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In this paper, MHD Brinkman-type �uid �ow containing titanium dioxide and silver nanoparticle hybrid nanoparticles with
generalized Mittag–Le�er kernel-based fractional derivative is investigated in the presence of bioconvection. �e governing
equations with dimensional analysis and fractional approach are obtained by using the fractional Fourier’s law for heat �ux and
Fick’s law for di�usion. As a result, the bioconvection Rayleigh number, which is responsible for the declining in the �uid velocity
and fractional parameters used to control the thermal and momentum boundary layers thickness of �uid properties.�e obtained
solutions can be bene�cial for proper analysis of real data and provide a tool for testing possible approximate solutions
where needed.

1. Introduction

�e concepts of fractional Brinkman form models with
hybrid nanoparticles through an oscillating vertical plate
and a magnetic �eld having variable direction are not de-
tailed, however. To �ll this void, a fractional Brinkman
sorting �uid show is used to blend a �ow of hybrid nano-
�uids over a swaying vertical plate. Brinkman’s sort of �uid
show was created by Brinkman in his pioneering work while
investigating �uid �ow due to thick constraint on the surface
of a thick swarm particle [1, 2]. Saqib et al. [3] discussed the
shape impact on the MHD �ow of time-fractional, Ferro-
Brinkman-sorted nano�uid having slope warming. Asjad
et al. [4] introduced non-Newtonian fractional derivatives in
a convective channel containing hybrid nanoparticles by
Prabhakar. Khan et al. [5] investigated the chemical response
and heat era impact of nono�uids of the Brinkman-type
H2O-Cu, Ag, TiO2, and Al2O3 in a porous medium with an
MHD �ow. Nanjundappa et al. [6] explored the impact of

dust particles on Darcy–Brinkman gravity-driven ferro-
thermal-convection in a ferro�uid soaked porous layer with
an inside heat source: the impact of boundaries. Sarwar et al.
[7] explained a comparative ponder on a non-Newtonian
fractional-order Brinkman sorted �uid with two di�erent
parts. Sha�e et al. [8] blended the convection �ow of
Brinkman sorted hybrid nano�uid based on Atanga-
na–Baleanu fractional demonstration. Ali et al. [9] presented
the Caputo–Fabrizio fractional derivative modelling of
transitory MHD Brinkman nano�uid. Saqib et al. [10] ex-
amined the attractive resistive �ow of a generalized
Brinkman sort of nano�uid containing carbon nanotubes
with inclined warming.

In many circumstances, mathematical models of integer
order derivatives, including nonlinear models, do not
operate satisfactorily. Fractional calculus has numerous
applications in the domains of electromagnetics, visco-
elasticity, �uid mechanics, signal processing, and optics. It
has been used to demonstrate the physical and design shapes
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that can be found in a model to be best described by
fractional differential conditions. +e fractional derivative
models are utilized for exact modelling of those frameworks
that require exact modelling of damping. Boutiara et al. [11]
debated a lesson of Langevin conditions within the outline of
Caputo function-dependent kernel fractional derivatives
through antiperiodic edge situations. Ali et al. [12] intro-
duced controlled regulation retention of the common
convection flow of hybrid nanofluids with a consistent
relative Caputo-fractional derivative due to weight angle.
Imran et al. [13] studied the mass and heat transport of a
differentially sorted fluid with a noninteger time-fractional
Caputo derivative. Ahmad et al. [14] announced the nu-
merical modelling of (Cu-Al2O3) water-based Maxwell
hybrid nanofluids with Caputo–Fabrizio fractional deriva-
tive. Mirza and Vieru [15] considered fundamental ar-
rangements for an advection-diffusion condition with a
time-fractional Caputo–Fabrizio derivative. Gul et al. [16]
explored subjective investigations of certain Dirichlet
boundary value problems aimed at Caputo–Fabrizio frac-
tional differential conditions. Abdo et al. [17] offered a
definite Atangana–Baleanu–Caputo derivative with non-
linear pantograph fractional differential conditions. Sweilam
et al. [18] mathematically demonstrated that the Atanga-
na–Baleanu–Caputo fractional derivative is an ideal control
for cancer treatment. Sarwar et al. [19] investigated the
Prabhakar derivative for convection flow Casson fluid over
fluctuating plate based on the generalized Fourier law. Shah
et al. [20] studied the common convection flow of Prabhakar
fractional Maxwell fluid by generalized heat transportation.
Elnaqeeb et al. [21] analyzed the normal convection flow of
carbon nanotube Prabhakar-like fractional second-grade
nanofluids over an infinite plate with Newtonian heating.
Garrappa and Kaslik [22] considered the steadiness of
fractional-order frameworks with Prabhakar derivatives.

