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In this paper, we consider the following indirect signal generation and logarithmic sensitivity
εnt � Δn − χ∇ · (n∇ ln c) x ∈ Ω, t> 0
ct � Δc − c + w x ∈ Ω, t> 0
wt � Δw − w + n x ∈ Ω, t> 0


 under homogeneous Neumann boundary conditions in a ball domain Ω ⊂ RN(N≥ 4)

with smooth boundary zΩ. �is paper considers in the singular limit ε⟶ 0; the result comes from the �nite time blow-up of
arbitrary large values of n in the corresponding nonlocal scalar parabolic equation case when N≥ 4 and χ > 2N/N − 2.

1. Introduction

Keller and Segel in [1] proposed the following fully parabolic
equations to describe the aggregation of certain types of
bacteria.

τnnt � Δn − ∇ · (nχ(n, c)∇c), x ∈ Ω, t> 0,

ct � Δc − c + n, x ∈ Ω, t> 0,
{ (1)

where the unknowns n � n(t, x) and c(t, x) denote the cell
density and the concentration of chemical substances, re-
spectively. �e given function χ(n, c) represents the chemo-
sensitivity function and physical domain Ω ⊂ RN(N≥ 4) is a
bounded domain with a smooth boundary. �is model de-
scribes a biological process in which cells move towards their
preferred environment and the signal is produced by the cells
themselves. When the di�usion of chemical signals is much
faster than that of cells, the system can be simpli�ed as follows:

τnnt � Δn − ∇ · (nχ(n, c)∇c), x ∈ Ω, t> 0,

0 � Δc − c + n, x ∈ Ω, t> 0.
{ (2)

For its rigorous mathematical proof, we can see in [2].
Recently, Li et al. in [3] have considered the stability analysis

of the Keller–Segel model under �uid action in the two-
dimensional case and has given the corresponding nu-
merical experiments. For more references about the che-
motaxis-�uid system, the corresponding global solvability of
classical solutions has been investigated by [4–12] in two or
three-dimensional situations. We also mention complicated
variants, e.g., involving rotational �ux [13–20] and logistic
source terms [21–26] as well as nonlinear di�usion
[4, 9, 16, 27–32].

Another important chemotaxis model is formed with a
singular sensitivity function, such as χ(n, c) � χ/c. �is
model is proposed by the Weber-Fechner law of stimulus
perception [33] and supported by experimental [34] and
theoretical evidence [35]. �is fully parabolic logarithmic
Keller–Segel system evidently lacks some good structures,
which weakens the corresponding analysis skills. It is worth
noting that this knowledge seems very fragmented, but it is
essentially reduced to the relevant initial boundary value
problems, and the assumptions allowing global solvability
are based on τn > 0. When the dimension N � 1, there is a
globally bounded smooth solution for any initial data [36].
�e same conclusion is N � 2 and χ ≤ χ0 with some
χ0 > 1.015[37] orN≥ 2 and χ <

����
2/N

√
([38–42]). In addition,

some globally generalized solutions involved in general
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geometry [43] with some χ <
������������
N + 2/3N − 4

√
and in radially

symmetric settings [44] with some χ <N/N − 2. Accord-
ingly, the integrable global solutions of nonradial symmetry
under the assumption when N � 3 and χ <

�
8

√
or 2≤N≠ 3

and χ <N/N − 2[45]. In the similar parabolic-elliptic case,
removing the technical assumption under the three-di-
mensional condition can also prove the global existence and
integrability of the solution in the nonradial case when N≥ 2
and χ <N/N − 2[46], the corresponding classical solution is
obtained when N � 2 and χ > 0 or N≥ 3, χ < 2/N − 2[47].
For the quasilinear chemotaxis-Navier–Stokes system of this
problem, there are lots of good results in [48–53].

On the other hand, based on the simplification of the
scalar parabolic equation, it can be shown in [54] that the
system (1) of parabolic-elliptic (τn � 0) allows the radial
solution to blow-up in a finite time if N≥ 3 and
χ > 2N/N − 2. And, through the result of the global measure
expansion of the radial solution of the classical Keller–Segel
system beyond blow-up in [55], it can be inferred that there
is no global L1-solution in this parameter region. .e re-
search on blow-up model has a strong physical background,
such as gash healing, expansion, and collapse of geometric
flow and energy released by stars in the universe.

An indirect signal generation without sensitivity func-
tion is also a very important Keller–Segel types model. Lin
et al. [56] established the global existence and large-time
behavior in Ω ⊂ RN, N � 2, 3. After Wu et al. in [57] added
the singular term, investigated the global boundedness and
large-time behavior of the above-given problem. .e global
existence for N � 2, 3 and blow-up solutions for N≥ 4 were
studied by Fujie and Senba in [58]. Tao and Wang [59]
considered the global solvability, boundedness, blow-up,
existence of nontrivial stationary solutions, and asymptotic
behavior. Stinner et al. [60] gave the global existence and
some basic boundedness of weak solutions for a PDE-ODE
system. Li and Li [61] considered the blow-up of nonradial
solutions of the parabolic-elliptic-elliptic model in two di-
mensions. Recently, Viglialoro [62] has investigated explicit
low bounded of blow-up time for a chemotaxis system.
Chiyo et al. [63] studied the blow-up phenomena of a
chemotaxis system with superlinear logistic degradation in
Ω ⊂ RN, N≥ 3.

Because the more delicate analytical technique of limit in
the fully parabolic framework with the logarithmic term when
τn suitably small, Winkler [64] considered how far the con-
dition of the chemosensitivity χ plays a role in the limit process
of the system (1) for τn⟶ 0. To motivate this idea, we study
the following fully parabolic equations of the indirect signal.

