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We present a normalization of the p-norm. A compressive sensing criterion is proposed using the normalized zero norm. Based
on the method of Lagrange multipliers, we derive the solution of the proposed optimization framework. It turns out that the new
solution is a limit case of the least fractional norm solution for p � 0, where its fixed-point iteration algorithm can readily follow an
existing algorithm.)e derivation of the minimal normalized zero norm solution herein gives a relation in the aspect of Lagrange
multiplier method to existing works that invoke least fractional norm and least pseudo zero norm criteria.

1. Introduction

Various applications in science and engineering need to
recover a desired signal x ∈ RN×1 from a set of observed data
or measured data b ∈ RM×1 based on a modeling or mea-
surement matrix A ∈ RM×N, which either depends on the
model or can be chosen beforehand, for N ∈ N1×1 and
M ∈ N1×1. A linear system in Figure 1 can be represented by

Ax + δb � b, (1)

where δb ∈ RM×1 is the amount of perturbation hidden in
the output b.

)e signal can be recovered by solving an optimization
problem related to linear least squares (LLS), i.e.,

xLLS � argmin
x

‖x‖
2
2

s.t. x ∈
x ∈ RN×1

|Ax � b , noiseless,

x ∈ RN×1
|‖Ax − b‖2 < ε , noisy,

⎧⎪⎨

⎪⎩

(2)

where ε is the square root of the maximal allowable noise
power [1]. Usually, the matrix A is of full rank, i.e.,

rank(A) � min(M, N), (3)

where rank(·) is the rank of matrix. Whether the number of
provided data M is greater than, equal to, or less than the
number of unknown variables N, i.e., the size of the matrix
A, the LLS problem can be classified into

xLLS �

argmin
x

‖Ax − b‖
2
2, M>N,

arg
x
Ax � b, M � N,

argmin
x

‖x‖
2
2s.t.Ax � b, M<N.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

)e solution of (4) is well known as the LLS estimate

xLLS �

ATA 
− 1
ATb, M>N,

A− 1b, M � N,

AT AAT
 

− 1
b, M<N,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

where ·T is the transpose of a vector or matrix, and ·− 1 is the
inverse of square matrix. )e LLS estimate exists provided
that the matrix ATA or A or AAT is invertible, i.e., the
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measurement matrix A needs to be of full rank. )e LLS
estimate xLLS provides all nonzero entries to the desired
signal x.

Many works indicate that the desired signal often is
subject to sparsity, i.e., the situation when a number of
elements in x are zeros. Even though the signal sometimes
does not strictly entail the sparsity, it is efficient to keep an
approximate value of the signal that contains only a suffi-
cient amount of its largest components, from which we
called compressible signal.)e sparsity nature of the signal is
usually hidden and can be exposed by discovering a sparse
basis and its associated spanning coefficients. )e decom-
position of the coefficient vector can be seen as a super-
position of dictionary elements with a remaining term [2].
Compressed sensing was an emerging field that spans many
applications in science and engineering, e.g., imaging and
vision [3], photonic mixer device [4], electronic defense [5],
security and cryptosystem [6], radar [7, 8], earth observation
[9], wireless networks [10, 11], biometric watermarking [12],
and healthcare [13].

In compressive sensing, the ℓ0-norm is originally
adopted to impose the zero elements in the solution. )e
optimization of ℓ0-norm criterion however appears to be a
combinatorial nondeterministic polynomial-time hard (NP-
hard) problem, which appears to be prohibitive. )e per-
formance of the above optimization problem can however be
analyzed, e.g., in [14].

Instead of the ℓ0-norm, ℓ1-norm is often of interest
because it is more convenient than ℓ0-norm optimization in
terms of computability while its accuracy is comparable (see
e.g., [15, 16]). A widely considered method designed for
norm minimization of dictionary coefficients is known as
matching pursuit [17]. Its variations are presented in terms
of basis pursuit denoising [2], orthogonal matching pursuit
[18], compressive sampling matching pursuit [19], stagewise
orthogonal matching pursuit [20], gradient pursuits [21],
etc. Most approaches based on the matching pursuit involve
the ℓ2-norm, except for basis pursuit denoising, which
considers the ℓ1-norm.

