

y,

φ(t, x(t), y(t)) � e
− t cos t +

1
20

tan− 1
y + tan− 1

x .

(37)

Observe that

ψ t, x1, y1(  − ψ t, x2, y2( 


≤
1
44

x2 − x1


 +
1
44

y2 − y1


,

φ t, x1, y1(  − φ t, x2, y2( 


≤
1
20

x2 − x1


 +
1
20

y2 − y1


,

λfΛ1 υ1 + υ2(  + λgΛ2 τ1 + τ2(  ≤ 0.1363483< 1.

(38)

(us, problem (36) satisfies all the conditions of (e-
orem 1; accordingly, we conclude that the B.V.P has a unique
solution on [1, e].

5. Conclusion and Future Work

In this article, the existence and uniqueness theory of so-
lutions for sequential fractional differential system involving
Hadamard fractional derivatives of order 1< p, q< 2 with
initial conditions were investigated. For the future work, the
researcher may generalize our system by taking an n × 1
system of sequential fractional differential equations and
may apply another type of fractional derivatives such as Psi-
Hilfer and Psi-Caputo fractional derivatives.

Data Availability

No data were used to support this study.

Conflicts of Interest

(e authors declare that there are no conflicts of interest.

Authors’ Contributions

M.A and KA contributed to each part of this work equally
and read and approved the final version of the manuscript.

Acknowledgments

(is work was supported through the Annual Funding track
by the Deanship of Scientific Research, Vice Presidency for
Graduate Studies and Scientific Research, King Faisal
University, Saudi Arabia (Project no. AN000142), King
Faisal University (KFU), Ahsa, Saudi Arabia. (e authors,
therefore, acknowledge technical and financial support of
DSR at KFU.

References
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