εnεt � Δnε − χ∇ · nε∇ ln cε( 􏼁, x ∈ Ω, t> 0,

cεt � Δcε − cε + wε, x ∈ Ω, t> 0,

wεt � Δw − wε + nε, x ∈ Ω, t> 0,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where the parameter χ is a positive constant,Ω ⊂ RN(N≥ 4)

is a ball, under the assumption of the no-flux Neumann
boundary condition for n, c and w, i.e.,

znε

z]
�

zcε

z]
�

zwε

z]
� 0, x ∈ z Ω, t> 0, (4)

where ] is the unit outward normal vector on zΩ and of the
initial conditions.

n(x, 0) � n0(x), c(x, 0) � c0(x), w(x, 0) � w0(x), x ∈ Ω. (5)

satisfying

0≤ n0(x) ∈ C
0
(Ω), n0(x) ≡ 0, x ∈Ω,

c0(x) ∈W
1,∞

(Ω)snonnegative, inf
x∈Ω

c0(x)> 0,

w0 ∈W
1,∞

(Ω)isnonnegative, inf
x∈Ω

w0(x)> 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

Let m ≔ ‖n0‖L1(Ω). .en, m is a positive constant. .e
goal is to establish the identity of system (3) under the limit
version in Section 3.

n �
mc

χ

c
χ����
����L1(Ω)

. (7)

Using the obtained identity (7) and the variation-of-
constants formula, we can obtain the following equation:

w(·, t) � e
t(Δ− 1)

w0 + m 􏽚
t

0
e

(t− s)(Δ− 1) c
χ
(·, s)

c
χ
(·, s)

����
����L1(Ω)

ds. (8)

and

ct � Δc − c + e
t(Δ− 1)

w0 + m 􏽚
t

0
e

(t− s)(Δ− 1) c
χ
(·, s)

c
χ
(·, s)

����
����L1(Ω)

ds. (9)

Applying the scalar parabolic problems of the type
obtained in (9), the analysis method of a well-known
nonlocal parabolic problems for suitable chosen radial initial
data c0 the respective limit function c should be blow-up
after some finite time whenever χ > 2N/N − 2 in Section .
Next, we give the following theorem.

Theorem 1. Let N≥ 4 and Ω ≔ BR(0) ⊂ RN with some
R> 0, and assume χ > 2N/N − 2 and m> 0. #en, there exist
c0, w0 ∈W1,∞ and T> 0 such that c0 > 0, w0 > 0 in Ω, and
such that for any nonnegative n0 ∈ C0(Ω) with 􏽒Ωn0 � m

and each ε ∈ (0, 1)), it is possible to choose Tε ∈ (0, T] and
functions nε, cε and wε belonging to C0(Ω × [0, Tε))∩
C2,1(Ω × [0, Tε))) such that nε ≥ 0 and cε > 0, wε > 0 in Ω ×

[0, Tε), that (nε, cε, wε) solves (3) classically in Ω × [0, Tε),
and that

limsup
ε⟶0

sup
t∈ 0,Tε( )

nε(·, t)
����

����Lp(Ω)
�∞ for allp>

N

4
. (10)

and especially, giving any M> 0 and ε> 0 we can find
ε ∈ (0, ε0), x⋆ ∈ Ω and t⋆ ∈ (0, Tε) such that

n x⋆, t⋆( 􏼁≥M. (11)
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2. The Limit Procedure ε⟶ 0 in (3)

2.1. Local Existence andConditional ε-Independent Estimates.
Firstly, we give the well-established the local existence of a
classical solution to (3) for each fixed ε> 0, along with a
convenient extensibility criterion.

Lemma 1. Let N≥ 4 andΩ ⊂ RN be a bounded domain with
smooth boundary, and let χ > 0 and ε> 0. #en, for any choice
of n0, c0 and w0 satisfying (6), there are Tmax ,ε ∈ (0,∞] and a
uniquely determined pair (nε, cε, wε) of functions.

nε ∈ C
0 Ω × 0, Tmax ,ε􏽨 􏼑􏼐 􏼑∩C

2,1 Ω × 0, Tmax ,ε􏼐 􏼑􏼐 􏼑,

cε ∈ ∩
r>N

C
0

[0, Tmax ,ε; W
1,r

(Ω)􏼐 􏼑∩C
2,1 Ω × 0, Tmax ,ε􏼐 􏼑􏼐 􏼑,

w ∈ C
0
(Ω ×[0,∞))∩C

2,1
(Ω ×(0,∞))

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

,

(12)

such that nε ≥ 0, cε > 0 and wε > 0 in Ω × [0, Tmax ,ε), that
(nε, cε, wε) solves (3) classically in Ω × (0, Tmax ,ε), and that

if Tmax ,ε <∞, then limsup
t⟶Tmax ,ε

nε(·, t)
����

����Lp(Ω)
�∞ for allp>

N

4
. (13)

Proof. We can use the local existence and extensibility to
complete the proof of Lemma 1. We can refer to literature
([36], Lemma 10, Lemma 3.1 and 3.2) for relevant details.

.e following lemma is helpful to prove the upper
bounded of wε. □

Lemma 2. ([60], Lemma 3.4) Let T> 0, and suppose that z is
a nonnegative absolutely continuous function on [0, T)

satisfying

z′(t) + az(t)≤f(t) for a.e.t ∈ (0, T). (14)

With some a> 0 and a nonnegative function
f ∈ L1

loc([0, T)) for which there exists b> 0 such that

􏽚
t+1

t
f(s)ds≤ b for all t ∈ [0, T − 1). (15)

#en,

z(t)≤max z(0) + b,
b

a
+ 2b􏼨 􏼩 for all t ∈ (0, T). (16)

In what follows, we let (Tmax ,ε)ε∈(0,1) and
((nε, cε, wε))ε∈(0,1) be as obtained in Lemma 1. Next, we as-
sume that p>N/4 and T> 0 have the following properties.

Tmax ,ε ≥T for all ε ∈ 0, ε∗( 􏼁,

sup
ε∈ 0,ε∗( )t∈(0,T)

nε(·, t)
����

����Lp(Ω)
<∞. (17)

We will give the pointwise lower estimates of cε and wε,
which plays an important role in the full text.

Lemma 3. If (A) holds with some T> 0, p>N/4 and
ε∗ ∈ (0, 1), then there exist C> 0 and δ0 > 0 such that

􏽚
Ω

nε(·, t) � 􏽚
Ω

n0 for all t ∈ 0, Tmax ,ε􏼐 􏼑. (18)

and

‖w(·, t)‖L1(Ω) ≤C. (19)

as well as

min cε(x, t), wε(x, t)􏼈 􏼉≥ δ0 for allx ∈ Ω, t ∈ (0, T), ε ∈ 0, ε∗( 􏼁.

