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In experimental design theory, plans with two or three levels of in�uence are the most often employed.�e total factor experiment
includes N� 2k experiments with two levels of change in the in�uencing variables, and N� 3k experiments with three levels of
change in the in�uencing factors.�e 2k plan, in particular, is often utilized throughout the early stages of research and even while
conducting explorations with a high number of in�uencing variables. �e number of in�uencing variables, for example, would be
k� 15, and the number of experiments, N� 215� 32768. Not just on actual devices, but also in computer simulations, this is
virtually impossible. As a result, the number of experiments must be reduced to a manageable amount.�emethod of in�uencing
factors space reduction can be implemented in the following ways. (i) Preliminary in�uencing factor analysis is used to screen for
in�uencing factors with no or little value, i.e., variables that have little or no impact on the objective function. (ii) Using partial
plans (or, as the theory of experimental planning calls them, partial responses) when the number of variables remaining after
screening for null factors is still very large. �is article will discuss one method for doing a preliminary screening of the initial
in�uencing factors in order to identify those that have either no in�uence at all or a small e�ect on the objective function that is the
subject of the investigation.

1. Introduction

�e design of experiments (DOE) is a sub�eld of applied
statistics concerned with the design, execution, analysis, and
interpretation of controlled experiments with the purpose of
determining the variables that in�uence the value of a factor
or set of factors [1–3]. �e DOE is a highly �exible method
for gathering and analyzing data, and it may be used in a
broad variety of di�erent types of scienti�c investigations. It
makes it possible to play around with a large number of
input factors in order to analyze how those variables a�ect a
certain outcome (response). When the department of energy
experiments with a single component at a time, it is possible
that it may miss important interactions that can be dis-
covered when they change many inputs at the same time.
Either all of the possible permutations may be researched

(known as a full factorial), or simply a subset of all of the
permutations can be looked at (fractional factorial). An
experiment that is well planned out and carried out has the
potential to provide a wealth of information on the in�uence
that one or more factors have on a response variable. In
many studies, researchers would maintain some aspects of
their experiment the same while changing the other aspects.
�is way of processing information, known as “one factor at
a time” (OFAT), is, however, ine£cient when compared to
simultaneously adjusting the amounts of many factors.

�e DOE serves as the basis for modern empirical re-
search in terms of methodological considerations. It is a
fresh approach to research that is now being used in a broad
range of sub�elds within the scienti�c and commercial
communities. �e construction of an experiment strategy is
the �rst step in the DOE’s investigation process.�is strategy
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starts with the geographical identification of factors that will
influence the experiment and continues with the design of
experimental procedures. Establishing the impact factor
space serves two purposes: the first is to identify the factors
that have a significant influence on the researcher’s objective
function, and the second is to generate a conjugate set of the
change levels for those variables. 'ere are a number of
methods that may be used in order to successfully separate
factors that have a significant impact on the goal function.
Among these methods are the following:

(i) Heuristic analysis [4, 5]: derived from the ancient
Greek term for “to discover,” is a method for dis-
covery, learning, and problem-solving that uses
rules, estimates, or informed guesses to arrive at a
satisfying solution to a given situation. While this
method of issue solving is not ideal, it may be very
effective when applied to computer systems that
demand an immediate response or timely alarm
based on intuitive judgment.

(ii) Expert consultation method [6]: a consultation with
a doctor or other specialist is a meeting in which
they are invited to discuss a specific issue and get
their recommendations. In science, consultation
refers to the process of seeking advice from a
physician or other specialist.

(iii) Rank correlation [7–9]: in statistics, a rank corre-
lation is one of several statistics that quantify an
ordinal association—the relationship between the
rankings of different ordinal variables or between
different rankings of the same variable, where
“ranking” refers to the assignment of the ordering
labels “first,” “second,” “third,” and so forth to
different observations of a particular variable. 'e
rank correlation coefficient quantifies the degree of
similarity between two ranks and may be used to
determine the relationship’s importance.

(iv) Manual or mechanical independent factor screening
experiment [10–13]: this method can be used to
screen influence elements in systems manually or
with the help of a mechanical or computer-aided
part.

(v) Continuous screening experiment [14–16]: a
screening experiment is a set of experiments con-
ducted with the goal of determining whether ex-
perimental factors have a significant impact on the
outcome of the experiment. An experimental design
is a thorough plan for a set of experiments that have
been carefully planned so that the observed results
will provide the information that has been sought.