In this work, we point out that the zero norm that is
mostly adopted in compressed sensing literature is not the
actual zero norm, but rather a pseudo zero norm. We also
show that the actual zero norm is unbounded and thus
trivial. Later we present a normalized p-norm and apply its
special case for p � 0 to be a new objective function. By using
the method of Lagrange multipliers, the proposed con-
strained optimization is solved and the emerging solution is
equal to the limit case of that given by the least fractional
norm for p � 0.

)is paper is organized as follows. In Section 2, we point
out that the ℓ0 norm is diverged or undefined, whereas the so-
called zero norm adopted in compressive sensing is actually
not a proper norm or is only a pseudonorm. In Section 3, we
propose a normalized ℓp norm. It is later shown that for p � 0
the normalized zero norm is approximately a geometrical
mean and unfortunately it does not hold the triangle in-
equality of the proper norm. In Section 4, we consider the
compressive sensing model. )e fractional norm for
p ∈ (0, 1) and its criterion presented in the past are revisited
herein.)e corresponding solution is found by the method of
Lagrange multiplier. In Section 5, we propose an alternative
criterion based on the normalized zero norm. We later derive
its solution through the method of Lagrange multiplier. )e
solution is found in a closed form and unfortunately turns to
be a limiting case to that of the least fractional norm criterion
in the former works. In Section 6, numerical examples of the
solution are provided in conjunction with other works.
Concluding remarks of the paper are provided in Section 7.

2. Conventional Zero Norm

Let z ∈ CN×1 be a complex-valued vector, expressed as

z � z1 z2 · · · zN 
T
. (6)

Let p ∈ Z+ be a positive integer. )e ℓp-norm, or simply
the p-norm, ‖ · ‖p: CN×1↦R1×1, is given by

‖z‖p � z1



p

+ z2



p

+ · · · + zN



p

 
1/p

, (7)

where | · | is the absolute value of ·. Basic properties of the
p-norm in (7) are as follows:

(i) )e p-norm is positive-definite, i.e.,

‖z‖p ≥ 0. (8)

(ii) )e p-norm is zero if and only if the vector z is zero,
i.e.,

‖z‖p � 0⇔z � 0, (9)

where 0 is a zero vector whose all elements are zeros.
(iii) )e p-norm has a triangle inequality, i.e.,

‖z + β‖p ≤ ‖z‖p +‖β‖p, (10)

for z ∈ CN×1 and β ∈ CN×1.
(iv) Furthermore, the p-norm has a scalability or ho-

mogeneity, which can be shown as

‖az‖p � |a|‖z‖p, (11)

for a ∈ R1×1 and z ∈ CN×1.

2.1. Zero Norm. When p is zero, the 0-norm of a vector can
be determined from

Ax + b

δb

Figure 1: A noisy linear input-output system.

2 Mathematical Problems in Engineering



‖z‖0 � lim
p⟶0

z1



p

+ z2



p

+ · · · + zN



p

 
1/p

� lim
p⟶0

e
p ln z1| |( ) + e

p ln z2| |( ) + · · · + e
p ln zN| |( ) 

1/p
,

(12)

where e· is the exponential function of ·. From the Taylor’s
series expansion, we can express

e
pln zn| |( ) � 

∞

k�0

1
k!

pln zn


  

k

�
1
0!

pln zn


  

0
+
1
1!

pln zn


  +

1
2!

pln zn


  

2
+ . . . .