(20)

Proof. Integrating the first equation of (3), we can obtain
(18). .en, integrating the third equation of (3), we have the
following equation:

d
dt

􏽚
Ω

wε + 􏽚
Ω

wε � 􏽚
Ω

nε. (21)

Next, we apply Lemma 2 and (18) to establish (19).
.erefore, using the convexity of Ω and comparison ar-
gument ([65], Lemma 4), the following Neumann heat
semigroup (etΔ)t≥ 0 has properties.

e
tΔψ ≥ c1􏽚

Ω
ψ inΩ for all t> 1. (22)

In order to get the pointwise lower estimate appropri-
ately, we employ a variation-of-constants representation of
cε and wε to see that

wε(·, t) � e
− t

e
tΔ

w0 + 􏽚
t

0
e

− (t− s)
e

(t− s)Δ
nε(·, s)ds,

≥ e
− t

· inf
Ω

w0 + 􏽚
(t− 1)+

(t− 2)+

e
− (t− s)

· c1􏽚
Ω

n0􏼚 􏼛ds,

≥max e
− 2 inf
Ω

w0, c1e
− 2

􏽚
Ω

n0􏼚 􏼛,

≔ δ1 for all t ∈ (0, T), ε ∈ 0, ε∗( 􏼁,

(23)

where δ1 > 0 because inf
Ω

w0 and 􏽒Ωn0 are positive by (6).
Similarly, we have the following equation:

cε(·, t) � e
− t

e
tΔ

c0 + 􏽚
t

0
e

− (t− s)
e

(t− s)Δ
wε(·, s)ds,

≥ e
− t

· inf
Ω

c0 + 􏽚
(t− 1)+

(t− 2)+

e
− (t− s)

· c1􏽚
Ω

wε􏼚 􏼛ds,

≥max e
− 2 inf
Ω

c0, c1e
− 2δ1|Ω|􏼚 􏼛,

≔ δ2 for all t ∈ (0, T), ε ∈ 0, ε∗( 􏼁, δ2 > 0.

(24)

Taking δ0 ≔ min δ1, δ2􏼈 􏼉, this entails (20). □

Lemma 4. If (A) holds with some T> 0, p>N/4 and
ε ∈ (0, 1), then there exist q>N/2 and C> 0 such that

wε(·, t)
����

����Lq(Ω)
≤C for all t ∈ (0, T), each ε ∈ 0, ε∗( 􏼁. (25)

Proof. Without loss of generality, we may assume that
p<N/2. Using the variation-of-constants formula and the
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estimate of the Neumann heat semigroup (etΔ)t≥ 0 onΩ [66]
give the following equation:

wε(·, t)
����

����Lq(Ω)
� e

t(Δ− 1)
w0 + 􏽚

t

0
e

(t− s)(Δ− 1)
nε(·, s)ds

�������

�������Lq(Ω)

,

≤ c1 + c1 􏽚
t

0
1 +(t − s)

− N/2(1/p− 1/q)
􏼐 􏼑e

− λ(t− s)
,

nε(·, s)
����

����Lp(Ω)
ds.

(26)

Since 1/p − 2/N< 2/N, we have N/2(1/p − 1/N/2)< 1.
So we can take q>N/2 such that N/2(1/p − 1/q)< 1.
.erefore c2 ≔ 􏽒

∞
0 (1 + σ − N/2(1/p− 1/q))e− λσdσ <∞, this en-

sures that

wε(·, t)
����

����Lq(Ω)
≤ c1 + c1c2 sup

t∈(0,T)

nε(·, t)
����

����Lp(Ω)
,

for all t ∈ (0, T), ε ∈ 0, ε∗( 􏼁.

(27)

.is completes the proof of Lemma 4. □

Lemma 5. Suppose that (A) holds with some T> 0, p>N/4
and ε ∈ (0, 1). #en there exist r>N and C> 0 such that

cε(·, t)
����

����W1,r(Ω)
≤C for all t ∈ (0, T), each ε ∈ 0, ε∗( 􏼁. (28)

Proof. For simplicity of expression from Lemma 4, we as-
sume that N/2< q< n. .en we can fix N< r<Nq/N − q to
find c3 > 0 such that for all ε ∈ (0, ε∗),

cε(·, t)
����

����W1,r(Ω)
� e

t(Δ− 1)
c0 + 􏽚

t

0
e

(t− s)(Δ− 1)
wε(·, s)ds

�������

�������W1,r(Ω)

,

≤ c3 + c3 􏽚
t

0
1 +(t − s)

− 1/2− N/2(1/q− 1/r)
􏼐 􏼑,

e
− λ(t− s)

wε(·, s)
����

����Lq(Ω)
ds.

(29)

where 1/2 + N/2(1/q − 1/r)< 1/2 + N/2(1/q − N − q/Nq) �

1. .is entails that

cε(·, t)
����

����W1,r(Ω)
≤ c3 + c2c3 sup

t∈(0,T)

wε(·, t)
����

����Lq(Ω)
,

for all t ∈ (0, T), ε ∈ 0, ε∗( 􏼁.

(30)

.erefore, applying the above inequality and Lemma 4,
we can obtain Lemma 5. □

Lemma 6. Suppose that (A) with some T> 0, p>N/4 and
ε∗ ∈ (0, 1). #en there exists C> 0 such that

􏽚
T

0
􏽚
Ω
∇nε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤C for all ε ∈ 0, ε∗( 􏼁. (31)

Proof. We multiply the first equation of the system (4),
integrate by parts and use Hölder’s inequality to deduce that

ε
2
d
dt

􏽚
Ω

n
2
ε + 􏽚
Ω
∇nε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� χ􏽚
Ω

nε

cε
∇nε · ∇cε,

≤
1
2

􏽚
Ω
∇nε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+
χ2

2
􏽚
Ω

n
2
ε

c
2
ε
∇c2ε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(32)

Using Gagliardo–Nirenberg inequality and Young’s
inequality to the second term at the right end of formula
(32), we can obtain the following equation:

ε
d
dt

􏽚
Ω

n
2
ε + 􏽚
Ω
∇nε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ c5􏽚

Ω
n
2
ε ∇cε
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
,

≤ c5 n
2
ε

����
����Lr/r− 2(Ω)

∇cε
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2�����

�����Lr/2(Ω)
,

≤ c6 ∇nε
����

����
2N(r+2)/(N+2)r

L2(Ω)
nε

����
����
4(r− N)/(N+2)r

L1(Ω)

+ c6 nε
����

����
2
L1(Ω)

,

≤
1
2

􏽚
Ω
∇nε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ c7.