'e experimental planning approach is the one that sees
widespread use in the area of engineering. In particular, the
disciplines that are associated with special weaponry and
equipment. 'e following is a selection of published publi-
cations that make use of this methodology. Jagdale et al. [17]
used the design of experiment (DOE) methodology in order
to achieve optimal Tapentadol hydrochloride distribution
using floating drug delivery. Tapentadol hydrochloride is a

synthetic opioid that is used as an analgesic with a centrally
acting mechanism. It is useful in treating pain in both clinical
and experimental settings. Alipoor and colleagues [18]
suggested a novel experimental design strategy based on
reducing the predicted parameters’ covariance matrix (D-
optimal design). D-optimal design is independent of scanned
quantities, unlike earlier techniques. Applying this approach
to ADC imaging shows its stable performance for all input
variables (imaged parameters, number of measurements, and
range of b-values). Monte Carlo simulations reveal that the
D-optimal design is more accurate and precise than current
experiment design approaches. Hung and his co-workers
[19] presented a novel method for combining light. An RGB
light-mixing mechanism is made by applying the mecha-
nism’s design. Each RGB LED bulb type is put on the relevant
coupler link of the three mechanisms. As a consequence of
the relative motion produced by the coupling connection and
output link as a result of a crank’s rotation, RGB lamps may
project light on the same plane to achieve color mixing. Tang
and his research team [20] presented an enhanced PLC
communication software based on PLC network connection
communication. Read and write production data at varied
time intervals through the shared link area, and use link
location soft components as interactive handshake signals.
'e main station download module and slave station upload
module is intended to fulfill the extensive range of data
transmission interactions between master and slave stations,
and the control system is implemented in an automated
drum brake pad processing manufacturing line. Li et al. [21]
introduced a system based on the two-phase natural circu-
lation concept and is intended to remove long-term core
residual heat after an accident so that the reactor is in a safe
condition. 'e PRS steady-state characteristic test and
transient start and run test were conducted on the ESPRIT
integrated experiment bench. 'e findings of the experiment
indicate that the PRS is capable of establishing natural cir-
culation and releasing remaining heat from the first loop.
Islam et al. [22] studied multiple response optimization for
the removal of the organophosphorus pesticide quinalphos
from an aqueous solution onto a low-cost material in an
effort to overcome the disadvantages of univariate optimi-
zation. In this investigation, inexpensive adsorbents included
used tea leaves, and the batch equilibration technique was
used. Using a Box–Behnken design, a response model was
created, and the desirability function was then utilized to
optimize all influencing factors simultaneously in order to
obtain the largest elimination percentage of quinalphos.
Using the weight loss technique of measuring corrosion rate,
Nkuzinna and colleagues [23] investigated the suppression of
copper corrosion by acid extract of Gnetum africana. 'e
suppression of copper corrosion by Gnetum africana was
optimized using 23 factorial designs. In addition to inves-
tigating the interaction effects of temperature, inhibitory
concentration, and reaction time, input components and
output response were adjusted. At a temperature of 303K, a
reaction period of 24 hours, and an inhibitory concentration
of 0.003 g/L, the optimal conditions for inhibiting copper
corrosion by Gnetum africana were determined. Under the
parameters of the experiment, it was possible to infer that the
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factorial design was sufficiently appropriate for the optimi-
zation of process variables and that Gnetum africana suffi-
ciently prevented the corrosion of copper.

'e process of developing and manufacturing weapons
is a highly specialized field that requires the use of machinery
that is both technologically advanced and very accurate.
When it comes to the development of newweapon systems, a
great deal of experimentation is necessary, which results in a
substantial expenditure of financial resources. In order to
save costs and cut down on the amount of time spent on the
manufacturing process in the first place, the design of ex-
periments is used to discover the parameters that have the
biggest influence on the manufacturing process and the
functioning of the weapon system. In this work, the theory as
well as several examples that demonstrate the usefulness of
this approach for determining the influence of nine different
factors on the muzzle velocity of the warhead and the
maximum pressure in the barrel of a machine gun are
described.'ese examples demonstrate the usefulness of this
approach by demonstrating how it can be used to determine
these values. 'e authors will provide a comprehensive
presentation on one of the aforementioned methodologies
within the context of this article. It is a way of conducting an
experiment that screens for independent factors.

