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�e traditional �lling method for network big data matrix has poor �lling e�ect and su�ers from noise. �erefore, a �lling
algorithm for network big data high rank matrix based on density peak clustering is proposed. �e missing data are replaced by
small-interval data, the information entropy of the high rank matrix of network big data is calculated, the density peak clustering
algorithm is optimized through the cluster center selection strategy, the block data set is obtained through the unknown block
method, and the block �lling is realized by the host �lling algorithm. Experimental results show that the �lling accuracy of the
proposed algorithm is as high as 0.895, and the loss rate is between 2% and 12%.

1. Introduction

Matrix �lling is one of research hotspots in the �elds ofmatrix
analysis, optimization, image processing, means �lling the
missing elements accurately through known elements in the
case of missing elements in the sampling matrix, and �nally
completing the sampling matrix [1]. In practice, the sampling
matrix sometimes has special structures, such as symmetric
matrix and Toeplitz matrix, which play an important role in
communication engineering and power system, especially in
the �eld of signal and image processing [2–4].

�ere are two kinds of methods to deal with the problem
of matrix rank minimization: one is to relax the rank
function convex into the matrix kernel norm and establish
the optimization model of the kernel norm; the second is to
give the rank of the matrix in advance and establish a low-
rank decomposition model [5]. Many domestic experts and
scholars have also carried out a lot of researches on matrix
�lling and applied the research results to the �elds of image
processing, text analysis, and recommendation system [6].

In the aspect of image restoration, the large singular
values in the data matrix retain more characteristics of the
original data, while the small singular values contain more
noise. Matrix �lling technology has been widely used in data
analysis, recommendation system, image �lling, video
denoising, and machine learning [7, 8].

�e researches on big data require the involvement of a
huge amount of information, which is usually collected and
stored in daily life, but the process is carried out without
supervision. Once external interference occurs, it will in-
evitably produce some missing data [9]. �e collected data
usually contain important information, and if it cannot be
processed in time or improperly, there will be a serious
impact on the real-time and e�ectiveness of the data, and
even some wrong data information may appear, leading to
users’ wrong decisions. In view of missing data, we need to
�ll in the data in time [10–15].

Relevant scholars have studied this problem and
achieved some results. Sun et al. [16] proposed the missing
data �lling algorithm based on the improved neural process
[16], expressed the observed time series in a single way,
obtained their respective characterization vectors by the
neural network, obtained the distribution function of the
data through the neural process model, introduced the
correction coe�cient in the training stage, determined the
sampling rate of the training data more accurately according
to the data missing rate, and estimated the missing value of
the data through the trained model. �e results show that
this algorithm has good �lling e�ect in the context of small
data sets, but the �lling accuracy of missing data is poor. Lin
et al. [17] optimized K based on cuckoo algorithm—the
missing data �lling algorithm of means clustering [17]. By
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taking the training error of neural network as the fitness
function, the weight and threshold of neural network are
optimized, the weight of neural network through cuckoo
search algorithm is calculated, and K-means clustering al-
gorithm is adopted to realize the optimization of missing
data threshold and the filling of missing data. -is method
has high missing data filling efficiency, but the data loss rate
is unacceptable.

-is paper presents a high rank matrix filling algorithm
for network big data based on density peak clustering. -e
specific steps are as follows.

In the first step, density peak clustering is introduced, the
local density is calculated based on cutoff kernel function,
and the clustering center is obtained by comprehensively
considering the local density value and minimum distance
value of data points [18–22]; the second step is to classify the
nonclustering center points, identify the abnormal points,
replace the lost data with small-interval data, and calculate
the information entropy of the filling data; in the third step,
the distance measurement is obtained by the density peak
clustering algorithm to realize data segmentation, and the
complete sub-data set is obtained by the host filling method
to complete the high rank matrix filling algorithm of net-
work big data [23–28].

-e fourth step is to verify the effectiveness of the
proposed method and draw a conclusion.

2. High Rank Matrix Filling Algorithm for
Network Big Data

2.1. Big Data Information Entropy Calculation. Set the data
with missing correlation to W � (U, A), U represents the
object set, and A represents the attribute set. If ui ∈ U,
i � 1, 2, . . . |U|, attribute α ∈ A, that is, the interval data will
be missing data f(ui, α), which can be represented by “∗ .”