(33)

.at is,

ε
d
dt

􏽚
Ω

n
2
ε +

1
2

􏽚
Ω
∇nε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ c7. (34)

.erefore, integrating the two sides of the above-given
inequality, we have the following equation:

ε􏽚
Ω

n
2
ε +

1
2

􏽚
t

0
􏽚
Ω
∇nε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ ε􏽚

Ω
n
2
0 + c7t,

for all t ∈ (0, T), ε ∈ 0, ε∗( 􏼁.

(35)

which together with (6) establishes Lemma 6. □

Lemma 7. If (A) is valid with some T> 0, p>N/4 and
ε∗ ∈ (0, 1), then there exists C> 0 such that

􏽚
T

0
􏽚
Ω
Δcε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤C for all ε∗ ∈ 0, ε∗( 􏼁. (36)

and

􏽚
T

0
􏽚
Ω

c
2
εt ≤C for all ε∗ ∈ 0, ε∗( 􏼁. (37)

Proof. Multiplying the third equation of (3) with w and
making use of the integration by parts, we have the following
equation:
1
2
d
dt

􏽚
Ω
∇wε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 􏽚
Ω
∇wε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 􏽚
Ω

w
2
ε ≤􏽚
Ω

nεwε,

≤ nε
����

����L2(Ω)
wε

����
����L2(Ω)

,

≤
3
4

􏽚
Ω

n
2
ε +

1
3

􏽚
Ω

w
2
ε .

(38)

Taking the L2 inner product of (4)2 with − Δcε and using
the integration by parts, we deduce that
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1
2
d
dt

􏽚
Ω
∇cε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 􏽚
Ω
Δcε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� − 􏽚
Ω
∇cε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− 􏽚
Ω

wεΔcε,

≤ − 􏽚
Ω
∇cε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+
3
4

􏽚
Ω
Δcε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+
1
3

􏽚
Ω

w
2
ε .

(39)

We multiply the second equation of (3) with cε and cεt,
respectively, then add them together and use Young’s in-
equality to get the following equation:

1
2
d
dt

􏽚
Ω

c
2
ε + 􏽚
Ω
∇cε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼚 􏼛 + 􏽚
Ω

c
2
εt � 􏽚

Ω
cεtwε,

≤
3
4

􏽚
Ω

c
2
εt +

1
3

􏽚
Ω

w
2
ε .

(40)

Combining with (39)–(41), we have the following
equation:

d
dt

􏽚
Ω

c
2
ε + 2􏽚

Ω
∇cε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 􏽚
Ω
∇wε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼚 􏼛,

+
1
2

􏽚
Ω

c
2
εt + 2 􏽚

Ω
∇cε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ ∇wε
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼚 􏼛,

+
1
2

􏽚
Ω
Δcε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤

3
2

􏽚
Ω

n
2
ε for all ε ∈ 0, ε∗( 􏼁.

(41)

We can employ the Gagliardo-Nirenberg inequality
together with m ≔ 􏽒Ωn0 to obtain the following equation:

3
2

􏽚
Ω

n
2
ε ≤ c8 ∇nε

����
����
2N/N+2
L2(Ω)

nε
����

����
4/N+2
L1(Ω)

+ c4 nε
����

����
2
L1(Ω)

,

≤
1
2

􏽚
Ω
∇nε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ c8 +
1
2
c

N+2/2
8􏼒 􏼓m

2
,

(42)

.is ensures that

􏽚
Ω

c
2
ε + 2􏽚

Ω
∇cε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 􏽚
Ω
∇wε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+
1
2

􏽚
t

0
􏽚
Ω

c
2
εt,

+ 2􏽚
t

0
􏽚
Ω
∇cε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ ∇wε
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼚 􏼛 +
1
2

􏽚
t

0
􏽚
Ω
Δcε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
,

≤􏽚
Ω

c
2
0 + 2􏽚

Ω
∇c0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 2􏽚
Ω
∇w0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+
1
2

􏽚
T

0
􏽚
Ω
∇nε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
,

+ c8 +
1
2
c

N+2/2
8􏼒 􏼓m

2
T for all ε ∈ 0, ε∗( 􏼁.

(43)

.us, we can complete the proof of Lemma 7 from
Lemma 6. □

2.2. Passing to the Singular Limit. With the above-given
important prior estimation, we can carry out the following
limit process. .e purpose of this part is to take the limit of
nε, cε, wε, which is to hope that the obtained limit can meet
the limit version solution of the system (3). .is idea comes
from Winkler in [64].

Lemma 8. Assume (A) with some T> 0, p>N/4 and
ε∗ ∈ (0, 1). #en, there exists (εj)j∈N ⊂ (0,ε∗) and functions.

n ∈ L
2

(0, T); H
1
(Ω)􏼐 􏼑,

c ∈ L
2

(0, T); H
1
(Ω)􏼐 􏼑∩L

∞
(Ω ×(0, T)),

w ∈ L
2

(0, T); H
1
(Ω)􏼐 􏼑∩L

q
(Ω ×(0, T)),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(44)

Such that εj⟶ 0 as j⟶∞, that n≥ 0, c> 0 and w> 0
a.e., in Ω × (0, T), that

1
c
∈ L
∞

(Ω ×(0, T)). (45)

and that as ε � εj⟶ 0 we have the following equation:

nε⇀n inL
2
(Ω ×(0, T)), (46)

∇nε⇀∇n inL
2
(Ω ×(0, T)), (47)

cε⟶ c in L
2
(Ω ×(0, T)), a.e.inΩ ×(0, T), (48)

∇cε⟶∇c in L
2
(Ω ×(0, T)), (49)

wε⇀w inL
2
(Ω ×(0, T)), (50)

∇wε⇀∇w inL
2
(Ω ×(0, T)), (51)

∇cε
cε
⟶
∇c
c

inL
2
(Ω ×(0, T)). (52)

Moreover, we have the following identities:

􏽚
T

0
􏽚
Ω
∇n · ∇φ � χ 􏽚

T

0
􏽚
Ω

n∇ ln c · ∇φ, (53)

and

− 􏽚
T

0
􏽚
Ω

cφt − 􏽚
Ω

c0φ(·, 0) + 􏽚
T

0
􏽚
Ω
∇c · ∇φ,

+ 􏽚
T

0
􏽚
Ω

cφ � 􏽚
T

0
􏽚
Ω

wφ.