'e structure of this paper is organized as follows.
Section 1 briefly presents some particular approaches used in
the design of experiments as well as the main idea of this
work. 'e theory of the proposed method is introduced in
Section 2, where the independent factor screening experi-
ment and an example are presented in detail. 'e example of
applying the proposed theory related to the muzzle velocity
of the warhead and the maximum pressure in the barrel of a
PK machine gun is introduced in Section 3. Section 4 gives
out some important comments as well as conclusions.

2. Theory of the Proposed Method

2.1. Independent Factor Screening Experiment. From a vast
number of variables studied, an independent screening ex-
periment was performed to separate the most important
influencing elements. To do this, the Plackett–Berman satu-
ration plan [24–26] is used, where the number of experiments
(excludingparallel experiments)will beoneunit larger than the
number of factors studied, which is expressed as follows [27]:

N � k + 1, (1)

Where,N denotes the number of experiments, and k denotes
the number of influencing factors investigated.

Each of the examined influencing factors may experience
varying degrees of change. However, in experimental
planning theory, the most often utilized plans included two
(v � 2) or three (v � 3) influencing factor change levels. 'e
changing levels of the influencing factor may be quantitative
(e.g., pressure, temperature, velocity, displacement) or
qualitative (e.g., pyroxicillin and ballistic drugs, liquids such
as oil or water).

In the first case, a total factor experiment of the following
type is used [27–29].

n � v
k

� 2k experiments, (2)

in which, v denotes the number of times the investigated
influencing factor has changed.

In the second instance, a total factor experiment of the
following type is used [27–29].

n � v
k
�
3k experiments. (3)

In this work, the first case will be considered in detail.
According to the documents [27, 28, 30, 31], this plan’s

planning matrix is defined by the following concepts

(i) To begin, the planning matrix’s row count is a
multiple of four. 'e reason for this is because of
selecting all feasible combinations of two compo-
nents’ change levels when v � 2 equals four.

(ii) Secondly, the first row of the planning matrix is
determined by searching up the number of inves-
tigated influencing variables kwith known values in
Table 1. From there, the number of experiments N
will be generated, and the subsequent lines will be
generated by moving all items in the preceding row
one place to the right (or left) and permuting the
final (or first) element to the first (or last) position.
'is process will be carried out (N − 2) times in
total.

(iii) 'irdly, the matrix’s last row includes only <− 1>
or <-> elements (lower level of the element). 'e
matrix has a dimension ofN. (N − 1)�N.k� k.(k+1).

Table 1: Table of signs of the first line of the planning matrix.

N k
Alternatives to the first line of the plan’s sign

+ – + – + – + – + – + – + – + – + –
4 3 1 1 1
8 7 3 1 1 2
12 11 2 1 3 3 1 1
16 15 4 1 1 1 2 2 1 3
20 19 2 2 4 1 1 1 1 4 2 1
24 23 5 1 1 1 2 2 2 2 1 1 1 4
28 27 1 1 4 4 1 3 1 2 3 1 1 1 2 1 1
32 31 1 4 1 1 1 1 3 1 2 3 5 2 2 1 1 2 1
36 35 1 1 3 3 5 1 3 2 1 4 1 1 1 1 2 2 1 2
Where, N is the number of experiments; k is the number of influencing factors studied.
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'at is, the planning matrix has a row count ofN and
a column count of k.

(iv) Fourth, all influencing factors change at only two
levels, i.e., the elements of the matrix will be <+1>
(the upper level of the factor) or <− 1> (the lower
level of the factor).

Each number is represented by a separate cell in this
table to indicate the number of matching signs (“+” or “–”)
in the first line, which starts with the first position of the
planning matrix. For example, for k� 3, corresponding to
N� 4, the first row of the planning matrix will have the form
“+ – +”. Similarly, with k� 7, which corresponds toN� 8, the
first row of the planning matrix would look like this “+ + +
– + ––,” and so on. Finally, the first row of the planning
matrix’s common number of signs must equal k.

According to the abovementioned planning matrix
principle, after determining the sign of the first line of the
planning matrix, the signs of the subsequent lines of the
planning matrix, from the second to the Nth, would be
obtained in turn. As a result, the experimental planning
matrix has been completed based on the number of known
influencing variables k.