(13)

For a small value of p, i.e., p⟶ 0, we can approximate

e
pln zn| |( ) � 1 + pln zn


  + O p

2ln2 zn


  

≈ 1 + pln zn


 ,

(14)

where O(·) is the big ‘oh’ notation of Bachmann–Landau
symbols, i.e.,

f(x) � O(g(x)); x⟶ a⇔ limsup
x⟶a

f(x)

g(x)




<∞. (15)

Substituting (14) into (12), we obtain

‖z‖0 ≈ lim
p⟶0

1 + p ln z1


  + 1 + p ln z2


 

+ · · · + 1 + p ln zN


 

1/p

� lim
p⟶0

N + p 
N

n�1
ln zn


 ⎛⎝ ⎞⎠

1/p

.

(16)

By using a property of logarithm power, we can show
that

‖z‖0 � lim
p→0

N
1/p 1 +

1
N

p ln 

N

n�1
zn


⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/p

� lim
p→0

N
1/p 1 + p ln 

N

n�1
zn


⎛⎝ ⎞⎠

1/N

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/p

≈ lim
p→0

N
1/p

e
ln

�������


N

n�1
zn| |

N


 

� lim
p→0

N
1/p

������



N

n�1
zn




N




→∞.

(17)

It is obvious that the 0-norm is unbounded and thus
trivial.

2.2. Pseudo Zero Norm. Most works, however, instead
consider

lim
p⟶0

‖z‖
p
p � lim

p⟶0
z1



p

+ z2



p

+ · · · + zN



p

 
1/p

 
p

� z1



0

+ z2



0

+ · · · + zN



0
.

(18)

By assigning 00 to 0, we have a convenient relation

lim
p⟶0

‖z‖
p
p � zn|zn ≠ 0; n � 1, 2, . . . , N 


, (19)

where | · | is the cardinality of a set ·{ } or herein the number
of nonzero members in a set ·{ }. )e pseudo zero norm
counts the number of nonzero elements in z. It is important
to note that the pseudo zero norm limp⟶0‖ · ‖p

p actually is
not the zero norm ‖ · ‖0 and is not a proper norm, because it
does not preserve the homogeneity. However, it is widely
used to replace the zero norm ‖ · ‖0 due to its simple
computability.

3. Normalized Zero Norm

Let us introduce a normalization of the p-norm ‖ · ‖p as

‖z‖p �
1
N

z1



p

+ z2



p

+ · · · + zN



p

  
1/p

. (20)

In statistical analysis ([22], Ch. 3), the above quantity is
known as p-mean, a generalized mean, Hölder mean, mean
of degree p, power mean, etc. We can represent the relation
between the normalized p-norm and the conventional
p-norm by

‖z‖p �
1
N

 
1/p

z1



p

+ z2



p

+ · · · + zN



p

 
1/p

�
1

N
1/p‖z‖p.

(21)

When p is zero, we can derive

‖z‖0 � lim
p⟶0

1
N

1/p z1



p

+ z2



p

+ · · · + zN



p

 
1/p

� lim
p⟶0

1
N

1/p e
p ln z1| |( ) + e

p ln z2| |( ) + · · · + e
p ln zN| |( ) 

1/p
.

(22)

Using the Taylor’s series expansion of the exponential
function, we have

‖z‖0 � lim
p⟶0

1
N

1/p 

N

n�1


∞

k�0

1
k!

pln zn


  

k⎛⎝ ⎞⎠

1/p

� lim
p⟶0

1
N

1/p 

∞

k�0

1
k!

p
k



N

n�1
lnk

zn


 ⎛⎝ ⎞⎠

1/p

.

(23)
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It is hard to deal with the result in (23). We would rather
consider an approximation of (22) associated with (14),
which is given by

‖z‖0 ≈ lim
p⟶0

1
N

1/p 1 + p ln z1


  + 1 + p ln z2


 

+ · · · + 1 + p ln zN


 

1/p
.