Compared with a missing data set, if the missing data are
replaced by the inter-cell, the information entropy of the
large data set will increase significantly [29–36].

On the big data set W, the attribute condition B ∈ A is
met, and b1, b2, . . . , bN ∈ B, Uk ∈ U. Assuming that the m

data bm is missing data, the data set Uk that has not been
filled is called the original data, and the information entropy
is calculated according to the formula as follows:
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where Pbl
uiuj represents the minimum multi-interval simi-

larity between ui and uj, and λl(k) represents the correlation
coefficient between the l index and the k index, both of which
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where f(·) represents the interval of missing data.
Let bkm∗ be a small-interval data, replace the lost data bkm

in the big data set with bkm∗, and at the same time, fill the Uk

data set in the original big data.
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where S represents the lower limit of the interval and X

represents the upper limit of the interval.
-e newly obtained large data set can be expressed

according to
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-e information entropy of the newly obtained data set
can be calculated by
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bkm indicates that the missing data in the large data set are
small-interval data, so 

|U∗|
i�1 Pbl

uiuj is almost equal to zero, and
Pbl

uiuj � 1. -at is, HN
λ (A∗) is

H
N
λ A
∗

(  � lg U
∗
 −

1
U
∗




N

l�1
λl(k)⎡⎣ (6)

-e m data dhm in the original data Uk is missing data,
and the length can be regarded as zero, while the original big
data are λm(k)P

bkm

ujuk � 0. It can be confirmed that the big data
information entropy and the original data information
entropy after filling Uk meet the following relationship:
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By using relatively small-interval data to replace missing
data and continuously expanding the interval range, the
information entropy in certain ranges will continue to de-
crease [37–40]. -e similarity relationship of the above-
mentioned use interval expands the range of the interval.-e
greater the position relative to the newly filled data interval,
the greater the possibility that the object will be classified
into other object data sets [41, 42]. When the filling range of
the data interval is too large, the data classification is ab-
normal, resulting in data confusion. When the newly filled
interval range increases from the minimum to the maxi-
mum, there will be at least one entropy representing the
minimum [43–47].

2.2. Determination of Density Peak Clustering Center.
According to the calculated information entropy of filling
big data δi and ρi, the relationship between them is analyzed
and the basis is put forward. -e density peak clustering
algorithm is optimized by using the clustering center se-
lection strategy [48, 49]. According to the principle of cluster
center selection, the difference degree of cluster points is
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measured by using normalized product of adjacent distance
δi and density ρi. According to the statistical characteristics
and change trend of the difference degree, the largest group
of points is selected as the cluster center. After obtaining the
cluster center, the network big data are divided into different
clusters according to the adjacent distance label so as to
realize clustering [50–52].

In order to quantify the degree to which a data point of
network big data is offset from the origin δ and ρ after
normalization, the cluster center weight is introduced
according to the positive proportional relationship:

ωi � δiρi. (8)

In order to obtain the data point set with the largest
deviation, the cluster center weights are arranged in the order
from large to small. -e first N points are taken, and N is
usually set to 30. Take the point with the greatest deviation
from the origin as the inflection point of the overall down-
ward trend of the cluster center weight from acute to slow.

-e downward trend of the weight of the survey center is
described by the slope of the two-point line segment:

k
N
i �

δi+N − δi

N
. (9)

In equation (9), kN
i denotes the average change rate of

cluster center weight within [i, i + N] range, which reflects
overall change trend of a certain range ψ.-en, the inflection
point can be described as
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k
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i

k
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  . (10)

In equation (10), ki−1
1 represents the slope from the first

point to the i th point, which is the average change rate of
point set 1, 2, . . . , i{ }; kl

i is used to describe the slope from the
i th point to the i + 1 st point.

Based on the above analysis, the cluster center selection
process is given:

(1) Calculate the difference degree of each network data
point ψ.

(2) -e cluster center weights are arranged in order from
large to small.

(3) Calculate kl
i and ki−1

1 as well as the maximum value of
k1

i /ki−1
1 , and determine the inflection point i � v.

(4) Take the network data point 1, 2, . . . , v{ } before the
inflection point as the cluster center point.

2.3. Unknown Block Calculation Method. Based on the un-
derstanding of the data set, the correlation missing data can
be divided into two types: block known and block unknown.
For knownmissing data, it can be directly divided into blocks
by known information. In this case, there will be fewer
variables, and the meaning of the variables is clear. In this
paper, several data sets are used for experimental verification.