In a particular scenario [27, 28], if the number of studied
influencing variables k differ from the values in Table 1,
construct the planning matrix first using the value of known k,
and then using the row in Table 1 that most closely approx-
imates k. However, usually we choose the line whose value is
greater than the value of the given k. If k� 6 is taken into
account for the influencing variables under consideration (a
value that is not included in Table 1), for example. In ways to
construct the planning matrix, it is essential to choose the row
in Table 1 with the value k� 7 as the starting point. 'at is, the
sign of the planning matrix’s first row will be the same as the
sign of the row corresponding to k� 7 in Table 1.'en, we will
have a plan for N� 8 experiments, which corresponds to k� 7,
despite the fact that the number of influencing variables ex-
amined is only 6.'us, an additional element is required in the
last column of the matrix; this element is referred to as a
pseudo-element. In this instance, an unsaturated experiment
plan with two residual experiments and one dummy factor will
be generated. Additionally, in the instance of the investigated
influencing factors, k� 6, if we select a higher number, for
example, k� 11 (N� 12), wewill get an unsaturated experiment
plan with six residual experiments and five dummy factors.

2.2. Example

(i) 'e following is the shape of a planning matrix with
k� 3 and N� 4 [27, 28]:

X �

+ − +

+ + −

− + +

− − −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

(ii) 'e planning matrix for k� 7 and N� 8 is as follows
[27, 28]:

X �

+ + + − + − −

− + + + − + −

− − + + + − +

+ − − + + + −

− + − − + + +

+ − + − − + +

+ + − + − − +

− − − − − − −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Following the determination of the experimental plan by
the planning matrix, we will perform the experiment with the
decided number of experimentsN, as well as the values of the
variables in each experiment, and the experimental results are
recorded in tabular form as shown in Table 2 [27–29].

'e regression model is constructed in the following
manner. If there are k influencing factors in the experiment,
each of which will vary at two levels, we will have a 2k total
factor experiment. Based on the experimental findings for
the total factor in the form of 2k, the linear regression
equation is as follows [27, 28, 31, 32].

y � b0 + 􏽘
k

j�1
bjxj, (6)

where y is the objective function of the research object; x1, x2,
. . ., and xk are the inputs in the experimental planning; b0 is
the mean value of the objective function at the center of the
plan; bj are the regression coefficients in the linear com-
ponents of the model.

As presented in [33, 34], one gets:

bj �
zy

zxj

. (7)

'e regression coefficients, in other words, reflect the
degree of the variables’ impact, while their signs indicate the
direction of that influence.'ey are computed using the least
squares method [10, 27, 28, 30, 31, 34]:

bj �
1
N

􏽘

N

i�1
xijyi. (8)

'emean value of the objective function at the center of
the plan is determined by the following expression
[10, 27, 28, 30, 31, 34]:

b0 �
1
N

􏽘

N

i�1
yi. (9)

'e statistical significance of the bj coefficients in the re-
gression equation is then determined. When analyzing the
experimental data, consider the regression coefficients bj, their
standard deviation estimates Sbj

, and the confidence ranges for
each of them. If the following criteria are met, the influencing
factor is statistically significant [10, 27, 28, 30, 31, 34]:

bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ tth(1 − α, ]).Sbj
, (10)
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Where, tth(1 − α, ]) denotes the critical value of the Stu-
dent’s distribution [35–38] with a significance level of and n
denotes the number of degrees of freedom ]. Sbj

is the es-
timate of the standard deviation for the jth regression
coefficient.

3. The Example of Applying the
Proposed Theory

'is section considers an example in which the effect of nine
distinct variables on the warhead’s muzzle velocity and the
maximum pressure in the barrel of PK machine gun is
examined [39]:

Among the variables examined are the following:

(i) Z1 � p0—warhead thrust pressure;
(ii) Z2 �φ1—Slukhovski’s coefficient;
(iii) Z3 � Ld—barrel length (length of bullet moving in

the barrel);
(iv) Z4 � f—the force of the powder gun;
(v) Z5 � Jk—final momentum of the drug gas;
(vi) Z6 � θ—process index;
(vii) Z7 � α—cumulative quantity of the drug gas;
(viii) Z8 � c—weight density of drug dose;
(ix) Z9 �Δ—stuffing density.

'e following Table 3 lists the values of the components
corresponding to the higher level (+1) and the lower level
(− 1).

Some of the hypotheses are used as follows:

(i) the levels of change are determined from the con-
dition of 10% of the value of the factor at the center
of the plan;

(ii) the proposed model is linear;
(iii) the confidence level p� 0.975 is selected; i.e., sig-

nificance level α� 0.025 is used.