(24)

Under the same manipulation, we can show that

‖z‖0 + lim
p⟶0

1
N

1/p N + p 
N

n�1
ln zn


 ⎛⎝ ⎞⎠

1/p

� lim
p⟶0

1
N

1/pN
1/p 1 +

1
N

p 
N

n�1
ln zn


 ⎛⎝ ⎞⎠

1/p

� lim
p⟶0

1 + p 
N

n�1
ln zn



1/N

 ⎛⎝ ⎞⎠

1/p

� lim
p⟶0

1 + p ln 

N

n�1
zn



1/N⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/p

≈ lim
p⟶0

e
p ln 

N

n�1
zn| |

1/N 
⎛⎜⎜⎝ ⎞⎟⎟⎠

1/p

� lim
p⟶0

������



N

n�1
zn




N




�

�������



N

n�1
zn


 .

N




(25)

We can see that due to the first-order Taylor series
approximation, ‖z‖0 can be approximated by the geometric

mean of z. )e geometric mean
��������


N
n�1 |zn|

N



has the
following properties:

(i) It is positive-definite for any z, i.e.,

z1 z2
����


 . . . zN


 

1/N
≥ 0. (26)

(ii) It can simply be zero when only one of all entries in
z is zero, i.e.,

z1 z2
����


 . . . zN


 

1/N
� 0⇔ zn � 0; n ∈ 1, 2, . . . , N{ }.

(27)

(iii) It does not hold the triangle inequality, e.g., for
α ∈ C1×1 and β ∈ C1×1,

α

0
  +

0

β
 

���������

���������0
�

α

β
 

���������

���������0

�

����

|α‖β|



,

α

0
 

���������

���������0
+

0

β
 

���������

���������0
� 0 + 0

� 0,

(28)

which mean α
0  +

0
β 

��������

��������0
≰ α

0 

��������

��������0
+

0
β 

��������

��������0
.

(iv) It is homogeneous, i.e.,

‖αz‖0 � αz1


 αz2


 . . . αzN


 

1/N

� |α| z1


|α| z2


 . . . |α| zN


 

1/N

� |α|
N

z1


 z2


 . . . zN


 

1/N

� |α| z1


 z2


 . . . zN


 

1/N

� |α|‖z‖0.

(29)

(v) It is concave for any z (see, e.g., [23]) and a
monotonically increasing function.

4. Compressive Sensing

Let us consider an underdetermined system where there are
more unknown signal components than equations, i.e.,
M<N. In this case, there is infinite number of solutions for
x. Recent works indicate that the desired signal often is
subject to sparsity, i.e., the situation when a number of
elements in x are zeros. Even though sometimes the signal
does not strictly entail the sparsity, it is efficient to keep an
approximate version that contains only a sufficient amount
of its largest components, from which we called com-
pressible signal. )e sparsity nature of the signal is hidden
and can be imposed by discovering a sparse basis and its
associated spanning coefficients. )e decomposition of the
coefficient vector can be seen as a superposition of dictionary
elements with a remaining term [2]. Let K ∈ Z1×1

+ be the
number of nonzero elements in x. If x0 is the true value of x,
there is a relation

lim
p⟶0

x0
����

����
p

p
� supp x0( 


 � K, (30)

where | · | is the cardinality of set, and supp(x) � n|xn ≠ 0 

is the support set or the sparsity pattern of x. )e number
K is often known as sparsity degree. Compressive sensing
can be seen as a problem of finding a K-sparse signal x
[24]. Unfortunately, the solution in (5) does not preserve
the inherent sparsity of the signal. A different kind of
vector norms can be used to explore the signal sparsity.
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)e signal recovery can be formulated as an optimization
problem, i.e.,

x0 � argmin
x

lim
p⟶0

‖x‖
p
p

s.t. x ∈
x|Ax � b{ }, noiseless,

x|‖Ax − b‖2 < ε , noisy.


(31)

Note that we do not express the norm in (31) as ‖ · ‖0
similarly to most works, because the zero norm in most
works is equal to the pseudo zero norm limp⟶0‖ · ‖p

p in this
paper. In general, the objective function in terms of the
modified zero norm limp⟶0‖ · ‖p

p is nonconvex. If A is an
identity matrix, an exact solution of (31) is a hard shrinkage
of b. For arbitrary matrixA, one may resort to combinatorial
optimization. Even an approximate value of the true min-
imum of the problem in (31) is nondeterministic polyno-
mial-time hard or NP-hard, which appears to be prohibitive.
)e performance of the above optimization problem can,
however, be analyzed, e.g., in [14].