In actual operation, most of the missing data sets are
unknown blocks, especially in cloud computing with
missing big data, whichmakes it difficult to distinguish block

information. In the case that the block is unknown, this
paper adopts the density peak clustering algorithm and uses
the method of improving the distance measurement to
achieve the block of missing data.

-e density peak clustering algorithm does not need to
specify the number of categories in advance. -e calculation
method in the data set is as follows:

Input: the number of clusters is A, and the data set is K.
Output: α(i) clusters of all objects.
Step 1: randomly select K cluster centers, denoted by
u1, u2, . . . , uk ∈ RP.
Step 2: iterate until convergence.

Calculate the cluster belonging to all objects α(i) in A:
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Update the center of the class based on all the classes j:

uj �


n
i�1 1 c

(i)
� j a

(i)


n
i�1 1 c

(i)
� j 

. (12)

Before describing the block calculation, the following
problems should be solved:

(1) -e clustering method can be divided into Q-type
and R-type clustering. -e K-means calculation
method is actually the Q-type clustering method. R-
type refers to relative variable clustering. To cluster
the variables using the density peak clustering al-
gorithm, the data set should be transferred to
AT ∈ Rp×n first and then to cluster A′.

(2) Since the block processing effect is poor, when the
sample size of n is relatively small, AT after trans-
position will be an uncertain data set and density
peak clustering algorithm has no limitations in
clustering. However, when n is relatively large, AT is
still a missing data after replacement, and the density
peak clustering algorithm has certain limitations in
clustering. In order to solve this problem, the sparse
expression is used to select variables.-e central idea
is to constrain the weights of variables in the ob-
jective function, forcing variables with relatively
small weights to not cluster, thereby retaining var-
iables with large weights. In this way, the selection of
variables is realized, and the objective function of the
result is defined as follows:

c
(i)

� argmin
j



p

u�1
wu α(i)

u − uju

�����

�����
2
,

s.t. ‖w‖
2 ≤ 1, ‖w‖1 ≤ s, wu ≥ 0∀u.

(13)

where w represents the variable weight vector, wu

represents the coefficient of the u variable weight,
and s represents the adjusted parameter.
For the method mentioned above, selection of var-
iables is adopted to solve the limitation of the density
peak clustering algorithm when the number is large.
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(3) Compared with the classical clustering algorithm,
the Euclidean distance is usually used to calculate the
distance. When a large amount of data is missing, it
is difficult to calculate the Euclidean distance.
-erefore, it is necessary to define the distance be-
tween the missing objects α(i) and α(j):
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were α(j)
u represents the value of the object α(i) on the

u variable.
(4) For classical clustering methods, arithmetic aver-

aging is usually used to update the cluster centers,
but this method is not applicable when the data are
missing.-erefore, the paper proposes the clustering
centers in the case of missing data. -e s object
α(1), α(2), . . . , α(s)  in the j cluster includes the
missing part; that is, the cluster center uj is taken in
the i variable. -e formula is
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ujp].
After solving the above problems, the calculation

method of KMB is given below:

Input: data set A, number of clusters K.
Output: block data set.
Step 1: transpose A to obtain AT.
Step 2: arbitrarily select K cluster center points
u1, u2,u, . . . , uK ∈ Rn.
Step 3: iterate until convergence.
Calculate the cluster belonging to all objects α(i) in AT:
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Relative to all classes j, update the center of the cluster
according to the definition in the text:

uj � uj1, uj2, . . . , ujp . (17)

Step 4: convert the cluster to complete the data set and
obtain A1.
Step 5: segment the data set A1 according to the
clustering result to obtain a block data set.

Block filling is a missing data filling method obtained by
dividing the data set into blocks according to the charac-
teristics of the data set. It is suitable for a wide range of data
filling and relying on other variables, which is a big ad-
vantage. It is also called the host method that is widely used.
Most of the traditional filling can be used in the host

algorithm proposed in the article, except for mode filling and
mean filling. However, some filling algorithms do not rely on
variables, which meet the conditions as follows:

Input: Missing data set S � (U, A, V, f).
Output: Complete data set S′ � (U′, A, V, f′).
Step 1: Determine the data block. If the block is known,
then it can be directly divided; if it is unknown, it needs
to be divided by the KMB algorithm.
Step 2: -rough the block information. Segmentation
of the missing data set S yields K sub-data sets RSi �

(U, Ai, V, f) and i � 1, 2, . . . , K.
Step 3: Compared with all missing data sets, the
complete sub-data set Si � (U′, Ai, V, f′),
i � 1, 2, . . . , K can be obtained by using host filling.
Step 4: Combine all the complete sub-data sets Si to
obtain a complete data set S′ � (U′, A, V, f′).