'e question posed is as follows. Filter the variables to
see which ones have themost effect on the warhead’s velocity
and the maximum pressure in the barrel of PKmachine gun.

Solution:

Step 1. the computation takes into account nine influencing
factors as well as two objective functions y1 � vo and y2 � pm.

Step 2. 'e influencing factors are encoded as follows
[27, 28, 40]:

xj �
Zj − Z

0
j

ΔZj

;ΔZj �
Zj − Zj

2
,

xj � +1⇔Zj � Zj(upper limit),

xj � − 1⇔Zj � Zj(Lower limit),

xj � 0⇔Zj � Z
0
j(the value of factors at the center of the plan),

(11)

where j � 1÷9. 'en, they are calculated as:

ΔZ1 �
Z1 − Z1

2
;

ΔZ2 �
Z2 − Z2

2
;

ΔZ3 �
Z3 − Z3

2
�;ΔZ4 �

Z4 − Z4

2
;

ΔZ5 �
Z5 − Z5

2
�;ΔZ6 �

Z5 − Z5

2
;

ΔZ7 �
Z7 − Z7

2
;

ΔZ8 �
Z8 − Z8

2
;

ΔZ9 �
Z9 − Z9

2
,

x1 �
Z1 − Z

0
1

ΔZ1
�

Z1 − 30
3

;

x2 �
Z2 − Z

0
2

ΔZ2
� Z2 −

1.055
0.01

;

x3 �
Z3 − Z

0
3

ΔZ3
�

Z3 − 4
0.4

;

x4 �
Z4 − Z

0
4

ΔZ4
�

Z4 − 1
0.1

;

x5 �
Z5 − Z

0
5

ΔZ5
�

Z5 − 0.81
0.081

;

x6 �
Z6 − Z

0
6

ΔZ6
� Z6 −

0.221
0.0267

;

x7 �
Z7 − Z

0
7

ΔZ7
�

Z7 − 1
0.1

;

x8 �
Z8 − Z

0
8

ΔZ8
�

Z8 − 1600
160

;

x9 �
Z9 − Z

0
9

ΔZ9
�

Z9 − 0.554
0.0609

;

(12)

Table 2: Experimental data and measured experimental results.

Number of experiments
'e level of

change of factors

Values of
objective
functions

Z1 Z2 . . . Zn y1 y2 . . . yn
1
2
. . .

N

Mathematical Problems in Engineering 5



Step 3. Determine the type of the experimental planning
matrix [34]:

According to the theory stated above and based on
Table 1, we will select an experimental plan of form N� 12
(because k� 9 does not correspond to Table 1, we must
choose k� 11 and N� 12) and conduct a computational
experiment using the system of equations corresponding to
the internal projection algorithm problem. 'e planning
matrix will be created in accordance with the concepts
outlined above in Table 1. Table 4 summarizes this exper-
imental planning matrix.

As can be observed, this planning matrix has eleven
components, nine of which are actual factors and two of
which are pseudo-elements. 'is is described in the fol-
lowing manner. When estimating the repeatable variance of
an objective function, experimental data is used to establish
the confidence ranges for the planned regression coefficients
to be used. With regard to outdoor experiments, this is
accomplished via the addition of additional experiments to
the design at regular intervals or even in the center. Because
of the impact of hidden variables, it is impossible to have
identical values of the objective function in two parallel
experiments. However, if there are experiments conducted
to calculate this impact, it will be completely removed. So, in
order to estimate the variance, it is required to either re-
generate or randomize the mathematical model that is the
subject of the researcher to add factors known as pseudo-
factors whose numbers range from (k+ 1) to the number of
factors in the original model (N − 1). Because k� 9 and
N� 12 are present in the case under discussion, it is feasible
to add two pseudo-factors in the plan: Z10 and Z11,

respectively. It is possible to raise the number of dummy
elements to six by selecting a plan of the type N� 16. 'ere
are only two scenarios in which the impact of these pseu-
dofactors will be zero, and there are no interactions and the
measurements are perfectly precise. 'at is not always
feasible, however, and in this case, it is possible to utilize the
coefficients b10 and b11 to calculate the assessment of the
recurrent variance of the objective function [34], as shown in
the following example:

S
2
y �

N

N − (k + 1)
􏽘

N− 1

j�k+1
b
2
j �

12
2

b
2
10 + b

2
11􏼐 􏼑 � 6 b

2
10 + b

2
11􏼐 􏼑.

