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�e Weibull distribution has prominent applications in the engineering sector. However, due to its monotonic behavior of the
hazard function, the Weibull model does not provide the best �t for data in many cases. �is paper introduces a new family of
distributions to obtain new �exible distributions. �e proposed family is called a novel generalized-M family. Based on this
approach, an updated version of the Weibull distribution is introduced. �e updated version of the Weibull distribution is
called a novel generalized Weibull distribution. �e proposed distribution is able to capture four di�erent patterns of the
hazard function. Some mathematical properties of the proposed method are obtained. Furthermore, the maximum likelihood
estimators of the proposed family are also obtained. Moreover, a simulation study is conducted for evaluating these estimators.
For illustrating the proposed model, two data sets from the engineering sector are analyzed. Based on some well-known
analytical measures, it is shown that the novel generalizedWeibull distribution is the best competing distribution for analyzing
the engineering data sets.

1. Introduction

�e two-parameter Weibull distribution is a famous sta-
tistical distribution de�ned onR+. It can be used as a suitable
alternative choice for predicting, modeling, and analyzing
lifetime data sets in healthcare, engineering, and other re-
lated areas. For data modeling in the engineering sector,
numerous modi�cations of the Weibull distribution have
been introduced and implemented, refer to Pedrosa et al. [1];
Bala and Napiah [2]; Huo et al. [3]; Liao et al. [4]; Shu et al.
[5]; Li et al. [6]; and Bilal et al. [7].

On one side, the Weibull distribution generalizes the
exponential and Rayleigh distributions whereas, on the other
side, it can provide the characteristics of the other distri-
butions. For some review studies based on the applications

of the Weibull distribution, we refer to Nadarajah et al. [8];
Almalki and Nadarajah [9]; and Wais [10].

Let the random variable V has the Weibull distribution
with scale parameter σ > 0 and shape parameter α> 0, if its
HF (hazard function) h(v;Ξ) has the following form:

h(v;Ξ) � ασvα− 1, v> 0. (1)

From the expression of h(v;Ξ) in (1), we can see that the
Weibull distribution o�ers data modeling with (i) decreasing
HF shape, if α< 1, (ii) increasing HF shape, if α> 1, or (iii)
constant HF shape, if α � 1.

In many cases, the data sets in the engineering sector
follow the unimodal, bathtub, or modi�ed unimodal HF
shapes. In such cases, the Weibull distribution is not a
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suitable choice to implement for modeling the engineering
data sets. In order to provide a close fit to such type of
engineering data sets, numerous updated versions of the
Weibull distribution have been produced and implemented.
For example, (i) Ahmad et al. [11] studied a new Wei-
bull–Weibull distribution for analyzing the strength of the
alumina material; (ii) Zhao et al. [12] introduced
TIHT–Weibull distribution for modeling the failure time of
coating machines; (iii) Wang et al. [13] implemented the
NG–Weibull distribution for analyzing the failure time of
the electronic machine. For more recent modifications of the
Weibull distribution, we refer to Klakattawi [14]; Wang et al.
[15]; Tianshuai et al. [16]; Al-Sobhi [17]; Gonzalez et al. [18];
Emam and Tashkandy [19]; Prataviera [20]; and Rehman
et al. [21].

To overcome the above deficiency of the Weibull dis-
tribution, we introduce a new updated form of the Weibull
distribution. (e new updated form of the Weibull dis-
tribution is introduced by proposing a new statistical family
of distributions. (e new family is called a novel gener-
alized-M (NGen-M) family of distributions. (e NGen-M
family can be used to update/increase the fitting power of
the classical/traditional or other modified and generalized
distributions.

Definition: a random variable V has the NGen-M dis-
tributions, if its DF (distribution function) K(v; λ,Ξ) is
given by

K(v; λ, Γ) � 1 −
[1 − M(v; Γ)]

λ
λ − [M(v; Γ)]

2
􏼐 􏼑, v ∈ R, (2)

where λ≥ 1, λ≤ − 1, and M(v;Ξ) represents the baseline
DF. In order to show that K(v; λ,Ξ) is a valid DF, a
complete proof is provided in Proposition 1 and
Proposition 2.

Proposition 1. Let’s consider the DF K(v; λ,Ξ) in Eq. (2),
first, we have to show that

lim
v⟶− ∞

K(v; λ, Γ) � 0, (3)

lim
v⟶− ∞

K(v; λ, Γ) � 1. (4)

Proof.

lim
v⟶− ∞

K(v; λ, Γ) � lim
v⟶− ∞

1 −
[1 − M(v; Γ)]

λ
λ − [M(v; Γ)]

2
􏼐 􏼑􏼨 􏼩,

lim
v⟶− ∞

K(v; λ, Γ) � 1 −
[1 − M(− ∞; Γ)]

λ
λ − [M(− ∞;Γ)]

2
􏼐 􏼑.