(54)

as well as

− 􏽚
T

0
􏽚
Ω

wφt − 􏽚
Ω

w0φ(·, 0) + 􏽚
T

0
􏽚
Ω
∇w · ∇φ,

+ 􏽚
T

0
􏽚
Ω

wφ � 􏽚
T

0
􏽚
Ω

nφ.

(55)

For each φ ∈ C∞0 (Ω × [0, T)).

Proof. In light of Lemma 4, Lemma 6, and (42) and together
with the embedding W1,r(Ω)↼L∞(Ω), r>N, we have the
following equation:
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nε( 􏼁ε∈ 0,ε∗( ) ∈ L
2

(0, T); H
1
(0, T)􏼐 􏼑,

cε( 􏼁ε∈ 0,ε∗( ) ∈ L
2

(0, T); H
2
(0, T)􏼐 􏼑∩L

∞
,

(0, T); W
1,N

(Ω)􏼐 􏼑∩ L
∞

(Ω ×(0, T)),

cεt( 􏼁ε∈ 0,ε∗( ) ∈ L
2
(Ω ×(0, T)),

wε( 􏼁ε∈ 0,ε∗( ) ∈ L
2

(0, T); H
1
(Ω)􏼐 􏼑∩L

∞
(0, T); H

1
(Ω)􏼐 􏼑.

(56)

According to Aubin–Lions lemma [67] and the standard
compactness arguments, we can extract a sequence
(εj)j∈R ⊂ (0, ε∗) along which (46)–(51) hold with some
nonnegative functions
n ∈ L2((0, T); H1(Ω)), c ∈ L2((0, T); H1(Ω)), and
w ∈ L2((0, T); H1(Ω)) as ε � εj⟶ 0. By
(cε)ε∈(0,ε∗) ∈ L∞((0, T); W1,N(Ω)) and (49), we may employ
Fatou’s lemma to obtain c ∈ L∞((0, T); W1,N(Ω)). Similarly,
(cε)ε∈(0,ε∗) ∈ L∞(Ω × (0, T)) and (48) entails that
c ∈ L∞(Ω × (0, T)). Furthermore, (48), the weak closedness
of convex sets in L∞(Ω × (0, T)), and Lemma 3 warrants
that (45) and (52).

.en, testing the respective equations of system (3) with
φ and using of the integration by parts, we have the following
equation:

− ε􏽚
T

0
􏽚
Ω

nεφt − ε􏽚
Ω

n0φ(·, 0) + 􏽚
T

0
􏽚
Ω
∇nε,

· ∇φ � χ 􏽚
T

0
􏽚
Ω

nε∇ ln cε · ∇φ.

(57)

and

− 􏽚
T

0
􏽚
Ω

cεφt − 􏽚
Ω

c0φ(·, 0) + 􏽚
T

0
􏽚
Ω
∇cε · ∇φ,

+ 􏽚
T

0
􏽚
Ω

cεφ � 􏽚
T

0
􏽚
Ω

wεφ.

(58)

as well as

− 􏽚
T

0
􏽚
Ω

wεφt − 􏽚
Ω

w0φ(·, 0) + 􏽚
T

0
􏽚
Ω
∇wε · ∇φ,

+ 􏽚
T

0
􏽚
Ω

wεφ � 􏽚
T

0
􏽚
Ω

nεφ.

(59)

For all φ ∈ C∞0 (Ω × [0, T)). We apply (57), (46)–(47),
and (52) to obtain (53). Similarly, using (48)–(50) and (58),
we derive (54). And, thanks to (46) and (50)-(51), we deduce
that (55). □

2.3. Identical Equation. Next, we give an important identity
equation under the regular time. .ese techniques and
methods are similar to the literature [64], thus we ignore the
corresponding proof.

Lemma 9. Suppose that A holds with some T> 0, p>N/4
and ε∗ ∈ (0, 1), and let (n, c, w) be a solution of (3) and Z⋆ be
a non-Lebesgue point set of times. #en, we have the following
equation:

n(·, t) �
mc

χ
(·, t)

􏽒Ωc
χ
(·, t)

for all
t ∈ (0, T)

Z⋆
. (60)

3. Blow-Up in the Nonlocal Limit Problem

Lemma 10. Let N≥ 4 andΩ � BR(0) ⊂ RN with some R> 0,
and assume χ > 2N/N − 2 and m> 0. #en, there exists
c0, w0 ∈W1,∞(Ω), T> 0 and a uniquely determined
􏽢c∈ C0(Ω × [0, T))∩C2,1Ω × (0, T) such that c0 > 0, w0 > 0 in
Ω, and 􏽢f(·, t): � et(Δ− 1)w0 + m 􏽒

t

0 e(t− s)(Δ− 1)􏽢cχ

(·, s)/􏽒Ω􏽢c
χ(·, s)dxds in Ω × (0, T), that 􏽢c solves

􏽢ct � Δ􏽢c − 􏽢c + f(·, t), x ∈ Ω, t ∈ (0, T),

z􏽢c

z]
� 0, x ∈ zΩ , t ∈ (0, T),

􏽢c(x, 0) � c0(x), x ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(61)

in the classical sense, and that

limsup
t⟶T

‖􏽢c(·, t)‖L∞(Ω) �∞. (62)

Proof. A straightforward adaptation of the reasoning from
([68], Section 44.2, also [69]) makes positive and radially
symmetric c0, w0 ∈W1,∞ such that with some T> 0 and a
unique function 0< v ∈ C0(Ω) × [0, T))∩C2,1(Ω × (0, T)),
we have the following equation:

vt � Δv + g(·, t), x ∈ Ω, t ∈ (0, T),

zv

z]
� 0, x ∈ zΩ , t ∈ (0, T),

v(x, 0) � c0(x), x ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(63)

where g(·, t) � et 􏽢f(·, t) � etΔw0 + m 􏽒
t

0 e(t− s)Δesvχ(·, s)/
􏽒Ωv

χ(·, s)ds and limsup
t⟶T

‖v(·, t)‖L∞(Ω) �∞. Let
v(x, t) � et􏽢c(x, t) for (x, t)t ∈ nΩq × h[0, T). As a simple
calculation shows that the defined 􏽢c satisfies the conclusion
of the proposition. □

Proof of #eorem 1. Let χ > 2N/N − 2 and m> 0, we fix c0, 􏽢c

and T as given by Lemma 10, and let n0 ∈ C0(Ω) be a
nonnegative function with 􏽒Ωn0 � m. We now take
(Tmax ,ε)ε∈(0,1) and (nε, cε, wε)ε∈(0,1) from Lemma 1, and let
Tε: � min Tmax ,ε, T􏽮 􏽯 for ε ∈ (0, 1). Next, we claim that (11)
holds. We use the proof by contradiction to prove it.