4.1. Compressive Sensing by Fractional Norm. An alternative
way is the consideration of p≤ 1 [24–26]. When p lies in the
range (0, 1),

(i) the norm ‖x‖p accepts only a positive real-valued
argument, i.e., x ∈ RN×1

+ ,
(ii) it is a concave function, and
(iii) the fractional norm does not hold the triangle

property, e.g.,

1

0
  +

0

1
 

���������

���������p

�
1

1
 

���������

���������p

� |1|
p

+|1|
p

( 
1/p

� 21/p,

(32)

1
0

 

��������

��������
p

+
0
1

 

��������

��������
p

� |1|
p

( 
1/p

+ |1|
p

( 
1/p

� 2,

(33)

mean

1

0
  +

0

1
 

���������

���������p

≰
1

0
 

���������

���������p

+
0

1
 

���������

���������p

. (34)

)e last one implies that the fractional norm is not a
proper norm or is only a quasinorm. For p ∈ (0, 1), the
compressive sensing problem

xp � argminx‖x‖
p
p

s.t. x ∈
x|Ax � b{ }, noiseless,

x|‖Ax − b‖2 < ε , noisy,


(35)

is nonconvex, nonsmooth, and non-Lipschitz. )e fractional
norm gives a closer approximation to the pseudo zero norm
than the 1-norm, since the smaller the norm index p, the

sparser the solutions. It is shown in [27] that although a local
minimum is found, exact reconstruction is possible with
much sparser solution than that required by the 1-norm
reconstruction. )e case of p � 1/2 provides the sparsest
solution for p ∈ [1/2, 1), while the compressive sensing
solution with p ∈ (0, 1/2] has no significant difference from
that with p ∈ [1/2, 1) [28, 29].

4.2. Method of Lagrange Multipliers. Let λ ∈ CM×1 be the
Lagrange constants. )e constrained optimization problem
in (35) can be solved by [25], i.e.,

xp, λp  � argmin
x,λ{ }

Lp(x, λ), (36)

where Lp(x, λ) is given by

Lp(x, λ) � ‖x‖
p
p + λT

(Ax − b). (37)

)e solution of (36) is given by [30]

xp � D |x|
2− p

 AT AD |x|
2− p

 AT
 

− 1
b, (38)

where D(·) is the diagonal matrix whose diagonal is taken
from vector ·, and |x|a is given by

|x|
a

�

x1



a

x2



a

⋮

xN



a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (39)

We can see that when p is equal to 2, the least fractional
norm criterion provides the same result as that shown in (5),
i.e.,

lim
p⟶2

xp � x2

� xLLS.
(40)

Unlike the solution by the LLS criterion in (5), the so-
lution by the fractional norm in (38) depends on the un-
known variable x, which later needs to be involved with an
iterative computation. )e computation procedure in an
iterative way, which is known as FOCal Underdetermined
System Solver (FOCUSS), is summarized in [30].

Algorithm 1 can suffer from many local minima. An
alternative tries to avoid the NP-hard problem for p ∈ (0, 1)

by sequentially minimizing a smooth function.
Sometimes, the least fractional exponent norm criterion

is called iteratively reweighted least squares (IRLS) in
compressive sensing [31–33]. When the vector x[i − 1] in
Algorithm 1 converges to the true value of x, a number of
elements in x[i − 1] may be close to zeros, which can cause
an ill condition of the matrix AD(|x[i − 1]|2− p|)AT. It is
suggested in [31] that

x[i]←D x2 + εr1 
1− (1/2)p

 AT
,

AD x2 + εr1 
1− (1/2)p

 AT
 

− 1
b|x�x[i− 1]

,

(41)
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where εr ∈ R1×1 is a regularization quantity that is large at
the beginning of the iteration and gradually smaller when
the iteration converges. In [32], the regularization quantity
εr in (41) is replaced by its square ε2r . Let ℓ(x) be a non-
increasing set of all elements in x, which can be represented
by

ℓ(x) � ln1|ln1 � xn2
; n1, n2 ∈ 1, 2, . . . , N{ }∧ l1


≥ l2




≥ . . . ≥ lN


.
(42)

Let Lk(x) be the kth element of the nonincreasing set
ℓ(x), i.e., Lk(x) � lk.