(5)

Since M(v;Ξ) is a DF, we have

lim
v⟶− ∞

M(v; Γ) � 0. (6)

Hence, from (5), we have

lim
v⟶− ∞

K(v; λ, Γ) � 1 −
[1 − 0]

λ
[λ − 0],

lim
v⟶− ∞

K(v; λ, Γ) � 1 −
1
λ
λ,

lim
v⟶− ∞

K(v; λ, Γ) � 0.

(7)

Also, we have

lim
v⟶− ∞

K(v; λ, Γ) � lim
v⟶− ∞

1 −
[1 − M(v; Γ)]

λ
λ − [M(v; Γ)]

2
􏼐 􏼑􏼨 􏼩,

lim
v⟶− ∞

K(v; λ, Γ) � 1 −
[1 − M(∞; Γ)]

λ
λ − [M(∞; Γ)]

2
􏼐 􏼑.

(8)

As we stated above that M(v;Ξ) is a DF, we have

lim
v⟶− ∞

M(v; Γ) � 1. (9)

(erefore, from (8), we have

lim
v⟶− ∞

K(v; λ, Γ) � 1 −
[1 − 1]

λ
[λ − 1],

lim
v⟶− ∞

K(v; λ, Γ) � 1 −
0
λ
λ,

lim
v⟶− ∞

K(v; λ, Γ) � 1.

(10)

□

Proposition 2. Be DF K(v; λ,Ξ) presented in Eq. (2) is a
differentiable as well as a right continuous function.

Proof.

d
dv

K(v; λ, Γ) � k(v; λ, Γ). (11)

(e proof of Proposition 2 is very straightforward, and
hence, omitted. Based on the mathematical derivations in
Proposition 1 and Proposition 2, we can see that K(v; λ,Ξ) is
a valid DF.

For v ∈ R, in link to K(v; λ,Ξ), the PDF (probability
density function) k(v; λ,Ξ) is given by

k(v; λ, Γ) �
m(v; Γ)

λ
λ + 2M(v; Γ) − 3[M(v; Γ)]

2
􏼐 􏼑, (12)

where d/dvM(v;Ξ) � m(v;Ξ).
Corresponding to DF K(v; λ,Ξ) and PDF k(v; λ,Ξ), the

SF S(v; λ,Ξ) � 1 − K(v; λ,Ξ), HF h(v; λ,Ξ) � k(v; λ,Ξ)/
1 − K(v; λ,Ξ), and cumulative HF (CHF) H(v; λ,Ξ) �

− log[1 − K(v; λ,Ξ)] are given by

S(v; λ, Γ) �
[1 − M(v; Γ)]

λ
λ − [M(v; Γ)]

2
􏼐 􏼑,

h(v; λ, Γ) �
m(v; Γ) λ + 2M(v; Γ) − 3[M(v; Γ)]

2
􏼐 􏼑

[1 − M(v; Γ)] λ − [M(v; Γ)]
2

􏼐 􏼑
,

(13)
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S(v; λ, Γ) � − log
[1 − M(v; Γ)]

λ
λ − [M(v; Γ)]

2
􏼐 􏼑􏼠 􏼡, (14)

respectively.
By using the DF M(v;Ξ) in (2) as a base model, we can

introduce an updated version of any basemodel. In this paper,
we use M(v;Ξ) as a DF of the Weibull model, to introduce a
new version of the Weibull distribution. (e updated version
of the Weibull model is called a novel generalized-Weibull
(NGen-Weibull) distribution. Some basic expressions of the
NGen-Weibull distribution along with different plots of PDF
and HF are obtained in Section 2. □

2. A NGen-Weibull Distribution

Consider the DFM(v;Ξ) of theWeibull distribution given by

M(v; Γ) � 1 − e
− σvα

, v≥ 0, α> 0, σ > 0, (15)

with PDF m(v;Ξ) given by

m(v; Γ) � ασv
α− 1

e
− σvα

, v> 0, α> 0, δ > 0, (16)

where Ξ � (α, σ).
By incorporating (15) in (1), we obtain the DF of the

NGen-Weibull distribution. Let V has the NGen-Weibull
distribution, if its DF K(v; λ,Ξ) is given by

K(v; λ, Γ) � 1 −
e

− σvα

λ
λ − 1 − e

− σvα
􏽨 􏽩

2
􏼒 􏼓. (17)

For V> 0, the PDF k(v; λ,Ξ) of the NGen-Weibull
distribution is given by

k(v; λ, Γ) �
ασv

α− 1
e

− σvα

λ
λ + 2 1 − e

− σvα
􏼐 􏼑 − 3 1 − e

− σvα
􏼐 􏼑

2
􏼒 􏼓.