To block the initial data set and fill all blocks in parallel,
the calculation time for filling should be reduced to
max(t1, t2, . . . , tk), where K represents the number of blocks
and tk represents the filling time of K blocks. When the data
set dimensions and data volume are large, the block filling
effect is obvious.

3. Experimental Study

-is experiment uses the movie rating data information
obtained from the Movie Lens data set, randomly selects the
rating data of 1500 users for 3000 movies, and converts it
into a 3000×1500 partial observable user-movie rating data
matrix X. Given three cases of rank r � 10, 500, 1000, the
proportion of observable items is set to rate � 0.1, 0.3,

0.5, 0.8 in the three cases. Comparative analysis is conducted
in terms of the iteration convergence time time, the number
of iterations n, and the relative error ε � ‖X − M‖2F/‖M‖2F
between the repair matrix and the original matrix. -e
results are shown in Figure 1.

It can be seen from Figure 1 that when the rank of the
matrix to be processed is 10, with the increase of observable
items, the relative convergence errors of the four filling
algorithms all have a downward trend in a certain period of
time. -at is to say, when there are more observable items,
the accuracy of the algorithm convergence is higher, and the
singular value threshold truncation algorithm and the al-
gorithm proposed in this paper have higher accuracy of
convergence than the other two algorithms. It can be seen
from Figure 1(b) that when the rank is 500, with the increase
of observable items, the relative error accuracy of the pro-
posedmatrix filling algorithm is better than other algorithms
in a certain period of time. As an improved method of
accelerating the nearest neighbor gradient algorithm, the
augmented Lagrangian algorithm has better convergence
rate and accuracy. It can be seen from Figure 1(c) that when
the rank is 1000, under the condition of less observable
items, the accuracy of augmented Lagrangian algorithm is
better than other algorithms. In the case of many observable
items, the error convergence accuracy of the proposed
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matrix filling algorithm is significantly better than other
algorithms.

3.1. d2 Comparison of Filling Accuracy. -e filling accuracies
of different methods are measured by taking two standards
as indicators. One standard is d2, which is used to measure
the degree of matching between the real value and the filling
value.

d2 � 1 −


n
i�1 ei − ri( 

2


n
i�1 ei − E


 + ri − R


 

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (18)

According to Table 1, it can be seen that for any com-
bination of missing, the proposed algorithm is obviously
higher than the other two algorithms. In addition, the more
the missing data of correlation, the lower the d2 obtained by
the other two methods. -e filling accuracy will decrease
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Figure 1: Line graph of the relationship between the ratio of observable items and the convergence error. (a) r� 10. (b) r� 500. (c) r� 1000.
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with themissing rate of the data. However, the filling accuracy
of the proposed algorithm has always been maintained at a
very high level. In terms of d2, the proposed filling method is
obviously higher than the other two algorithms as well.

3.2. RMSE Mean Analysis. -e average error between the
filled value and the true value is measured according to

RMSE �
1
n



n

i�1
ri − ei



2⎛⎝ ⎞⎠

1/2

. (19)

where n is the number of missing values, ri is the true value
of the i missing value, ei is the filled value of the i missing
value, R is the average value of ri, and E is the average value
of ei, i � 1, 2, . . . , n, the meaning of the two standards. -e
larger the value of d2, the higher the filling accuracy.
Conversely, the smaller the RMSE value, the higher the
filling accuracy.

As can be seen from Figure 2, the filling accuracy of the
proposed method is relatively stable, the data missing will be
between 2% and 12%, the value will be above 0.8, and the
RMSE value will be between 0.15 and 0.2. Compared with the
single correlation missing, the filling accuracy of single
missing mode will be significantly higher than that of multi-

filling mode. Since the missing data of multi-fill pattern are
relatively large, the interference of feature extraction and
restoration is higher than that of single fill pattern. -is
proves that the proposed method has stronger stability and
higher filling accuracy than the other two methods.