Choi was one of the first to show nanofluids containing
nanoparticles in 1995. Nanofluids can provide various
benefits, including thermal conductivity. For the most part,
these are intended for biomedical engineering, mechanical
design, and fluid mechanics by Choi and Eastman [23]. Ali
et al. [24] presented an investigation of a scientific frag-
mentary demonstration of hybrid viscous nanofluids and
their application in heat and mass transfer. Ahmad et al. [25]
verified expository arrangements for a complimentary
convection flow of Casson nanofluid over an infinite vertical
plate. Gul et al. [26] studied the hybrid nanofluid flow inside
the cone-shaped hole between the cone and the surface of a
spinning disk. Rafique et al. [27] defined the Casson
nanofluid flow over a slanted permeable inclined surface
with energy and mass transport. Khan et al. [28] discussed
the effects of interfacial electro kinetic MHD radiative
nanofluids flow on porous microchannels by thermopho-
resis and Brownian movement impacts. Ali Lund et al. [29]
conferred hybrid nanofluid on the nonlinear contracting
sheet with double branches of an MHD three-dimensional
pivoting stream. Shah et al. [30] debated the recreation of
entropy optimization and the warm behavior of nanofluids
through the permeable media. Kumar et al. [31] deliberated a
novel approach for the examination of warm exchange

development through ferromagnetic hybrid nanofluid via
considering sun-oriented radiation. Dadheech et al. [32]
discussed natural convection and an angled magnetic field
being used to compare the heat transfer of MoS2/C2H6O2
and SiO2-MoS2/C2H6O2 nanofluids. Dhif et al. [33] con-
ducted a deliberate thermal study of a hybrid nanofluids
solar collector and storage system. Khan et al. [34] examined
the squeezing flow of nanofluids using mixed convection. Bu
et al. [35] conducted a squeezing flow of nanofluids in a
rotating channel with mixed convection and thermal radi-
ation. By considering diverse physical flow conditions,
thermal transport in aluminum alloy nanomaterials based
on radiative nanofluids was investigated by Ullah Khan et al.
[36]. In a triangular enclosure with zigzags and an elliptic
obstacle, MHD flow of a hybrid nanofluid was introduced by
Chabani et al. [37]. According to Rajashekhar et al. [38], the
peristaltic flow of a Ree–Eyring liquid is affected by the
different qualities of hemodynamic flow, mass, and heat
transport. In a porous lid-driven hollow with a magnetic
field, the entropy formation and heat transmission of Cu–
water nanofluid were described by Marzougui et al. [39].

Bioconvection is defined as the wonder of macroscopic
convection motion of fluid caused by the thickness angle
established by the directional collective swimming of mi-
croorganisms. Plat proposed the concept of bioconvection in
1961. Bioconvection applications include biological polymer
manufacture, biotechnology, and bio-sensors, as well as the
testing and laboratory industries, among others [40, 41]. Ge-
Jile et al. [42] analyzed nanofluid with motile microor-
ganisms through the three-dimensional radiative bio-
convective stream of a Sisko. Ramzan et al. [43] present
bioconvection as a component in a three-dimensional di-
gression hyperbolic partially ionized magnetized nanofluid
stream with Cattaneo–Christov heat flux and activation
vitality. Alhussain et al. [44] analyzed the warm conductivity
and magneto-bioconvective augmentation in a nanofluid
stream holding gyrotactic microorganisms. Farooq et al. [45]
adjusted exponential space-based heat sources and Catta-
neo–Christov expressions with a thermally radioactive
bioconvection flow of Carreau nanofluid. Yousuf et al. [46]
discussed the magneto-bioconvection flow of Williamson
nanofluids through an inclined plate by entropy generation
and gyrotactic microorganisms. Saqib et al. [47] inspected a
Brinkman-type fluid (BTF) fractional model with hybrid
nanoparticles. Danish Ikram et al. [48] calculated the heat
transfer of viscous fluid with clay nanoparticles over an
exponentially moving upright plate. Asjad Imran et al. [49]
analyzed the thermophysical properties of clay nanofluids
using a hybrid fractional operator. Ikram et al. [50] discussed
the fractional model of Brinkman-type fluid (BTF) holding
hybrid nanoparticles in a bounded microchannel via a
constant proportional Caputo fractional operator.

Channel flow is used in a wide range of industrial ap-
plications, including heat exchangers in power plants and
chemical reactors in the pharmaceutical industry. Although
many actual processes with Newtonian behavior in both
phases can be termed two-phase flows, there are a huge
number of related applications where the continuous liquid
phase exhibits non-Newtonian flow properties. +ere are

2 Mathematical Problems in Engineering



several instances in the biochemical and biomedical in-
dustries, as well as in the food processing industry [51]. +e
impact of a vortex generator shape on liquids and the heat
transition of hybrid nanofluids in a channel were examined
by Zheng et al. [52]. On the scientific scale, D’Ippolito et al.
[53] investigated the resistance of open channel flow due to
vegetation. Haq et al. [54] demonstrated the fractional
viscous liquid influence of MHD channel flow across a
porous medium using the Caputo–Fabrizio time-fractional
derivative.

In the absence of fractional bioconvection, the analyses
above were conducted with or without fractional derivatives.
+e main objective, on the other hand, is to merge these two
interesting subjects, fractional derivatives, and bio-
convection. Recently, Asjad et al. [55] presented fractional
bioconvection properties for sticky fluid over an infinite
perpendicular plate with Caputo fractional derivative. In the
above-mentioned literature, there is not a single study on the
subject of fractional bioconvection between two parallel
plates with a Prabhakar fractional derivative. As a result, our
motivation is to use the Laplace transform approach to solve
the fluid flow and heat transfer problems of bioconvection.
Graphics are used to offer a graphical explanation of flow
parameters.

2. Mathematical Formulation

Consider an MHD convection flow happening within a
microchannel of a generalized, electrically conductive,

(Ag − TiO2 − H2O) hybrid nanoparticles situated in
xy-plane as shown in Figure 1.