Algorithm 2 is different from [32] in two aspects. First,
the regularization parameter εr[i] in [32] is computed from
the updated x[i] at the ith iteration, which is unavailable.
Second, the procedure addressed in [32] considers only
p � 1.

5. Compressive Sensing by Normalized
Zero Norm

We propose a new criterion by using the normalized zero
norm. Under a similar idea to (32), the usual compressive
sensing problem can alternatively be formulated as

x0 � argmin
x

‖x‖0 s.t. x ∈
x|Ax � b{ }, noiseless,

x|‖Ax − b‖2 < ε , noisy,


≈ argmin
x

������


N

n�1
xn




N




s.t. x ∈
x|Ax � b{ }, noiseless,

x|‖Ax − b‖2 < ε , noisy.


(43)

Fortunately, when approximated as the geometrical
mean in (25), the normalized zero norm makes the

optimization problem nonconvex under a concave objective
function and an affine/convex constraint.

)e Lagrange function can be expressed as

L0(x, λ) �

������



N

n�1
xn




N




+ λT
(Ax − b). (44)

)e derivative of the Lagrange function L0(x, λ) with
respect to x and λ can be written as

z

zx

z

zλ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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.

(45)

We can show that

Input: A ∈ RM×N, b ∈ RM×1, p ∈ (0, 1], Nmax ∈ Z1×1
+ , εmin ∈ R1×1

+

Output: xp ∈ RN×1

x[0]←1
i←0
εx←εmin + 1
while εx > εmin∧i≤ Imax do
i←i + 1
x[i]←D(|x|2− p)AT(AD(|x|2− p)AT)− 1b|x�x[i− 1]

εx←‖x[i] − x[i − 1]‖2/‖x[i − 1]‖2
end while
return x[i]

ALGORITHM 1: FOCal Underdetermined System Solver [30].
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Using the chain rule for a real-valued variable xn, the
derivative d/dxn 

N
n�1 |xn|p can be written as

d
dxn

xn



p

�
d
dxn

x
p
n , xn ≥ 0,

− xn( 
p
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p− 1
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− p − xn( 
p− 1
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�
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� p xn
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By using the result from (47), we can derive

d
dx

������



N

n�1
xn




N




�

1
N

x1



(1/N)− 2

x1 

N

n�2,≠1
xn



1/N

1
N

x2



(1/N)− 2

x2 

N

n�1,≠2
xn



1/N

⋮

1
N

xN



(1/N)− 2

xN 

N

n�1,≠N

xn



1/N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
1
N

x1

x1



2 

N

n�1
xn



1/N

x2

x2



2 

N

n�1
xn



1/N

⋮

xN

xN



2 

N

n�1
xn



1/N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
1
N

������



N

n�1
xn




N




D
− 1

|x|
2

 x.

(48)

At the critical point z/zxL0(x, λ) � 0, we have

Input: A ∈ RM×N, b ∈ RM×1, p ∈ (0, 1], k ∈ Z1×1
+

Output: xp ∈ RN×1

x[0]←1
w[0]←1
εr[0]←1
i←0
while εr[i]≠ 0 do
i←i + 1
εr[i]←min(εr[i − 1], 1/NLk+1(x[i − 1]))

x[i]←D(w[i − 1])AT(A D(w[i − 1])AT)− 1b
w[i]←(x2[i] + ε2r[i]1)1− (1/2)p

end while
return x[i]

ALGORITHM 2: Iteratively reweighted least squares [31, 32].
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At the critical point z/zλ∗L0(x0, λ) � 0, we have
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⇔ −
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��������
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1
N

������
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AD |x|
2

 AT
 

− 1
b.