(18)

Visual display of different plots of k(v; λ,Ξ) and
K(v; λ,Ξ) is provided in Figure 1. From the plots of
k(v; λ,Ξ), we can see that the NGen-Weibull has four dif-
ferent patterns of PDF such as (i) reverse-J shaped (blue
curve), (ii) right-skewed (red curve), (iii) left-skewed (green
curve), and (vi) symmetrical (black curve).

(e plots of k(v; λ,Ξ) in Figure 1 are obtained for (i)
α � 1.2, σ � 1.800, λ � 1.2 (blue curve), (ii) α � 5.9,

σ � 0.001, λ � 2.4 (red curve), (iii) α � 3.2, σ � 0.080, λ � 5.2
(green curve), and (iv) α � 0.5, σ � 1.300, λ � 3.2 (black
curve).

Furthermore, for V> 0, the SF, HF, and CHF of the
NGen-Weibull distribution are presented as follows:

S(v; λ, Γ) �
e

− σvα

λ
λ − 1 − e

− σvα
􏽨 􏽩

2
􏼒 􏼓,

h(v; λ, Γ) �
ασv

α− 1 λ + 2 1 − e
− σvα

􏼐 􏼑 − 3 1 − e
− σvα

􏼐 􏼑
2

􏼒 􏼓

λ − 1 − e
− σvα

􏽨 􏽩
2

􏼒 􏼓

,

(19)

H(v; λ, Γ) � − log
e

− σvα

λ
λ − 1 − e

− σvα
􏽨 􏽩

2
􏼒 􏼓􏼠 􏼡, (20)

respectively.
A graphical illustration of h(v; λ,Ξ) and S(v; λ,Ξ) is

presented in Figure 2. From the plots of h(v; λ,Ξ), we can see
that the NGen-Weibull distribution has the ability to model
data with four different shapes of failure function. (e HF
shapes of NGen-Weibull distribution include (i) increasing
shaped (blue curve), (ii) unimodal (green curve), (iii) mod-
ified unimodal (red curve), and (vi) decreasing (black curve).

(e plots of h(v; λ,Ξ) in Figure 2 are obtained for (i)
α � 0.9, σ � 1.1, λ � 1.2 (blue curve), (ii) α � 1.0, σ � 1.1, λ �

1.8 (red curve), (iii) α � 0.8, σ � 1.5, λ � 1.3 (green curve),
and (iv) α � 1.2, σ � 1.2, λ � 1.9 (black curve).

(e proposed model has certain advantages over the
other classical and modified distributions, for example.

(i) (e proposed NGen-Weibull distribution is a
simple extension of the Weibull model by adding
one additional parameter. Most of the updated
versions of the Weibull distribution have more than
one additional parameter.

(ii) (e proposed NGen-Weibull distribution has four
different shapes of the HF. (ere are only a few
distributions that can model real-life data sets with
unimodal and decreasing-increasing-decreasing
shapes of HF.

(iii) (e proposed NGen-Weibull distribution obeys the
HT properties. (is fact indicates that the NGen-
Weibull distribution can be a suitable candidate
distribution for modeling the financial data sets.
Due to the HT characteristics, the NGen-Weibull
distribution can be used quite effectively for dealing
with the extreme value data sets.

(iv) (e NGen-Weibull distribution provides the fit best
to real-life engineering data sets as compared to
other competing models, see Section 5.

3. Some Distributional Properties

(is section offers the derivation of some distributional
properties of the NGen-M distributions. (ese properties
include identifiability property, heavy-tailed property,
quantile function, and rth moment.

3.1. Be Identiability Property. In this subsection, we derive
the identifiability property of the NGen-M distributions.
(e parameter λ is called identifiable, if

λ1 � λ2. (21)

Suppose λ1 and λ2 be the two parameters with DFs
K(v; λ1,Ξ) and K(v; λ2,Ξ), respectively. From the mathe-
matical definition of the identifiability property, we have

K v; λ1, Γ( 􏼁 � K v; λ2, Γ( 􏼁. (22)

Mathematical Problems in Engineering 3



Using (2) in (22), we get

1 −
[1 − M(v; Γ)]

λ1
λ1 − [M(v; Γ)]

2( )

� 1 −
[1 − M(v; Γ)]

λ2
λ2 − [M(v; Γ)]

2( ),

[1 − M(v; Γ)]
λ1

λ1 − [M(v; Γ)]
2( )

�
[1 − M(v; Γ)]

λ2
λ2 − [M(v; Γ)]

2( ),

λ2[1 − M(v; Γ)] λ1 − [M(v; Γ)]
2( )

� λ1[1 − M(v; Γ)] λ2 − [M(v; Γ)]
2( ),

λ2[1 − M(v; Γ)][M(v; Γ)]
2

� λ1[1 − M(v; Γ)][M(v; Γ)]
2,

λ1 � λ2.