If (11) is false, then we have the following equation:

limsup
ε⟶0

sup
t∈ 0,Tε( )

nε(·, t)
����

����Lp(Ω)
<∞for somep>

p

4
. (64)

First, we claim that there exists a 􏽢ε∗ ∈ (0, 1) such that
T≤Tmax ,ε for all ε ∈ (0, ε∗). Otherwise, we can find
(εj)j∈N ⊂ (0, 1) satisfying εj⟶ 0 as j⟶∞ and
Tmax ,εj
<T, then we can obtain from (13) that

6 Mathematical Problems in Engineering



sup
t∈ 0,Tε( )

nεj
(·, t)

�����

�����
Lp(Ω)

� sup
t∈ 0,Tmax ,ε( )

nεj
(·, t)

�����

�����
Lp(Ω)

,

≥ lim
t⟶Tmax ,εj

sup nεj
(·, t)

�����

�����
Lp(Ω)

,

�∞for all j ∈ N,

(65)

which is contradictory about (64). .erefore, we deduce that
Tε � T for all ε ∈ (0, 􏽢ε∗). .is ensures that (A) is valid. .us,
we can employ Lemma 8 to see that

c ∈ L
2

(0, T); H
1
(Ω)∩L

∞
(Ω ×(0, T))􏼐 􏼑, (66)

such that c> 0 a.e. in Ω × (0, T), that
1
c
∈ L
∞

(Ω ×(0, T)), (67)

and that (54) holds with some w ∈ Lq(Ω × (0, T)) for all
q>N/2. Applying the Lemma 9, we have the following
equation:

n(·, t) �
mc

χ
(·, t)

􏽒Ωc
χ
(·, t)

a.e.inΩ ×(0, T). (68)

.en, by the third equation of the system (3), (68), and
using the variation-of-constants formula gives the following
equation:

w(·, t) � e
t(Δ− 1)

w0 + m 􏽚
t

0
e

(t− s)(Δ− 1) c
χ
(·, s)

c
χ
(·, s)

����
����L1(Ω)

ds. (69)

In consequence, c would form a bounded generalized
solution, in the standard sense specified in [70], of

ct � Δc − c + f(·, t), x ∈ Ω, t ∈ (0, T),

zc

z]
� 0, x ∈ zΩ , t ∈ (0, T),

c(x, 0) � c0(x), x ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(70)

with
f(x, t) ≔ et(Δ− 1)w0(x) +

m 􏽒
t

0 e(t− s)(Δ− 1)cχ(x, s)/‖cχ(x, s)‖L1(Ω)ds. Using the Neu-
mann heat semigroup estimate, (45)2 and (66)-(67), there
exists C5 > 0 such that

‖f(x, t)‖L∞(Ω) ≤ w0
����

����L∞(Ω)
+ m|Ω|

1
c

�������

�������

χ

L∞(Ω)

,

􏽚
t

0
e

(t− s)(Δ− 1)
c
χ
(x, s)

�����

�����L∞(Ω)
≤C5.

(71)

.erefore, the standard results on Hölder regularity in
scalar parabolic equations [71] is used to warrant that
c ∈ Cθ,θ/2(Ω × [0, T]) for some θ ∈ (0, 1), whereupon clas-
sical Schauder theory [70] would ensure that f is Hölder
continuous in Ω × [0, T], thus the function c ∈ C2,1, and
furthermore actually solve (70) in the classical sense.
.erefore, the uniqueness feature in Proposition 3.1 enforces
that c must be coincide with 􏽢c. .is is contradictory with the

boundedness claim in (66). Hence (10) must be valid..anks
to L∞(Ω) ⊂ ∩ p>N/4L

p(Ω), we could deduce that thus also
the growth property statement in (11) result. □
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Anal. Non Linéaire, vol. 33, no. 5, pp. 1329–1352, 2016.

[13] X. Cao, “Global classical solutions in chemotaxis-Navier-
Stokes system with rotational flux term,” Journal of Differ-
ential Equations, vol. 261, no. 12, pp. 6883–6914, 2016.

[14] X. Cao and J. Lankeit, “Global classical small-data solutions
for a three-dimensional chemotaxis Navier-Stokes system
involving matrix-valued sensitivities, Calc. Var,” Partial
Differential Equations, vol. 55, pp. 55–107, 2016.

[15] X. Li, “Global classical solutions in a Keller-Segel(-Navier)-
Stokes system modeling coral fertilization,” Journal of Dif-
ferential Equations, vol. 267, no. 11, pp. 6290–6315, 2019.

[16] X. Li, Y. Wang, and Z. Xiang, “Global existence and
boundedness in a 2D Keller-Segel-Stokes system with non-
linear diffusion and rotational flux,” Communications in
Mathematical Sciences, vol. 14, no. 7, pp. 1889–1910, 2016.

[17] J. Liu and Y. Wang, “Global weak solutions in a three-di-
mensional Keller-Segel-Navier-Stokes system involving a
tensor-valued sensitivity with saturation,” Journal of Differ-
ential Equations, vol. 262, no. 10, pp. 5271–5305, 2017.

[18] X. Cao and Y. Wang, “Global classical solutions of a 3D
chemotaxis-Stokes system with rotation,” Discrete and Con-
tinuous Dynamical Systems - Series B, vol. 20, no. 9,
pp. 3235–3254, 2015.

[19] Y. Wang and Z. Xiang, “Global existence and boundedness in
a Keller-Segel-Stokes system involving a tensor-valued sen-
sitivity with saturation,” Journal of Differential Equations,
vol. 259, no. 12, pp. 7578–7609, 2015.