(13)

In the absence of parallel experiments, the variance of the
regression coefficients is calculated as follows [1]:

S
2
bj

�
S
2
y

N
�

1
N − (k + 1)

􏽘

N− 1

j�k+1
b
2
j �

1
2

b
2
10 + b

2
11􏼐 􏼑. (14)

Step 4. Conduct experiments [27–32]:
'e experimental plan is determined by the planning

matrix in Table 4, and the number of experiments is set at 12.
'e factor values for each experiment are given in Table 5.

Step 5. Determine the regression model to use [27–32]:
'e regression model is a linear model expressed as

equation (6).

Table 4: 'e experimental planning matrix.

Number of experiments x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
1 + + − + + + − − − + −

2 − + + − + + + − − − +
3 + − + + − + + + − − −

4 − + − + + − + + + − −

5 − − + − + + − + + + −

6 − − − + − + + − + + +
7 + − − − + − + + − + +
8 + + − − − + − + + − +
9 + + + − − − + − + + −

10 − + + + − − − + − + +
11 + − + + + − − − + − +
12 − − − − − − − − − − −

Table 3: 'e true values of the influencing factors correspond to the range of change’s upper and lower limits.

Input factors 'e value of factors at the center of the plan Upper limit (“+”) Lower limit (“-”)
Z1, MPa 30 33 27
Z2 1.055 1.065 1.045
Z3, times of caliber 4.00 4.40 3.60
Z4, MJ/kg 1.00 1.10 0.90
Z5, MPa.s 0.81 0.891 0.729
Z6 0.2210 0.2486 0.1934
Z7, dm3/kg 1.00 1.10 0.90
Z8, kg/m3 1600 1760 1440
Z9, kg/dm3 0.554 0.6149 0.4931
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y � b0 + 􏽘
k

j�1
bjxj. (15)

Step 6. Calculate the free regression coefficient b0 [27–32]:

(i) for the objective function y1 � vo

According to equation (9) and Tables 4 and 5, the
value of b0 is calculated in the following way:

b0 �
1
N

􏽘

N

i�1
yi �

1
12

y1 + y2 + y3 + y4 + y5 + y6(

+y7 + y8 + y9 + y10 + y11 + y12􏼁.

(16)

(ii) For the objective function y2 � pm
According to equation (9) and Tables 4 and 5, the
value of b0 is also defined as follows:

b0 �
1
N

􏽘

N

i�1
yi �

1
12

y1 + y2 + y3 + y4 + y5 + y6(

+y7 + y8 + y9 + y10 + y11 + y12􏼁.

(17)

Step 7. Determine the free regression coefficient bj [27–32]:

(i) for the objective function y1 � vo

According to equation (8) and Tables 4 and 5, the
linear regression coefficients bj and calculation re-
sults are listed in Table 6:

b1 �
1
N

􏽘

N

i�1
x1iyi �

1
12

y1 − y2 + y3 − y4 − y5 − y6(

+y7 + y8 + y9 − y10 + y11 − y12􏼁,

b2 �
1
N

􏽘

N

i�1
x2iyi �

1
12

y1 − y2 + y3 − y4 − y5 − y6(

+y7 + y8 + y9 − y10 + y11 − y12􏼁.

(18)

Other factors are calculated similarly

b9 �
1
N

􏽘

N

i�1
x9iyi �

1
12

y1 − y2 + y3 − y4 − y5 − y6(

+y7 + y8 + y9 − y10 + y11 − y12􏼁.

(19)

(ii) For the objective function y2 � pm
According to equation (8) and Tables 4 and 5, the
linear regression coefficients bj are calculated, in
which, the method is exactly identical as before. 'e
computation results are given in Table 6.

'e computed values of the regression coefficients bj for
both objective functions are given in Table 6, and the ac-
companying graphs in Figures 1 and 2 illustrate the values in
a visually appealing manner.

Step 8. Determine the statistical significance of the regres-
sion coefficients bj [34]:

'e values b10 and b11 for both objective functions are
utilized to determine the statistical significance of the re-
gression coefficients bj.

Table 5: Experimental data and outcomes.