(23)

3.2. �e HT Property. A distribution with DF K(v; λ,Ξ) is
called a HT model, if its SF satis�es

limv⟶∞e
pv[1 − K(v; λ, Γ)] �∞, (24)

where p> 0.
�e HT distributions obey an important property called

the regular variational property. A probability distribution is
called regularly varying if it satis�es

limv⟶∞
1 − K(tv; λ, Γ)
1 − K(v; λ, Γ)

� ta, a> 0, t> 0, (25)

where the term a is called the index of regular variation.
Here, we mathematical prove the regular variational

property of the NGen-M distributions. Based on the �nd-
ings of Seneta [22], in terms of SF [1 − M(v;Ξ)], we have the
following:

Theorem 1. If a distribution with SF [1 − M(v;Ξ)] is reg-
ular varying distribution, then [1 − K(v; λ,Ξ)] is a regular
varying distribution.

Proof. Suppose lim
v⟶− ∞

[1 − M(tv;Ξ)]/[1 − M(v;Ξ)] � g(v)
is �nite but nonzero ∀v> 0. �en, incorporating (2), we get

lim
v⟶∞

K(av; λ, Γ)
K(v; λ, Γ)

� lim
v⟶∞

[1 − M(av; Γ)]/λ λ − [M(av; Γ)]2( )
[1 − M(v; Γ)]/λ λ − [M(v; Γ)]2( )

,

lim
v⟶∞

K(av; λ, Γ)
K(v; λ, Γ)

� lim
v⟶∞

[1 − M(av; Γ)]
[1 − M(v; Γ)]

×
λ − [M(av; Γ)]2( )
λ − [M(v; Γ)]2( )

,

lim
v⟶∞

K(av; λ, Γ)
K(v; λ, Γ)

� g(v) × lim
v⟶∞

λ − [M(av; Γ)]2( )
λ − [M(v; Γ)]2( )

,

lim
v⟶∞

K(av; λ, Γ)
K(v; λ, Γ)

� g(v)
λ − [M(a.∞; Γ)]2( )
λ − [M(∞; Γ)]2( )

,

lim
v⟶∞

K(av; λ, Γ)
K(v; λ, Γ)

� g(v)
(λ − − 1)
(λ − 1)

,

lim
v⟶∞

K(av; λ, Γ)
K(v; λ, Γ)

� g(v).

(26)

Since (26) is nonzero, ∀v> 0. �erefore, [1 − K(av; λ,
Ξ)] is the SF of the regular varying distribution. □

3.3. �e Quantile Function. �e QF (quantile function) of
the NGen-M distributions with DF K(v; λ,Ξ) is derived as

α=1.2, σ=1.000, λ=1.2
α=5.9, σ=0.000, λ=2.4
α=3.2, σ=0.080, λ=5.2
α=0.5, σ=1.300, λ=3.2

0.0

0.2

0.4

0.6

0.8

1.0
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k 
(v

)

1 2 3 40
v

α=1.2, σ=1.000, λ=1.2
α=5.9, σ=0.000, λ=2.4
α=3.2, σ=0.080, λ=5.2
α=0.5, σ=1.300, λ=3.2

0.0

0.5

1.0

1.5

K 
(v

)

2 3 40 1
v

Figure 1: Visual display of di�erent plots of k(v; λ,Ξ) and K(v; λ,Ξ).
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v � Q(u) � K− 1(u) �M− 1(t), (27)

where u ∈ (0, 1) and t is the solution of
(1 − t)[λ − t2] − λ(1 − u). �e expression in (27) can be
implemented to generate random numbers from any special
model of the NGen-M family.

3.4.�e rthMoment. Some basic distributional properties of
any probability distribution can be derived and studied with
the help of moments. �is subsection o�ers the derivation of
the rth moment of NGen-M distributions. Let V have the
NGen-M distributions with PDF k(v; λ,Ξ), then, its rth
moment can be obtained as

μr′ � ∫
Ω
vrk(v; λ, Γ)dv. (28)

Using (12) in (28), we get

μr′ � ∫
Ω
vr
m(v; Γ)