+e assumptions are as follows:

(i) Microchannel is measured of length infinite by
width L

(ii) At t≤ 0, the temperature of system is T0

(iii) +e channel is along x − axis and normal to y − axis
(iv) Fluid flow occurs in the x-direction
(v) After t � 0+, the temperature and concentration

level of microorganism raised from T0 to Tw and
N∞ to Nw, respectively

(vi) Magnetics field of strength B0 is applied normal to
the plate

+e stream of electrically conductive (Ag − TiO2− H2O)

hybrid nanofluids endures electromotive drive, which yields
current. +e initiated attractive fields are disregarded since
there is speculation about really small Reynolds numbers.
+e electromagnetic force activates the electric flux con-
centration [56]. +e relation of thermophysical properties of
nano and hybrid nanofluids is defined in Tables 1 and 2,
respectively.

+e governing equations of momentum and enegry are
as follows [47]:

zu(y, t)

zt
+ βb∗u(y, t) ρhnf � μhnf

z
2
u(y, t)

zy
2 − σhnfB

2
0u(y, t) + g ρβT( hnf T − T0(  − c ρm − ρ(  N − N0(  . (1)

+e energy equation is as follows:

ρCp 
hnf

zT(y, t)

zt
� −

zq(y, t)

zy
. (2)

+e generalized Fourier’s law for thermal flux is as
follows:

q(y, t) � − k
C
hnfD

c

α,β,a

zT(y, t)

zy
. (3)

+e diffusion balance equation is as follows:

zN(y, t)

zt
� −

z L(y, t)

zy
. (4)

+e generalized Fick’s law for diffusion equation is as
follows:

L � − D
C
hnfD

c

α,β,a

z N(y, t)

zy
, (5)

where cD
c

α,β,a denotes the Prabhakar fractional derivative
and is defined as [57, 58].

For (1)–(5), we consider the following initial and
boundary conditions:

u(y, 0) � 0,

T(y, 0) � T0,

N(y, 0) � N0,

0≤y≤L,

(6)

u(y, t) � 0,

T(0, t) � T0,

N(0, t) � N0,

t> 0,

(7)

u(L, t) � 0,

T(L, t) � Tw,

N(L, t) � Nw,

t> 0.

(8)
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u (y, t) = 0,
T (0, t) = T0,
N (0, t) = N0

u (L, t) = 0,
T (L, t) = Tw,
N (L, t) = Nw

y = 0 y = L

t > 0
g

L

x

y

Figure 1: Geometry of the problem.

Table 2: +ermophysical possessions of nanoparticles and base fluid [50].

Material Base fluid water (H2O)
Nanoparticles silver

(Ag)

Nanoparticles
titanium dioxide

(TiO2)
ρ 997.1 10500 425
Cp 4179 235 6862
k 0.613 429 8.9538
βT × 10− 5 21 1.89 0.9
σ 0.05 3.6 × 107 1 × 10− 12

Pr 6.2 — —

Table 1: +e thermophysical properties of hybrid nanofluid and nanofluid under consideration are given in [50].

Nanofluid Hybrid nanofluid
ρnf � (1 − ϕ)ρf + ϕρs ρhnf � (1 − ϕhnf)ρf + ϕTiO2

ρTiO2
+ ϕAgρAg

μnf � μf/(1 − ϕ)5/2 μhnf � μf/[1 − (ϕAg + ϕTiO2
)]5/2

(ρCp)nf � (1 − ϕ)(ρCp)f + ϕ(ρCp)s (ρCp)hnf � (1 − ϕhnf)(ρCp)f + ϕAg(ρcp)Ag + ϕTiO2
(ρCp)TiO2

(ρBT)nf � (1 − ϕ)(ρBT)f + ϕ(ρBT)s (ρBT)hnf � (1 − ϕhnf)(ρBT)f + ϕAg(ρBT)Ag + ϕTiO2
(ρBT)TiO2

σnf/σf � 1 + 3(σs/σf − 1)ϕ/(σs/σf + 2) − (σs/σf − 1)ϕ σhnf/σf � 1 + 3(ϕAgσAg + ϕTiO2
σTiO2

/σf − ϕhnf)/
(ϕAgσAg + ϕTiO2

σTiO2
/ϕhnfσf + 2) − (ϕAgσAg + ϕTiO2

σTiO2
/σf − ϕhnf)

Knf/Kf � ks + 2kf − 2ϕ(ks − kf)/ks + 2kf + ϕ(ks − kf)
Khnf/Kf � ϕAgkAg + ϕTiO2

kTiO2
/ϕhnf + 2kf + 2(ϕAgkAg + ϕTiO2

kTiO2
)

− 2ϕhnfKf/ϕAgkAg + ϕTiO2
kTiO2

/ϕhnf + 2kf + (ϕAgkAg + ϕTiO2
kTiO2

) − ϕhnfKf
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By introducing dimensionless variables,

τ �
]
L
2 t,

Y �
y

L
,

θ �
T − T0

Tw − T0
,

N
∗

�
N − N0

Nw − N0
,

q
∗

�
q

qo

,

L
∗

�
L

L0
,

q0 �
khnf Tw − T0( u0

vhnf

,

L0 �
Dhnf Nw − N0( u0

]hnf

.

(9)

+e dimensionless fundamental equations are obtained
by substituting from (9) into (1)–(8) and ignoring the star
documentation.

Momentum and bioconvection equations in dimen-
sionless form are as follows:

A
•
o

zV(Y, τ)

zτ
+ β•

bV(Y, τ) � A
•
1
z
2
V(Y, τ)

zY
2 − A

•
2MV(Y, τ)

+ Gr A
•
3θ(Y, τ) − RaN(Y, τ) .