[20] Y. Wang and Z. Xiang, “Global existence and boundedness in
a Keller-Segel-Stokes system involving a tensor-valued sen-
sitivity with saturation: the 3D case,” Journal of Differential
Equations, vol. 261, no. 9, pp. 4944–4973, 2016.

[21] H. Y. Jin, “Boundedness and large time behavior in a two-
dimensional Keller-Segel-Navier-Stokes system with signal-
dependent diffusion and sensitivity,” Discrete & Continuous
Dynamical Systems - A, vol. 38, no. 7, pp. 3595–3616, 2018.

[22] J. Lankeit, “Long-term behaviour in a chemotaxis-fluid system
with logistic source,” Mathematical Models and Methods in
Applied Sciences, vol. 26, no. 11, pp. 2071–2109, 2016.

[23] Y. Tao and M. Winkler, “Blow-up prevention by quadratic
degradation in a two-dimensional Kel-
ler–Segel–Navier–Stokes system,” Zeitschrift für Angewandte
Mathematik und Physik, vol. 67, no. 6, p. 138, 2016.

[24] Y. Wang, M. Winkler, and Z. Xiang, “Global solvability in a
three-dimensional Keller-Segel-Stokes system involving ar-
bitrary superlinear logistic degradation,” Advances in Non-
linear Analysis, vol. 10, no. 1, pp. 707–731, 2020.

[25] M. Winkler, “A three-dimensional Keller-Segel-Navier-
Stokes system with logistic source: global weak solutions and
asymptotic stabilization,” Journal of Functional Analysis,
vol. 276, no. 5, pp. 1339–1401, 2019.

[26] J.Wu andH. Natal, “Boundedness and asymptotic behavior to
a chemotaxis-fluid system with singular sensitivity and lo-
gistic source,” Journal of Mathematical Analysis and Appli-
cations, vol. 484, no. 2, Article ID 123748, 2020.

[27] R. Duan and Z. Xiang, “A note on global existence for the
chemotaxis-Stokes model with nonlinear diffusion,” Inter-
national Mathematics Research Notices, vol. 2014, no. 7,
pp. 1833–1852, 2014.

[28] Y. Tao andM.Winkler, “Global existence and boundedness in
a Keller-Segel-Stokes model with arbitrary porous medium
diffusion,” Discrete & Continuous Dynamical Systems - A,
vol. 32, no. 5, pp. 1901–1914, 2012.

[29] Y. Wang and X. Li, “Boundedness for a 3D chemotaxis-Stokes
system with porous medium diffusion and tensor-valued
chemotactic sensitivity,” Zeitschrift für Angewandte Mathe-
matik und Physik, vol. 68, no. 2, pp. 29–23, 2017.

[30] Y. Wang, M. Winkler, and Z. Xiang, “Global mass-preserving
solutions to a chemotaxis-fluid model involving Dirichlet
boundary conditions for the signal,” Analysis and Applica-
tions, vol. 20, no. 01, pp. 141–170, 2022.

[31] Y. Wang, M. Winkler, and Z. Xiang, “Immediate regulari-
zation of measure-type population densities in a two-di-
mensional chemotaxis system with signal consumption,”
Science China Mathematics, vol. 64, no. 4, pp. 725–746, 2021.

[32] Q. Zhang and Y. Li, “Global weak solutions for the three-
dimensional chemotaxis-Navier-Stokes system with nonlin-
ear diffusion,” Journal of Differential Equations, vol. 259, no. 8,
pp. 3730–3754, 2015.

[33] E. F. Keller and L. A. Segel, “Traveling bands of chemotactic
bacteria: a theoretical analysis,” Journal of #eoretical Biology,
vol. 30, no. 2, pp. 235–248, 1971.

[34] Y. V. Kalinin, L. Jiang, Y. Tu, and M. Wu, “Logarithmic
sensing in Escherichia coli bacterial chemotaxis,” Biophysical
Journal, vol. 96, no. 6, pp. 2439–2448, 2009.

[35] C. Xue, “Macroscopic equations for bacterial chemotaxis:
integration of detailed biochemistry of cell signaling,” Journal
of Mathematical Biology, vol. 70, no. 1-2, pp. 1–44, 2015.

[36] N. Bellomo, A. Bellouquid, Y. Tao, andM.Winkler, “Toward a
mathematical theory of Keller–Segel models of pattern for-
mation in biological tissues,” Mathematical Models and
Methods in Applied Sciences, vol. 25, no. 09, pp. 1663–1763,
2015.

[37] J. Lankeit, “A new approach toward boundedness in a two-
dimensional parabolic chemotaxis system with singular
sensitivity,” Mathematical Methods in the Applied Sciences,
vol. 39, no. 3, pp. 394–404, 2016.

[38] P. Biler, “Global solutions to some parabolic-elliptic systems
of chemotaxis,”Adv. Math. Sci. Appl.vol. 9, no. 1, pp. 347–359,
1999.

[39] T. Black, J. Lankeit, and M. Mizukami, “Singular sensitivity in
a Keller-Segel-fluid system,” Journal of Evolution Equations,
vol. 18, no. 2, pp. 561–581, 2018.

[40] K. Fujie, “Boundedness in a fully parabolic chemotaxis system
with singular sensitivity,” Journal of Mathematical Analysis
and Applications, vol. 424, no. 1, pp. 675–684, 2015.

[41] M. Mizukami and T. Yokota, “A unified method for
boundedness in fully parabolic chemotaxis systems with
signal-dependent sensitivity,” Mathematische Nachrichten,
vol. 290, no. 16, pp. 2648–2660, 2017.

[42] X. Zhao and S. Zheng, “Global boundedness of solutions in a
parabolic-parabolic chemotaxis system with singular sensi-
tivity,” Journal of Mathematical Analysis and Applications,
vol. 443, no. 1, pp. 445–452, 2016.

[43] M. Winkler, “Global solutions in a fully parabolic chemotaxis
system with singular sensitivity,” Mathematical Methods in
the Applied Sciences, vol. 34, no. 2, pp. 176–190, 2011.

[44] C. Stinner and M. Winkler, “Global weak solutions in a
chemotaxis system with large singular sensitivity,” Nonlinear
Analysis: Real World Applications, vol. 12, pp. 3727–3740,
2011.