λ
λ + 2M(v; Γ) − 3[M(v; Γ)]2( )dv,

μr′ � ∫
Ω
vrm(v; Γ)dv +

2
λ
∫
Ω
vrm(v; Γ)M(v; Γ)dv

−
3
λ
∫
Ω
vrm(v; Γ)[M(v; Γ)]2dv,

μr′ � ∫
Ω
vrm(v; Γ)dv +

1
λ
∫
Ω
2vrm(v; Γ)[M(v; Γ)]2− 1dv

−
1
λ
∫
Ω
3vrm(v; Γ)[M(v; Γ)]3− 1dv,

μr′ � ∫
Ω
vrm(v; Γ)dv +

1
λ
∫
Ω
vrf1(v; Γ)dv

−
1
λ
∫
Ω
vrf2(v; Γ)dv ,

(29)

where f1(v;Ξ) � 2m(v;Ξ)[M(v;Ξ)]2− 1 is the PDF of the
exponentiated version of the NGen-M distributions with the
exponentiated parameter 2 whereas f2(v;Ξ) � 3m(v;Ξ)
[M(v;Ξ)]3− 1 is the PDF of the exponentiated version of the
NGen-M distributions with the exponentiated parameter 3.

4. Estimation and Simulation

�is part of the paper o�ers the derivation of the maximum
likelihood estimators (MLEs) of the NGen-M distributions
with parameters λ and Ξ. Let V1, V2, . . . , Vn be a set of
sample taken from k(v; λ,Ξ). �e corresponding LF (like-
lihood function) Υ(v; λ,Ξ) is

Υ(v; λ, Γ) �∏
n

i�1
k vi; λ, Γ( ),

Υ(v; λ, Γ) �∏
n

i�1

m vi; Γ( )
λ

λ + 2M vi; Γ( ) − 3 M vi; Γ( )[ ]2( ),

Υ(v; λ, Γ) �
1
λ
( )

n

∏
n

i�1
m vi; Γ( )∏

n

i�1
λ + 2M vi; Γ( ) − 3 M vi; Γ( )[ ]2( ).

(30)

Corresponding to (30), the log LF Δ(λ,Ξ) is

Δ(λ, Γ) � n log
1
λ
( ) +∑

n

i�1
logm vi; Γ( )

+∑
n

i�1
log λ + 2M vi; Γ( ) − 3 M vi; Γ( )[ ]2( ).

(31)

Corresponding to Δ(λ,Ξ), the partial derivatives are

z

zλ
Δ(λ, Γ) � −

n

λ
+∑

n

i�1

1
λ + 2M vi; Γ( ) − 3 M vi; Γ( )[ ]2( )

, (32)

α=1.2, σ=1.000, λ=1.2
α=5.9, σ=0.000, λ=2.4
α=3.2, σ=0.080, λ=5.2
α=0.5, σ=1.300, λ=3.2
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Figure 2: Graphical illustration of h(v; λ,Ξ) and S(v; λ,Ξ).
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z

zΓ
Δ(λ, Γ) � 􏽘

n

i�1

z/zΓm vi; Γ( 􏼁

m vi; Γ( 􏼁

+ 􏽘
n

i�1

2z/zΓM vi; Γ( 􏼁 − 6M vi; Γ( 􏼁z/zΓM vi; Γ( 􏼁

λ + 2M vi; Γ( 􏼁 − 3 M vi; Γ( 􏼁􏼂 􏼃
2

􏼐 􏼑
.

(33)

Equating z/zλΔ(λ,Ξ) and z/zΞΔ(λ,Ξ) to zero, and
solving, we obtain the MLEs (􏽢λ, 􏽢Ξ) of (λ,Ξ).

After obtaining the expressions of the MLEs, now we
provide a simulation study to assess performances of 􏽢λ and
􏽢Ξ. To carry out the evaluation of 􏽢λ and 􏽢Ξ through a sim-
ulation study, we generate RNs (random numbers) from the
PDF g(u; λ,Ξ) using the inverse DF method.

(e simulation results are obtained for (i) α � 1.4, σ �

1, λ � 1.5 and (ii) α � 1.2, σ � 1, λ � 1.9. (e simulation
results are obtained using R-function with ``L-BFGS-B′′
algorithm and Adequacy Model library. To check the

performances of 􏽢λ and 􏽢Ξ, two statistical evaluation criteria
such as

MSE(􏽢λ) � 􏽘
n

i�1

􏽢λi − λ􏼐 􏼑
2
, (34)

Bias(􏽢λ) � 􏽘
n

i�1

􏽢λi − λ􏼐 􏼑, (35)

were chosen. (ese two evaluation criteria were also
calculated for 􏽢Ξ.

In link to α � 1.4, σ � 1, λ � 1.5, the simulation results of
the NGen-Weibull distribution are presented in Table 1
whereas the simulation results for α � 1.2, σ � 1, λ � 1.9
are provided in Table 2.

From the simulation results obtained in Tables 1 and 2, it
is obvious that as the size of n increases.