(10)

Dimensionless form of energy equation is as follows:

B0
zθ(Y, τ)

zτ
� −

zq(Y, τ)

zY
. (11)

In dimensionless form, the generalized Fourier’s law for
thermal flux [57, 58] is as follows:

q(Y, τ) � −
C

D
c

α,β,a

zθ(y, τ)

zY
. (12)

Dimensionless diffusion balance equation is as follows:

Lb
zN(Y, τ)

zτ
� −

zL(Y, τ)

zY
. (13)

Dimensionless form of Fick’s law [57, 58] is as follows:

L(Y, τ) � −
C

D
c

α,β,a

zN(Y, τ)

zy
. (14)

Constraints are associated with

V(Y, 0) � 0, θ(Y, 0) � 0, N(Y, 0) � 0, Y≥ 0, (15)

V(0, τ) � 0, θ(0, τ) � 0, N(0, τ) � 0, τ > 0, (16)

V(1, τ) � 0, θ(1, τ) � 1, N(1, τ) � 1, τ > 0. (17)

Variables are as follows:

β•
b �

L
2βb∗ρf

μf

,

M �
L
2σfB

2
0

μf

,

Gr �
L
3
g BT( f Tw − T0( 

]2f
,

Pr �
μCp 

f

kf

,

Lb �
]f

Dhnf

,

Ra �
c ρm − ρ(  Nw − N0( 

ρf BT( f Tw − T0( 
,

λhnf �
khnf

kf

,

A
•
0 � 1 − ϕhnf +

ϕAgρAg + ϕTio2
ρTio2

ρf

,

A
•
2 �

σhnf

σf

,

A
•
1 �

1

1 − ϕAg + ϕTio2
  

2.5,

A
•
3 � 1 − ϕhnf +

ϕAg ρBT( Ag + ϕTio2
ρBT( Tio2

ρBT( f

,

B0 �
PrA∗4
λhnf

,

A
•
4 � 1 − ϕhnf +

ϕAg ρCp 
Ag

+ ϕTio2
ρCp 

Tio2

ρCp 
f

,

B1 �
A
∗
0

A
∗
1
,

B5 �
B3

B2
,

B2 �
A
∗
2M + A

∗
oβb

A
∗
1

,

B3 �
A
∗
3Gr

A
∗
1

,

B4 �
GrRa

A
∗
1

,

B6 �
B4

B2
.

(18)
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In the above equations, β∗b is the Brinkman parameter,
M is the dimensionless magnetic field parameter, Pr is di-
mensionless Prandtl number, Gr is dimensionless Grashof
number, and Ra is dimensionless bioconvection Rayleigh
number, respectively.

3. Solution of the Problem

3.1. Solution of Temperature Field. We deliberate β ∈ [0, 1)
along these lines, and in the above formularies, the boundary
m remains equivalent near zero. By utilizing the Laplace
change strategy and applying it to equations (11) and (12)
through requirements (16) and (17), and using the fractional
derivative of Prabhakar, we acquire changed issue for
temperature field:

sB0 θ(Y, s) � −
zq(Y, s)

zY
, (19)

q(Y, s) � − s
β 1 − as

− α
( 

czθ(Y, s)

zY
. (20)

Using (19) and (20), we have

z
2θ(Y, s)

zY
2 −

B0s θ(Y, s)

s
β 1 − as

− α
( 

c
� 0. (21)

Subject to the constraints,

θ(1, s) �
1
s
, θ(0, s) � 0, τ > 0. (22)

+e general solution of equation (21) with equation (22)
is as follows:

θ(Y, s) �
1
s

1

e
−

����������
B0s/sβ 1− as− α( )c

√

− e

����������
B0s/sβ 1− as− α( )c

√

 /2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

·
e

− Y
����������
B0s/sβ 1− as− α( )c

√

− e
Y

����������
B0s/sβ 1− as− α( )c

√

2
⎛⎝ ⎞⎠.

(23)

Or,

θ(Y, s) �
1
s

sinh Y

���������������

B0s/s
β 1 − as

− α
( 

c


sinh
��������������

B0s/s
β 1 − as

− α
( 

c


⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦. (24)

It is important that equation (24) can be written in the
equivalent form

θ(Y, s) �
1
s



∞

n�0

⎡⎣e
− (2n+1− Y)

����������
B0s/sβ 1− as− α( )c

√

− e
− (2n+1+Y)

����������
B0s/sβ 1− as− α( )c

√
⎤⎦.

(25)

Moreover, equation (25) can also be expressed as a series
approach, allowing us to rationally determine the inverse
Laplace transform.

θ(Y, s) �
1
s

+ 
∞

n�0


∞

m�1


∞

k�0

(Y − 2n − 1)
m

(a)
k

B0( 
m/2Γ(cm/2 + k)

m!k!Γ(cm/2)

1
s
αk− m/2+βm/2+1

⎡⎣ ⎤⎦

− 
∞

p�0


∞

n�0


∞

l�0

(− 2n − 1 − Y)
l
(a)

p
B0( 

l/2Γ(cl/2 + p)

l!p!Γ(cl/2)

1
s
αp+βl/2− l/2+1

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(26)

Taking inverse Laplace transform on equation (26), we
get

θ(Y, τ) � 1 + 
∞

n�0


∞

m�1


∞

k�0

(Y − 2n − 1)
m

(a)
k

B0( 
m/2Γ(cm/2 + k)

m!k!Γ(cm/2)

ταk+βm/2− m/2

Γ(αk + βm/2 − m/2 + 1)

− 
∞

n�0


∞

l�0


∞

p�0

(− 2n − 1 − Y)
l

B0( 
l/2

(a)
pΓ(cl/2 + p)

l!p!Γ(cl/2)

ταp− l/2+βl/2

Γ(αp + βl/2 − l/2 + 1)
.