'e number of experiments
Change in influencing factors Values of objective

functions
Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 y1 (m/s) y2 (MPa)

1 33 1.065 3.60 1.10 0.891 0.2486 0.90 1440 0.4931 636.7 179.6
2 27 1.065 4.40 0.90 0.891 0.2486 1.10 1440 0.4931 579.8 129.4
3 33 1.045 4.40 1.10 0.729 0.2486 1.10 1760 0.4931 728.3 299.7
4 27 1.065 3.60 1.10 0.891 0.1934 1.10 1760 0.6149 791.2 338.9
5 27 1.045 4.40 0.90 0.891 0.2486 0.90 1760 0.6149 682.6 191.2
6 27 1.045 3.60 1.10 0.729 0.2486 1.10 1440 0.6149 829.4 556.4
7 33 1.045 3.60 0.90 0.891 0.1934 1.10 1760 0.4931 578.3 138.1
8 33 1.065 3.60 0.90 0.729 0.2486 0.90 1760 0.6149 711.7 329.8
9 33 1.065 4.40 0.90 0.729 0.1934 1.10 1440 0.6149 781.6 411.2
10 27 1.065 4.40 1.10 0.729 0.1934 0.90 1760 0.4931 724.5 268.4
11 33 1.045 4.40 1.10 0.891 0.1934 0.90 1440 0.6149 812.6 318.7
12 27 1.045 3.60 0.90 0.729 0.1934 0.90 1440 0.4931 618.9 185.3

Table 6: Calculated values of regression coefficients.

Objective functions
Regression coefficients bj

x1 x2 x3 x4 x5 x6 x7 x8 x9
y1 � v0 1.9 − 2.05 12.0 47.5 − 26.1 − 11.6 8.47 − 3.53 61.9
y2 � pm 0.62 − 2.68 − 9.1 48.0 62.9 2.12 33.4 − 19.7 78.8
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(i) For the objective function y1 � v0:
According to equation (8) and Tables 4 and 5, one
gets:

b10 �
1
N

􏽘

N

i�1
x10iyi �

1
12

y1 − y2 + y3 − y4 − y5 − y6(

+y7 + y8 + y9 − y10 + y11 − y12􏼁,

b11 �
1
N

􏽘

N

i�1
x11iyi �

1
12

y1 − y2 + y3 − y4 − y5 − y6(

+y7 + y8 + y9 − y10 + y11 − y12􏼁.

(20)

(ii) For the objective function y2 � pm
According to equation (8) and Tables 4 and 5, which
are identical to the preceding, one obtains the fol-
lowing values: b10 �11.93 and b11 � 11.24.

According to equations (12) and (13), one obtains the
following result:

S
2
y1

� 6 b
2
10 + b

2
11􏼐 􏼑 � 6 (− 0.783)

2
+(− 0.25)

2
􏽨 􏽩 � 4.056,

S
2
y2

� 6 b
2
10 + b

2
11􏼐 􏼑 � 6 11.932 +11.242􏼐 􏼑 � 1611.96,

S
2
bj

y1( 􏼁 �
1
2

b
2
10 + b

2
11􏼐 􏼑 �

1
2

(− 0.783)
2

+(− 0.25)
2

􏽨 􏽩 � 0.338,

S
2
bj

y2( 􏼁 �
1
2

b
2
10 + b

2
11􏼐 􏼑 �

1
2

11.932 +11.242􏼐 􏼑 � 134.33,

Sbj
y1( 􏼁 �

������
S
2
bj

y1( 􏼁
􏽱

�
�����
0.338

√
� 0.581,

Sbj
y2( 􏼁 �

������
S
2
bj

y2( 􏼁
􏽱

�
������
134.33

√
� 11.59.

(21)

As a result, the correlations between the coefficients bj
define the importance of the coefficients:
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Figure 1: 'e regression coefficient of factors affecting speed vo in descending order of absolute value.
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Figure 2: 'e regression coefficient of factors affecting pressure pm in descending order of absolute value.
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(i) for y1 � vo and equation (10), [34]:

bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ 0.581tth(1 − α, ]). (22)

(ii) For y2 � pm and equation (10), [34]:

bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ 11.59tth(1 − α, ]). (23)

When we choose a confidence level of p� 0.975, that is,
when we choose a significance level α� 0.025 and a degree of
freedom v � 2 (corresponding to the number of pseudo-
factors), we may consult the Student’s distribution’s table of
critical values [35, 37, 38, 41]. In addition, the critical value of
the Student’s distribution can be directly calculated using
Mathcad software, one obtains tcr (0.975; 2)� 4.303.
'erefore, the following cases are calculated as:

(i) For y1 � v0

bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ 0.581tth(0.975; 2) � 4.303 × 0.581 � 2.5. (24)

(ii) For y2 � pm,

bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ 11.59tth(0.975; 2) � 4.303 × 11.59 ≈ 50. (25)

As a consequence of comparing these findings with the
estimated outcomes bj given in Table 6, we have determined
the following conclusions:

(i) for the objective function y1 � v0, all influencing
factors except the first and second are important,
namely the factors Z3, Z4, Z5, Z6, Z7, Z8, and Z9, as
shown in Figure 1.