Table 1: (e results of the simulation study of the NGen-Weibull
model for α � 1.4, σ � 1, λ � 1.5.

n Parameters MLEs MSEs Biases

25
α 1.57272700 0.10565145 0.17272731
σ 1.15407200 0.06573026 0.15407212
λ 3.230664 00 6.47732440 2.03066430

50
α 1.52288400 0.05360254 0.12288441
σ 1.13838900 0.04414655 0.13838869
λ 2.69624200 4.51638700 1.49624160

75
α 1.49738600 0.03260828 0.09738595
σ 1.12120700 0.03170536 0.12120685
λ 2.50034400 3.78230730 1.30034420

100
α 1.48435200 0.02587331 0.08435211
σ 1.10939400 0.02752766 0.10939399
λ 2.24930400 2.82126370 1.04930410

150
α 1.46361500 0.01655346 0.06361484
σ 1.09583800 0.02307459 0.09583788
λ 2.16424400 2.76536040 0.96424440

200
α 1.45604900 0.01408698 0.05604902
σ 1.08893700 0.02016455 0.08893705
λ 2.02291800 2.18558790 0.82291830

300
α 1.44233200 0.00948109 0.04233205
σ 1.07478400 0.01469160 0.07478449
λ 1.80914600 1.47998310 0.60914590

400
α 1.43438700 0.00710442 0.03438667
σ 1.06524200 0.01251653 0.06524163
λ 1.67936500 1.08931920 0.47936480

500
α 1.43820200 0.00648074 0.03820168
σ 1.06577600 0.01241515 0.06577620
λ 1.67539100 1.02479190 0.47539100

600
α 1.43061800 0.00528021 0.03061809
σ 1.06079900 0.01133082 0.06079897
λ 1.64763900 1.01068440 0.44763910

700
α 1.43231000 0.00516572 0.03231025
σ 1.05961300 0.01092145 0.05961322
λ 1.62284000 0.91456200 0.42284040

750
α 1.41498100 0.00400002 0.02498083
σ 1.04965000 0.00870671 0.04964955
λ 1.51043600 0.63627510 0.32043650

Table 2: (e results of simulation study of the NGen-Weibull
model for α � 1.2, σ � 1, λ � 1.9.

n Parameters MLEs MSEs Biases

25
α 1.31593100 0.06018998 0.11593107
σ 1.15609700 0.06972226 0.15609747
λ 3.521391 00 6.81451700 2.12139120

50
α 1.27756200 0.02981195 0.07756164
σ 1.11790400 0.03426620 0.11790373
λ 3.09305000 5.33528900 1.69305020

75
α 1.25680900 0.01970635 0.05680943
σ 1.11059700 0.02987176 0.11059712
λ 2.82767500 4.37315800 1.42767490

100
α 1.24857200 0.01439279 0.04857249
σ 1.09752400 0.02442831 0.09752428
λ 2.70442400 3.93945800 1.30442440

150
α 1.24033500 0.00977599 0.04033521
σ 1.08714200 0.01868892 0.08714193
λ 2.54872100 3.39428500 1.14872050

200
α 1.23262200 0.00796338 0.03262186
σ 1.08038100 0.01673055 0.08038127
λ 2.371564 00 2.86718800 0.97156410

300
α 1.22736100 0.00530184 0.02736133
σ 1.07003400 0.01288601 0.07003359
λ 2.22198800 2.33619000 0.82198780

400
α 1.22436800 0.00405492 0.02436773
σ 1.06347700 0.01088123 0.06347681
λ 2.12821500 1.93233700 0.72821510

500
α 1.22567700 0.00368187 0.02567661
σ 1.06176400 0.01014781 0.06176444
λ 2.08797300 1.74341300 0.68797340

600
α 1.22408200 0.00313356 0.02408230
σ 1.06221500 0.01017182 0.06221497
λ 2.07237900 1.67631700 0.67237860

700
α 1.22470600 0.00298151 0.02470586
σ 1.05719500 0.00926426 0.05719467
λ 2.01288900 1.09605800 0.61288930

750
α 1.21170200 0.00269140 0.02170158
σ 1.05450700 0.00855028 0.05450734
λ 1.91506500 0.99343000 0.57506490
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(i) �e estimated values of λ̂MLE and Ξ̂MLE tend to be
stable

(ii) �e MSEs of λ̂MLE and Ξ̂MLE decrease
(iii) �e biases of λ̂MLE and Ξ̂MLE tend to zero

5. Data Analyses

�is section o�ers the illustration of the NGen-Weibull
distribution using two data sets taken from the engineering
sector. We apply the NGen-Weibull distribution to these

Table 3: �e values of α̂MLE, σ̂MLE, λ̂MLE, β̂MLE, âMLE, and b̂MLE of the �tted models using data 1.