(27)

3.2. Solution of Bioconvection Field. By utilizing the Laplace
change approach and applying it to equations (13) and (14)
with requirements (16) and (17) and utilizing the Prabhakar
derivative, we acquire the changed issue for the bio-
convection field.

Lbs N(Y, s) � −
zL(Y, s)

zY
, (28)

L(Y, s) � − s
β 1 − as

− α
( 

c zN(Y, s)

zY
. (29)
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Using equations (28) and (29), we have

z
2
N(Y, s)

zY
2 −

sLb

s
β 1 − as

− α
( 

c
N(Y, s) � 0. (30)

Subject to the constraints,

N(1, s) �
1
s
, N(0, s) � 0. (31)

+e general solution of equation (30) with equation (31)
is as follows:

N(Y, s) �
1
s

1

e
−
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sLb/sβ 1− as− α( )c

√

− e

����������
sLb/sβ 1− as− α( )c

√

 /2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

·
e

− Y
����������
sLb/sβ 1− as− α( )c

√

− e
Y

����������
sLb/sβ 1− as− α( )c

√

2
⎛⎝ ⎞⎠.

(32)

Or,

N(Y, s) �
1
s

sinh Y

���������������

sLb/sβ 1 − as
− α

( 
c



sinh
���������������

sLb/sβ 1 − as
− α

( 
c


⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦. (33)

It is important that equation (33) can be composed
within the comparable form

N(Y, s) �
1
s



∞

d�0
e

− (2d+1− Y)
����������
sLb/sβ 1− as− α( )c

√

− e
− (2d+1+Y)

����������
sLb/sβ 1− as− α( )c

√

 . (34)

Moreover, equation (34) can be communicated in an
arrangement shape so that we are able to discover the
Laplace inverse transform logically.

N(Y, s) �
1
s

+ 

∞

d�0


∞

s1�1


∞

s2�0

(− 2d − 1 + Y)
s1 (a)

s2 (Lb)
s1/2 Γ cs1/2 + s2( 

s1!s2!Γ cs1/2( 

1
s
αs2+βs1/2− s1/2+1

⎡⎢⎢⎣ ⎤⎥⎥⎦

− 
∞

d�0


∞

p1�0


∞

p2�0

(− 2d − 1 − Y)
p1 (a)

p2 (Lb)
p1/2 Γ cp1/2 + p2( 

p1!p2!Γ cp1/2( 

1
s
αp2+βp1/2− p1/2+1

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(35)

Taking inverse Laplace transform on equation (35), we
get

N(Y, τ) � 1 + 
∞

d�0


∞

s1�1


∞

s2�0

(− 2d − 1 + Y)
s1 (a)

s2 (Lb)
s1/2 Γ cs1/2 + s2( 

s1!s2!Γ cs1/2( 

ταs2+βs1/2− s1/2

Γ αs2 + βs1/2 − s1/2 + 1( 

− 
∞

d�0


∞

p1�0


∞

p2�0

(− 2d − 1 − Y)
p1 (a)

p2 (Lb)
p1/2 Γ cp1/2 + p2( 

p1!p2!Γ cp1/2( 

ταp2+βp1/2− p1/2

Γ αp2 + βp1/2 − p1/2 + 1( 
.

(36)

3.3. Solution of Velocity Field. +e Laplace transform is used
in equation (10) using expressions from (15)–(17), and we
attain

z
2

zY
2 − B1s − B2 V(Y, s) � − B3θ(Y, s) + B4N(Y, s), (37)

which satisfies the following constraints:

V(1, s) � 0, V(0, s) � 0. (38)

+e solution of equation (37) subject to constraints (38),
we have
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V(Y, s) � −
B5

s


∞

n�0

e
− (2n)

����������
B0s/sβ 1− as− α( )c

√

− e
− (2n+2)

����������
B0s/sβ 1− as− α( )c

√

1 + B1s/B2 − B0s/B2s
β 1 − as

− α
( 

c
  

⎡⎢⎢⎣ ⎤⎥⎥⎦ × 
∞

m�0
e

− (2m+1− Y)
�����
B2+B1s

√
− 
∞

m�0
e

− (2m+1+Y)
�����
B2+B1s

√
⎡⎣ ⎤⎦

+
B6

s


∞

d�0

e
− (2d)

����������
sLb/sβ 1− as− α( )c

√

− e
− (2d+2)

����������
sLb/sβ 1− as− α( )c

√

1 + B1s/B2 − sLb/B2s
β 1 − as

− α
( 

c
  

⎡⎢⎢⎣ ⎤⎥⎥⎦ × 
∞

m�0
e

− (2m+1− Y)
�����
B2+B1s

√
− 
∞

m�0
e

− (2m+1+Y)
�����
B2+B1s

√
⎡⎣ ⎤⎦

+
B5

s


∞

n�0

e
− (2n+1− Y)

����������
B0s/sβ 1− as− α( )c

√

− e
− (2n+1+Y)

����������
B0s/sβ 1− as− α( )c

√

1 + B1s/B2 − B0s/B2s
β 1 − as

− α
( 

c
  

⎡⎢⎢⎣ ⎤⎥⎥⎦

−
B6

s


∞

d�0

e
− (2d+1− Y)

����������
sLb/sβ 1− as− α( )c

√

− e
− (2d+1+Y)

����������
sLb/sβ 1− as− α( )c

√

1 + B1s/B2 − sLb/B2s
β 1 − as

− α
( 

c
  

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(39)

Equation (39) can be written in component form as
follows:

V(Y, s) � V1(Y, s) + V2(Y, s) + V3(Y, s) + V4(Y, s) + V5(Y, s) + V6(Y, s) + V7(Y, s) + V8(Y, s) + V9(Y, s)

+ V10(Y, s) + V11(Y, s) + V12(Y, s).
(40)

It is challenging to find the inverse Laplace transform of
equation (40), so we can rewrite it in a suitable series.