[45] J. Lankeit and M. Winkler, “A generalized solution concept
for the Keller-Segel system with logarithmic sensitivity: global

8 Mathematical Problems in Engineering



solvability for large nonradial data,” Nonlinear Differential
Equations and Applications, vol. 24, no. 4, p. 49, 2017.

[46] T. Black, “Global generalized solutions to a parabolic-elliptic
Keller-Segel system with singular sensitivity,” Discrete &
Continuous Dynamical Systems - S, vol. 13, no. 2, pp. 119–137,
2020.

[47] T. Senba and K. Fujie, “Global existence and boundedness in a
parabolic-elliptic Keller-Segel systemwith general sensitivity,”
Discrete and Continuous Dynamical Systems - Series B, vol. 21,
no. 1, pp. 81–102, 2015.

[48] Y. Ke and J. Zheng, “An optimal result for global existence in a
three-dimensional Keller–Segel–Navier–Stokes system in-
volving tensor-valued sensitivity with saturation,” Calculus of
Variations and Partial Differential Equations, vol. 58, no. 3,
pp. 109–127, 2019.

[49] M. Winkler, “Global mass-preserving solutions in a two-di-
mensional chemotaxis-Stokes system with rotational flux
components,” Journal of Evolution Equations, vol. 18, no. 3,
pp. 1267–1289, 2018.

[50] M. Winkler, “How far do chemotaxis-driven forces influence
regularity in the Navier-Stokes system?” Transactions of the
American Mathematical Society, vol. 369, no. 5, pp. 3067–
3125, 2016.

[51] J. Zheng, “A new result for the global existence (and
boundedness) and regularity of a three-dimensional Keller-
Segel-Navier-Stokes system modeling coral fertilization,”
Journal of Differential Equations, vol. 272, no. 2021,
pp. 164–202, 2021.

[52] J. Zheng, “An optimal result for global existence and
boundedness in a three-dimensional Keller-Segel-Stokes
system with nonlinear diffusion,” Journal of Differential
Equations, vol. 267, no. 4, pp. 2385–2415, 2019.

[53] J. Zheng, “Eventual smoothness and stabilization in a three-
dimensional Keller–Segel–Navier–Stokes system with rota-
tional flux,” Calculus of Variations and Partial Differential
Equations, vol. 61, no. 2, p. 52, 2022.

[54] T. Nagai and T. Senba, “Global existence and blow-up of
radial solutions to a parabolic-elliptic system of chemotaxis,”
Adv. Math. Sci. Appl.vol. 8, pp. 145–156, 1998.

[55] P. Biler, “Radially symmetric solutions of a chemotaxis model
in the plane-the supercritical case Parabolic and Navier-
Stokes Equations. Part 1,” Banach Center Publications, vol. 81,
2008.

[56] K. Lin, C. Mu, and L. Wang, “Large-time behavior of an
attraction-repulsion chemotaxis system,” Journal of Mathe-
matical Analysis and Applications, vol. 426, no. 1, pp. 105–124,
2015.

[57] J. Wu, L. Zhao, and H. Pan, “Boundedness and asymptotic
behavior to a chemotaxis system with indirect signal gener-
ation and singular sensitivity,” Adv. Math. Phys.vol. 2021,
Article ID 5130409, 11 pages, 2021.

[58] K. Fujie and T. Senba, “Blowup of solutions to a two-chemical
substances chemotaxis system in the critical dimension,”
Journal of Differential Equations, vol. 266, no. 2-3, pp. 942–
976, 2019.

[59] Y. Tao and Z. A. Wang, “Competing effects of attraction vs.
repulsion in chemotaxis,” Mathematical Models and Methods
in Applied Sciences, vol. 23, no. 01, pp. 1–36, 2013.

[60] C. Stinner, C. Surulescu, and M. Winkler, “Global weak so-
lutions in a PDE-ODE system modeling multiscale cancer cell
invasion,” SIAM Journal on Mathematical Analysis, vol. 46,
no. 3, pp. 1969–2007, 2014.

[61] Y. Li and Y. Li, “Blow-up of nonradial solutions to attraction-
repulsion chemotaxis system in two dimensions,” Nonlinear
Analysis: Real World Applications, vol. 30, pp. 170–183, 2016.

[62] G. Viglialoro, “Explicit lower bound of blow–up time for an
attraction–repulsion chemotaxis system,” Journal of Mathe-
matical Analysis and Applications, vol. 479, no. 1, pp. 1069–
1077, 2019.

[63] Y. Chiyo, M. Marras, Y. Tanaka, and T. Yokota, “Blow-up
phenomena in a parabolic-elliptic-elliptic attraction-repul-
sion chemotaxis system with superlinear logistic degrada-
tion,” Nonlinear Analysis, vol. 212, no. 2021, Article ID
112550, 2021.

[64] M. Winkler, “Unlimited growth in logarithmic Keller-Segel
systems,” Journal of Differential Equations, vol. 309, no. 5,
pp. 74–97, 2022.

[65] K. Fujie, Study of Reaction-Diffusion Systems Modeling Che-
motaxis, PhD#esis, Tokyo University of Science, Japan, 2016.

[66] M. Winkler, “Aggregation vs. global diffusive behavior in the
higher-dimensional Keller-Segel model,” Journal of Differ-
ential Equations, vol. 248, no. 12, pp. 2889–2905, 2010.

[67] R. Temam, Navier-Stokes equations. #eory and Numerical
Analysis, Studies in Mathematics and Its Application, North-
Holland, Amsterdam, 1977.

[68] P. Quittner, Ph. Souplet, Superlinear Parabolic Problems. Blow
up, Global Existence and Steady States, Birkhauser Verlag,
Basel, 2007.

[69] B. Hu and H.-M. Yin, “Semilinear parabolic equations with
prescribed energy,” Rend. Circ. Mat. Palermo, vol. 44, no. 3,
pp. 479–505, 1995.

[70] O. A. Ladyzenskaya, V. A. Solonnikov, and N. N. Ural’ceva,
“Linear and Quasi-Linear Equations of Parabolic Type,”
Amer. Math. Soc. Transl, vol. 23, 1968.

[71] M. M. Porzio and V. Vespri, “Hölder estimates for local
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