Models α̂MLE σ̂MLE λ̂MLE âMLE b̂MLE β̂MLE

NGen-Weibull 2.74215 0.04383 1.96167 — — —
Weibull 2.79613 0.04843 — — — —
Exp-Weibull 2.29181 0.11245 — 1.41472 — —
MO-Weibull 2.41759 0.10374 — — — 1.73356
Kum-Weibull 2.12695 0.09729 — 1.52838 1.58933 —
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Figure 4: �e pro�les of the log-likelihood function of the MLEs using data 1.
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data sets and compare its �tting results with the Weibull
distribution, and its other versions include (i) Marshal-
l–Olkin–Weibull (MO-Weibull), (ii) exponentiated Weibull
(Exp-Weibull), and (iii) Kumaraswamy–Weibull (Kum-
Weibull) distributions.

�e DFs of the MO-Weibull, Exp-Weibull, and Kum-
Weibull distributions are given, respectively, by

M(v; β, Γ) �
1 − e− σv

α

1 − (1 − β)e− σv
α , v≥ 0, β> 0, α> 0, σ > 0,

M(v; a, Γ) � 1 − e− σv
α

( )
a
, v≥ 0, a> 0, α> 0, σ > 0,

(36)

Table 4: �e values of the analytical tests and P-value of the �tted models for data 1.

Models CM AD KS P-value
NGen-Weibull 0.05880 0.36448 0.06099 0.85080
Weibull 0.06230 0.41584 0.06271 0.82640
Exp-Weibull 0.07454 0.42356 0.07332 0.65530
MO-Weibull 0.05945 0.41085 0.06389 0.80890
Kum-Weibull 0.07583 0.42602 0.07185 0.68010
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Figure 5: �e estimated PDF, CDF, SF, HF, CHF, PP, and QQ plots of the proposed modeling using data 1.
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M(v; a, b, Γ) � 1 − 1 − 1 − e− σv
α

( )
a

[ ]
b
,

v≥ 0, a> 0, b> 0, α> 0, σ > 0.
(37)

Furthermore, we consider some analytical measures to
compare the �tting results of the NGen-Weibull and other
competing distributions. �ese measures include (i) AD
(Anderson Darling) test, (ii) CM (Cramér-von Mises) test,

and (iii) KS (Kolmogorov-Smirnov) test with p-value. �e
numerical values of these measures are computed as

− n −
1
n
∑
n

i�1
(2i − 1) logM vi( ) + log 1 − M vn− i+1( ){ }[ ],

1
12n

+∑
n

i�1

2i − 1
2n

− M vi( )[ ]
2
,

(38)
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Figure 6: Some basic plots for data 2.

Table 5: �e values of α̂MLE, σ̂MLE, λ̂MLE, β̂MLE, âMLE, and b̂MLE of the �tted models using data 2.

Models α̂MLE σ̂MLE λ̂MLE âMLE b̂MLE β̂MLE

NGen-Weibull 5.67621 0.00341 3.33031 — — —
Weibull 5.49996 0.00452 — — — —
Exp-Weibull 4.27654 0.02298 — 1.86440 — —
MO-Weibull 5.10675 0.00839 — — — 1.54105
Kum-Weibull 4.15566 0.01751 — 1.72203 1.62877 —
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Figure 7: �e pro�les of the log-likelihood function of the MLEs of the proposed model using data 2.

Mathematical Problems in Engineering 9



supv Mn(v) − M(v)[ ], (39)

respectively.

5.1. Data 1. �is subsection o�ers the �rst illustration of the
NGen-Weibull distribution by analyzing a data set repre-
senting the breaking stress of carbon �bres (in Gba). Pre-
viously, several authors have also studied this data set. For

example, (i) Barreto-Souza et al. [23] considered this data set
using the Frechet, beta Frechet (B-Frechet), and expo-
nentiated Frechet (Exp-Frechet) distributions, (ii) Ogunde
et al. [24] analyzed this data set using the Nadarajah
Haghighi Gompertz (NH-Gompertz) distribution, and (iii)
Eghwerido et al. [25] studied this data set using the inverse
odd Weibull (IO-Weibull) and a di�erent variant of the
Weibull distribution.

Some key measures of Data 1 are given by minimum�
0.390, 1st quartile� 1.840, median� 2.700, mean� 2.621, 3r d

Table 6: �e values of the analytical tests and P-value of the �tted models using data 2.