V(Y, τ) � V1(Y, τ) + V2(Y, τ) + V3(Y, τ) + V4(Y, τ) + V5(Y, τ) + V6(Y, τ) + V7(Y, τ) + V8(Y, τ) + V9(Y, τ)

+ V10(Y, τ) + V11(Y, τ) + V12(Y, τ).
(41)

Next, taking the inverse Laplace of equation (41),
component wise, we have

V1(Y, τ) � − B5 

∞

n�0


∞

m�0


∞

δ2�0


∞

δ1�0


∞

w2�0


∞

w1�0


∞

z1�0


∞

z2�0


∞

z3�0

(Y − 2m − 1)
w1 − B1( 

z1 B0( 
δ1/2

δ1!δ2!w1!w2!z2!z3! B1( 
z2− w2 B2( 

w2+z1− w1/2

×
(− 2n)

δ1 − B0( 
z2(a)

δ2+z3ταδ2+βδ1/2− δ1/2− w2+αz3+βz2− z1

Γ αδ2 + βδ1/2 − δ1/2 − w2 + αz3 + βz2 − z1 + 1( 

Γ cδ1/2 + δ2( Γ w1/2 + 1( Γ z1 + 1( Γ cz2 + z3( 

Γ cδ1/2( Γ w1/2 + 1 − w2( Γ z1 + 1 − z2( Γ cz2( 
,

V2(Y, τ) � B5 

∞

n�0


∞

m�0


∞

δ1�0


∞

δ2�0


∞

q1�0


∞

q2�0


∞

z1�0


∞

z2�0


∞

z3�0

(− (Y + 2m + 1))
q1 − B1( 

z1 B0( 
δ1/2

δ1!δ2!q1!q2!z2!z3! B1( 
z2− q2 B2( 

q2+z1− q1/2

×
(− 2n)

δ1 − B0( 
z2(a)

δ2+z3ταδ2+βδ1/2− δ1/2− q2+αz3+βz2− z1

Γ αδ2 + βδ1/2 − δ1/2 − q2 + αz3 + βz2 − z1 + 1( 

Γ cδ1/2 + δ2( Γ q1/2 + 1( Γ z1 + 1( Γ cz2 + z3( 

Γ cδ1/2( Γ q1/2 + 1 − q2( Γ z1 + 1 − z2( Γ cz2( 
,

V3(Y, τ) � B5 

∞

n�0


∞

m�0


∞

j1�0


∞

j2�0


∞

w1�0


∞

w2�0


∞

z1�0


∞

z2�0


∞

z3�0

(Y − 2m − 1)
w1 − B1( 

z1(Pr)j1/2

j1!j2!w1!w2!z2!z3! B1( 
z2− w2 B2( 

w2+z1− w1/2

×
(− 2n − 2)

j1 − B0( 
z2(a)

j2+z3ταj2+βj1/2− j1/2− w2+αz3+βz2− z1

Γ αj2 + βj1/2 − j1/2 − w2 + αz3 + βz2 − z1 + 1( 

Γ cj1/2 + j2( Γ w1/2 + 1( Γ z1 + 1( Γ cz2 + z3( 

Γ cj1/2( Γ w1/2 + 1 − w2( Γ z1 + 1 − z2( Γ cz2( 
,
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V4(Y, τ) � − B5 

∞

n�0


∞

m�0


∞

j1�0


∞

j2�0


∞

q1�0


∞

q2�0


∞

z1�0


∞

z2�0


∞

z3�0

(− (Y + 2m + 1))
q1 − B1( 

z1 B0( 
j1/2

j1!j2!q1!q2!z2!z3! B1( 
z2− q2 B2( 

q2+z1− q1/2

×
(− 2n − 2)

j1 − B0( 
z2(a)

j2+z3ταj2+βj1/2− j1/2− q2+αz3+βz2− z1

Γ αj2 + βj1/2 − j1/2 − q2 + αz3 + βz2 − z1 + 1( 

Γ cj1/2 + j2( Γ q1/2 + 1( Γ z1 + 1( Γ cz2 + z3( 

Γ cj1/2( Γ q1/2 + 1 − q2( Γ z1 + 1 − z2( Γ cz2( 
,

V5(Y, τ) � B6 

∞

d�0


∞

m�0


∞

n1�0


∞

n2�0


∞

w1�0


∞

w2�0


∞

h1�0


∞

h2�0


∞

h3�0

(Y − 2m − 1)
w1 − B1( 

h1(Lb)
n1/2

n1!n2!w1!w2!h2!h3! B1( 
h2− w2 B2( 

w2+h1− w1/2

×
(− 2d)

n1(− Lb)
h2(a)