3.3. Analysis of Filling Effect of High Rank Matrix under
MultipleData Sets. In order to further verify the filling effect
of high rank matrix of network big data, filling accuracy of
density peak clustering method, means clustering method
and improved neural process method are comparatively
analyzed based on Google dataset search dataset (https://
toolbox.google.com/datasetsearch), Google Trends dataset
(https://trends.google.com/trends/explore), and EU open
data portal dataset (https://data.europa.eu/euodp/en/data/),
as shown in Tables 2–4.

According to Tables 2–4, the highest filling accuracy of
means clustering method under Google dataset search,
Google Trends, and EU open data portal datasets is 60.02%,
60.12%, and 62.10%, respectively. In contrast, the highest
filling accuracy of the improved neural process method
under Google dataset search, Google Trends, and EU open

Table 1: d2 filling accuracy index.

Combination Algorithm
Missing rate/% Missing pattern Proposed algorithm FIMUS DMI

1 Single 0.837 0.748 0.734
Multiple 0.819 0.729 0.723

3 Single 0.895 0.729 0.714
Multiple 0.846 0.707 0.698

5 Single 0.853 0.694 0.683
Multiple 0.843 0.684 0.674

10 Single 0.867 0.659 0.646
Multiple 0.846 0.638 0.618

1 3 5 10
Missing rate (%)

av
er

ag
e v

al
ue

……
0.15

0.16

0.17

0.18

0.19

Single mode missing
Multimodal absence

Figure 2: RMSE average.

Table 2: High rank matrix filling accuracy of density peak clus-
tering method.

Data volume
(GB)

High rank matrix filling accuracy (%)
Google Dataset

Search
Google
Trends

EU Open Data
Portal

50 92.65 96.28 98.32
100 97.26 99.32 99.01
150 98.93 98.71 99.85
200 97.61 99.63 96.16

Table 3: Cuckoo algorithm optimization K high rank matrix filling
accuracy of means clustering method.

Data volume
(GB)

High rank matrix filling accuracy (%)
Google Dataset

Search
Google
Trends

EU Open Data
Portal

50 53.15 58.88 53.63
100 57.23 60.12 62.10
150 60.02 56.26 56.09
200 55.96 53.17 52.61
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data portal datasets is 60.98%, 56.29%, and 66.10%, re-
spectively. -e highest filling accuracy of the improved
neural process method under Google Dataset Search, Google
Trends, and EU Open Data Portal data sets is 60.98%,
56.29%, and 66.10%, respectively. -e highest filling accu-
racy of density peak clusteringmethod under Google Dataset
Search, Google Trends, and EU Open Data Portal data sets is
98.93%, 99.63, and 99.85%, respectively. -e above data show
that the density peak clustering method has higher filling
accuracy as it uses small-interval data to replace the lost data.
By optimizing the density peak clustering algorithm through
the cluster center selection strategy, obtaining the block data
set through the unknown block method, and realizing the
block filling by using the host filling algorithm, the filling
noise of the network big data matrix can be effectively avoided
and the filling effect can be improved.

4. Conclusion

-is paper presents a high rank matrix filling algorithm for
network big data based on density peak clustering. -e
density peak clustering is introduced, the missing data are
replaced by small-interval data, and the information entropy
of filled data is calculated. Combined with the density peak
clustering algorithm and the improved distance measure-
ment in the case of missing data, the missing data are
partitioned, and the host filling can be used to obtain a
complete sub-data set. -e following conclusions are drawn
through experiments:

(1) When the rank is 500, with the increase of observable
terms, the relative error accuracy of the matrix filling
algorithm proposed in this paper is better than that
of other algorithms. When there are many observ-
able items, the error convergence accuracy of the
proposed matrix filling algorithm is obviously better
than that of other algorithms as well.

(2) For any missing combination, the proposed algo-
rithm is obviously higher than the other two algo-
rithms. In addition, in the case of more correlation
missing data, the filling accuracy of the proposed
method is always stable.

(3) -e filling accuracy of the proposed method is rel-
atively stable, with missing data ranging between 2%
and 12%, D2 value more than 0.8, and the RMSE
value between 0.15 and 0.2. -e filling accuracy of
single missing mode will be significantly higher than
that of multi-filling mode, because the missing data

of multi-filling mode are relatively large, and the
interference to feature extraction and restoration is
higher than that of single missing mode.
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