Models CM AD KS P-value
NGen-Weibull 0.02435 0.20724 0.05987 0.95350
Weibull 0.02619 0.23118 0.07003 0.86110
Exp-Weibull 0.02907 0.21912 0.06376 0.92430
MO-Weibull 0.02933 0.25807 0.07222 0.83480
Kum-Weibull 0.02663 0.20815 0.06117 0.94890
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Figure 8: �e estimated PDF, CDF, SF, HF, CHF, PP, and QQ plots of the proposed modeling for data 2.
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quartile� 3.220, maximum� 5.560, skewness� 0.3681541,
kurtosis� 3.104939, variance� 1.027964, and range� 5.17.
Corresponding to Data 1, some useful plots are obtained in
Figure 3.

Corresponding to Data 1, the values of the MLEs
􏽢αMLE, 􏽢σMLE, 􏽢λMLE, 􏽢βMLE, and 􏽢aMLE, 􏽢bMLE of the fitted models
are obtained in Table 3. (e profiles of the Log-LF of the
MLEs of the NGen-Weibull model are plotted in Figure 4.
Furthermore, the values of the analytical measures of the
fitted models are presented in Table 4. Based on the nu-
merical illustration presented in Table 4, we can see that the
NGen-Weibull distribution is the best competing model.

Moreover, in support of the best fitting of the NGen-
Weibull distribution using Data 1, a visual illustration of the
NGen-Weibull distribution is presented in Figure 5. (e
plots in Figure 5 reveal that the NGen-Weibull distribution
closely fits the fitted PDF, CDF, SF, HF, CFH, probability-
probability (PP), and quantile-quantile (QQ) functions.

5.2. Data 2. (is subsection offers the second illustration of
the NGen-Weibull distribution by considering a data set
representing the tensile strength, measured in GPa, of 69
carbon fibres. Previously, numerous authors have also an-
alyzed this data set. For example, (i) Aldahlan [26] con-
sidered this data set using the Burr-X exponentiated
exponential (B X EExp) distribution, (ii) Eyob et al. [27]
studied this data set using the weighted quasi Akash (WQA)
distribution, and (iii) Shukla and Shanker [28] analyzed this
data set using the truncated Akash (TA) distribution.

(e basic measures of Data 2 are given by minimum�

1.312, 1st quartile� 2.150, median� 2.513, mean� 2.477, 3r d

quartile� 2.816, maximum� 3.585, skewness� -0.1541874,
kurtosis� 2.95123, variance� 0.2378321, and range� 2.273.
Corresponding to Data 2, some basic plots are presented in
Figure 6.

Corresponding to data 2, the numerical values of the
MLEs 􏽢αMLE, 􏽢σMLE, 􏽢λMLE, 􏽢aMLE, and 􏽢βMLE, 􏽢bMLE of the com-
peting distributions are presented in Table 5. (e profiles of
the Log-LF of 􏽢αMLE, 􏽢σMLE, and 􏽢λMLE of the NGen-Weibull
distribution are plotted in Figure 7. (e values of the an-
alytical measures of the competing distributions are ob-
tained in Table 6. Based on the numerical findings in Table 6,
we can see that the NGen-Weibull distribution has the
smallest values of the analytical measures. (is fact reveals
that the NGen-Weibull model is the best model among the
competing distributions.

After showing the best fitting of the NGen-Weibull
distribution using Data 2 (see, Table 6), a graphical illus-
tration is also provided in Figure 8. (e plots of the fitted
PDF, CDF, SF, HF, CFH, PP, and QQ functions are pre-
sented in Figure 8. (ese plots confirm the best fitting of the
NGen-Weibull distribution.

6. Concluding Remarks

In this article, a new statistical approach for generating new
probability distributions was introduced. (e new statistical
approach was named as NGen-M distributions. Based on

the proposed NGen-M distributions method, an updated
form of the Weibull distribution was introduced. (e
updated extension of the Weibull model was named as
NGen-Weibull distribution. Certain distributional proper-
ties of the NGen-M distributions were derived. (e pa-
rameters of the NGen-M distributions were estimated via
implementing the maximum likelihood approach. A sim-
ulation study was also conducted to evaluate the estimators
of the NGen-M distributions. In the end, the NGen-M
distributions approach was illustrated by analyzing two data
sets considered from the engineering sector. To both the
engineering data sets, the NGen-Weibull distribution was
applied in comparison with other competing models. Using
certain statistical test (analytical measures), it is shown that
the NGen-Weibull distribution was the best model.

In the future, we are motivated to implement the NGen-
Weibull distribution for modeling real-life data sets in other
fields such as the healthcare sector, hydrology, agriculture,
metrology, geology, finance, banking, civil engineering, and
education. We are also motivated to introduce the bivariate
extension of the NGen-Weibull distribution for modeling
the bivariate financial data sets such as import and export,
among others.
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