n2+h3ταn2+βn1/2− n1/2− w2+αh3+βh2− h1

Γ αn2 + βn1/2 − n1/2 − w2 + αh3 + βh2 − h1 + 1( 

Γ cn1/2 + n2( Γ w1/2 + 1( Γ h1 + 1( Γ ch2 + h3( 

Γ cn1/2( Γ w1/2 + 1 − w2( Γ h1 + 1 − h2( Γ ch2( 
,

V6(Y, τ) � − B6 

∞

d�0


∞

m�0


∞

n1�0


∞

n2�0


∞

q1�0


∞

q2�0


∞

h1�0


∞

h2�0


∞

h3�0

(− (Y + 2m + 1))
q1 − B1( 

h1(Lb)
n1/2

n1!n2!q1!q2!h2!h3! B1( 
h2− q2 B2( 

q2+h1− q1/2

×
(− 2d)

n1(− Lb)
h2(a)

n2+h3ταn2+βn1/2− n1/2− q2+αh3+βh2− h

Γ αn2 + βn1/2 − n1/2 − q2 + αh3 + βh2 − h1 + 1( 

Γ cn1/2 + n2( Γ q1/2 + 1( Γ z1 + 1( Γ ch2 + h3( 

Γ cn1/2( Γ q1/2 + 1 − q2( Γ h1 + 1 − h2( Γ cz2( 
,

V7(Y, τ) � − B6 

∞

d�0


∞

m�0


∞

m1�0


∞

m2�0


∞

w1�0


∞

w2�0


∞

h1�0


∞

h2�0


∞

h3�0

(Y − 2m − 1)
w1 − B1( 

h1(Lb)
m1/2

m1!m2!w1!w2!h2!h3! B1( 
h2− w2 B2( 

w2+h1− w1/2

×
(− 2d − 2)

m1 − B0( 
h2(a)

m2+h3ταm2+βm1/2− m1/2− w2+αh3+βh2− h1

αm2 + βm1/2 − m1/2 − w2 + αh3 + βh2 − h1 + 1( 

Γ cm1/2 + m2( Γ w1/2 + 1( Γ h1 + 1( Γ ch2 + h3( 

Γ cm1/2( Γ w1/2 + 1 − w2( Γ h1 + 1 − h2( Γ ch2( 
,

V8(Y, τ) � B6 

∞

d�0


∞

m�0


∞

m1�0


∞

m2�0


∞

q1�0


∞

q2�0


∞

h1�0


∞

h2�0


∞

h3�0

(− (Y + 2m + 1))
q1 − B1( 

h1(Lb)
m1/2

m1!m2!q1!q2!h2!h3! B1( 
h2− q2 B2( 

q2+h1− q1/2

×
(− 2d − 2)

m1(− Lb)
h2(a)

m2+h3ταm2+βm1/2− m1/2− q2+αh3+βh2− h1

Γ αm2 + βm1/2 − m1/2 − q2 + αh3 + βh2 − h1 + 1( 

Γ cm1/2 + m2( Γ q1/2 + 1( Γ h1 + 1( Γ ch2 + h3( 

Γ cm1/2( Γ q1/2 + 1 − q2( Γ h1 + 1 − h2( Γ ch2( 
,

V9(Y, τ) � B5 

∞

n�0


∞

t1�0


∞

t2�0


∞

z1�0


∞

z2�0


∞

z3�0

(Y − 2n − 1)
t1 − B1( 

z1 B0( 
t1/2

t1!t2!z2!z3! B1( 
z2 B2( 

z1

×
− B0( 

z2(a)
t2+z3ταt2+βt1/2− t1/2+αz3+βz2− z1

Γ αt2 + βt1/2 − t1/2 + αz3 + βz2 − z1 + 1( 

Γ ct1/2 + t2( Γ z1 + 1( Γ cz2 + z3( 

Γ ct1/2( Γ z1 + 1 − z2( Γ cz2( 
,

V10(Y, τ) � − B5 

∞

n�0


∞

v1�0


∞

v2�0


∞

z1�0


∞

z2�0


∞

z3�0

(− (Y + 2n + 1))
v1 − B1( 

z1 B0( 
v1/2

v1!v2!z2!z3! B1( 
z2 B2( 

z1

×
− B0( 

z2(a)
v2+z3ταv2+βv1/2− v1/2+αz3+βz2− z1

Γ αv2 + βv1/2 − v1/2 + αz3 + βz2 − z1 + 1( 

Γ cv1/2 + v2( Γ z1 + 1( Γ cz2 + z3( 

Γ cv1/2( Γ z1 + 1 − z2( Γ cz2( 
,

V11(Y, τ) � − B6 

∞

d�0


∞

l1�0


∞

l2�0


∞

h1�0


∞

h2�0


∞

h3�0

(Y − 2d − 1)
l1 − B1( 

h1(Lb)
l1/2

l1!l2!h2!h3! B1( 
h2 B2( 

h1

×
(− Lb)

h2(a)
l2+h3ταl2+βl1/2− l1/2+αh3+βh2− h1

Γ αl2 + βl1/2 − l1/2 + αh3 + βh2 − h1 + 1( 

Γ cl1/2 + l2( Γ h1 + 1( Γ ch2 + h3( 

Γ cl1/2( Γ h1 + 1 − h2( Γ ch2( 
,

V12(Y, τ) � B6 

∞

d�0


∞

k1�0


∞

k2�0


∞

h1�0


∞

h2�0


∞

h3�0

(− (Y + 2d + 1))
k1 − B1( 

h1(Lb)
k1/2

k1!k2!h2!h3! B1( 
h2 B2( 

h1

×
(− Lb)

h2(a)
k2+h3ταk2+βk1/2− k1/2+αh3+βh2− h1

Γ αk2 + βk1/2 − k1/2 + αh3 + βh2 − h1 + 1( 

Γ ck1/2 + k2( Γ h1 + 1( Γ ch2 + h3( 

Γ ck1/2( Γ h1 + 1 − h2( Γ ch2( 
.