(ii) Only the fifth and the ninth components (the fourth
factor is nearly significant) are important for the
objective function y2 � pm, i.e., Z5 and Z9. 'is is
explained by the wide dispersion of the ejection
mean pressure value under the circumstances of the
experiment, i.e., the objective function’s regenera-
tion variance is enormous.

'erefore, to further screen without missing factors, in
this case, it is more reasonable to reduce the confidence
probability level to p� 0.95, i.e., choose the significance level
α� 0.05 then tcr (0.95; 2)� 2.92 and for the objective function
y2 � pm this will be:

bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ 11.59tcr(0.95; 2) � 2.92 × 11.59 � 33.8. (26)

'en, as shown by the accompanying chart in Figure 2,
the factors Z4, Z5, Z7, and Z9 will be important. As a result,
two more factors have been chosen: Z4 and Z7.

Step 9. Determine the regression model
'us, according to equation (6), the linear regression

model of the objective functions considered in the above
example will have the following forms.

(i) For the objective function y1 � v0:

y � v0(x) � 706.3 + 12x3 + 47.5x4 − 26.1x5 − 11.6x6

+ 8.47x7 − 3.53x8 + 61.9x9.

(27)

(ii) For the objective function y2 � pm
y � pm(x) � 278.89 + 48x4 + 62.9x5 + 33.4x7 + 78.8x9.

(28)

4. Conclusions

In this article, the theory of the design of the experiment was
developed, and then, it was applied to a particular case in
order to determine the stability of the weapon.'e following
are some major quantitative conclusions that may be drawn:

(i) as a result of independent analysis and screening,
the most significant influencing factors from the
nine investigated influencing factors that concur-
rently impact the goal functions of cannon speed
andmaximum pressure have been identified and are
being used in the design of the gun.

(ii) For a particular example, there are just seven factors
that have a substantial impact on the speed and only
four factors that have a considerable impact on the
maximum pressure. In this case, if the experiment is
carried out in accordance with the global experi-
ment technique in the form of 2k, the total number
of experiments that must be carried out is
N� 2k � 29 � 512.

(iii) Because of the independent factor screening tech-
nique, the number of experiments is now
N� 2k � 24 �16 after screening for factors, which
includes sixteen experiments plus twelve screening
experiments for a total of twenty-eight experiments
after screening for factors.

'e fact that the application examples are not very
comprehensive is one of the things that holds this effort
back. 'e reason for this is that the parameters associated
with weapons, particularly special weapons, are a conten-
tious matter relating to copyright. However, the authors
believe that on the basis of these observations, more ex-
periments are going to be carried out in order to define the
exact model of the objective functions that are going to be
explored. At that moment, there were far fewer experiments
being conducted than there had been before. 'is is of the
utmost importance in the event that lengthy and pricey tests
are required in the course of the design and development of
military systems.

Nomenclature

Symbols

N: Number of experiments
k: Number of influencing factors
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v: Influencing factor change levels
<->: Lower level of the element
<+1>: Upper level of the element
Zi: Level of change of factors
yi: Values of objective functions
b0: Value of the objective function at the center of

the plan
bj: Regression coefficients in the linear components

of the model
tth: Critical value of the Student’s distribution
n: Degrees of freedom
Sbj

: Estimate of the standard deviation
jth: Regression coefficient
p0 [MPa]: Warhead thrust pressure
φ1: Slukhovski’s coefficient
Ld [s]: Length of the bullet moving in the barrel
f [MJ/kg]: Force of the powder gun
Jk
[MPa.s]:

Final momentum of the drug gas

θ: Process index
α [dm3/
kg]:

Cumulative quantity of the drug gas

c [kg/m3]: Weight density of drug dose
Δ [kg/
dm3]:

Stuffing density

DOE: Design of experiments
OFAT: One factor at a time.
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