(42)
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4. Graphical Results and Discussion

Bioconvection has been studied using an MHD effect and
thermal transfer model with a Prabhakar fractional ap-
proach. Laplace transform procedures are used to provide
exact solutions for dimensionless governing equations.
Graphical illustrations have been used to explain some of the
physical effects of flow parameters.

Figures 2–4 are projected to show the impact of the
fractional parameters α, β, c on bioconvection, temperature,
and velocity fields. For a large time, bioconvection, tem-
perature, and velocity decreased by increasing values of α, β,
c. +is is due to the boundary layer becoming wider;

therefore, bioconvection, temperature, and velocity de-
crease. Usually, we can say that in fluid dynamics, a frac-
tional approach is better for controlling the boundary layer
thickness of the fluid properties.

Figure 5 shows the comparison between several base
fluids (water, engine oil, and kerosene oil) on the temper-
ature field. It is clearly noticed that the temperature of water
is higher than all other Newtonian liquids, such as kerosene
and engine oil. Meanwhile, viscosity and Prandtl numbers
are very low for water compared to the other two, so water
heats up faster than them physically.
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Figure 3: +e effects of fractional parameters on temperature field
for large time, when t � 3,Pr � 6.2, and a � 0.2.
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Figure 2: +e effects of fractional parameters on bioconvection
field, when t � 3, Lb � 3, and a � 0.2.
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Figure 4: +e effects of fractional parameters on velocity field for
large time, when. t � 2, Pr � 6.2, Gr � 12, a � 0.2,
Lb � 30, M � 0.01, β∗ � 0.006,ϕhnf � 0.04, andRa � 4.
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Figure 5: +e comparison between different base fluids (water,
kerosene oil, and engine oil) on temperature field for small time,
when t � 3, α � β � c � 0.5, and a � 0.2.
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To see the impact of bioconvection Rayleigh number Ra
on velocity, Figure 6 is plotted. It is proved that velocity near
the plate decreases for greater values of Ra. Ra decreases the
fluid velocity since the buoyancy influenced by the trans-
ference of microorganisms is decreased by Ra. +e conse-
quences of the Brinkman parameter on the velocity field will
be shown in Figure 7. Velocity decreased as the Brinkman
parameter’s value increased. +is is because, by increasing
the values of the Brinkman parameter, the drag forces be-
come stronger, so velocity reduces.

Figures 8 and 9 show the effects of the ϕhnf volume
fraction on hybrid nanoparticles. It is discovered that for
higher values of ϕhnf and velocity indicated drops, the

temperature can be increased. +e nanofluid density has
important significance in the velocity field. By mixing
nanoparticles through base fluid, the consequent hybrid
nanofluids improve considerably thicker which decreases
velocity and increases temperature.

In the end, we have presented a comparison between
our results and those of Saqib et al. [47]. It is clearly
evident that the solution obtained with generalized
Mittage–Leffler kernel in the presence of bioconvection
shows stronger memory rather than exponential kernel
that appeared in Caputo-Fabrizio fractional derivative as
presented in Figure 10. It is concluded with the remark
that our results can be enhanced in terms of memory.
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Figure 6: +e effects of Rayleigh number on velocity field, when.
Pr � 6.2, t � 5, α � 0.5, β � 0.5, c � 0.5, Lb � 5,Gr � 5, β∗ � 0.006,

ϕhnf � 0.04, a � 0.2, andM � 0.2.
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Figure 7: +e effects of Brinkman parameter on velocity field,
when Pr � 6.2, t � 5, α � β � c � 0.5, Lb � 30, Gr � 12, a � 0.2,

Ra � 4, ϕhnf � 0.08, andM � 0.01.
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Figure 8: +e effects of ϕhnf on temperature field, when
Pr � 6.2, t � 3, α � β � c � 0.5, and a � 0.2.
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Figure 9: +e effects of ϕhnf on velocity field, when.
Pr � 6.2,t � 4, α � β � c � 0.5, Lb � 30, a � 0.2,
Gr � 15, Ra � 4, andM � 2.0.
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5. Conclusions

+e current study investigated bioconvection using a heat
transfer and MHD effects model, as well as a Prabhakar
fractional approach. Laplace transform techniques are used
to provide exact solutions for dimensionless governing
equations. Graphical illustrations have been used to explain
some of the physical effects of flow parameters. +e fol-
lowings are the significant outcomes:

(i) Obtained solutions are predicted for different values
of fractional parameters based on generalized
Fourier’s law are responsible to attain better
memory instead of artificial replacement

(ii) For a large time, fluid properties such as temper-
ature, bioconvection, and velocity depict history/
memory.

(iii) +e temperature of water base nanoparticles is
comparatively higher than kerosene and engine oil.

(iv) Bioconvection Rayleigh is responsible for the rapid
decline in the momentum equation.

(v) +e obtained solutions can be beneficial for proper
analysis of real data and provide a tool for testing
possible approximate solutions where needed.

For the future direction of readers, this work can be
extended to include a large class of fluids of non-Newtonian
nature and different thermal and mechanical boundary
conditions. Also, you can extend this work with the fuzzy
boundary conditions.
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