(50)

Substituting (50) into (49), we obtain

x0 � D |x|
2

 AT AD |x|
2

 AT
 

− 1
b. (51)

It should be noted that the result in (51) is equal to (38)
with p � 0.)us, the compressive sensing problem using the
geometric mean is the limit case of the fractional norm
problem for p ∈ (0, 1) in (35), i.e.,

lim
p⟶0

xp � x0, (52)

and tends to be the desired but complicated problem with
the pseudo zero norm in (31). Although the solution of the
minimization of the normalized zero norm by Lagrange
multiplier method appears to be the same as the former
works, it gives a relation in the Lagrange multiplier method
point of view to existing works that invoke least fractional
norm and least pseudo zero norm criteria.

6. Numerical Examples

All computer simulations in this work are conducted using
Python language. )e root-mean-squared relative error
(RMSRE), denoted by

��������������

Ex0

x − x0
����

����
2
2

x0
����

����
2
2

⎧⎨

⎩

⎫⎬

⎭




�

�����������������

Ex0

x − x0
����

����2

x0
����

����2
 

2
⎧⎨

⎩

⎫⎬

⎭




, (53)

is the index for evaluating the performance of each algo-
rithm. It is calculated by the square root of the probabilistic
average of the square of the normalized estimation error,
where the expectation Ex0 ·{ } is taken into account with
respect to the randomization caused by

(i) the true value of x0, which is assumed to follow an
identical and independent real-valued Gaussian
distribution with zero mean and unit variance, i.e.,

x0 ∼ NR 0, IN( , (54)

(ii) the sparsity pattern of all K nonzero elements in x0,
which is assumed to have an equal probability for K

locations on all N possible positions (K<N for a
sparse signal vector).

)e algorithms intended to comparison include

(i) ℓ1-norm, the problem in (4) whose Euclidean norm
‖ · ‖2 is replaced by the ℓ1-norm, i.e., ‖ · ‖1,

(ii) ℓ2-norm, the problem in (4),
(iii) FOCUSS, Algorithm 1 with εmin � 10− 7 and the

maximum number of iterations of Nmax � 30,
(iv) IRLS, Algorithm 2 with k � K − 1, and
(v) )eoretical approximate normalized zero norm

(TANZN); the best possibility of the first iteration of
the fixed-point iteration in (52), calculated by
substituting x by the theoretical or true value x � x0,
i.e.,

x0 � D |x|
2
0 AT AD x0



2

 AT
 

− 1
b. (55)

)e minimizations of the ℓ1-norm and ℓ2-norm subject
to Ax � b are conducted by an interior-point solver for
convex optimization [34]. For both fixed-point iteration
methods, such as the FOCUSS and the IRLS, the norm
exponent is assumed to be p � 0.8. It should be noted that
the solution in (55) is the ideal case of (51), because the true
value x0 is unknown. )e realistic implementations of (55)
were addressed in the past, e.g., in terms of the FOCUSS, the
IRLS, etc. )e design of a more accurate algorithm to the
fixed-point iteration required by (51) may remain open for a
future work. )ematrix inverse in (55) is usually subject to a
large condition number, which can cause a numerical
failure. One has to resolve this numerical instability by
adding a tiny amount, e.g., 10− 6, to each diagonal element of
A D(|x0|

2)AT before its inverse operation.
In Figure 2, numerical computation is done with M �

128 and N � 256 from NR � 10, 000 independent runs for
each value of K. One can see that the ℓ1-norm approach is
very precise from K � 2 to K � 32. At this critical region, the
error abruptly arises probably because it is beyond the
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capability of the interior-point method in the convex op-
timization. )e ℓ2-norm method does not explore the
sparsity nature of the signal vector and thus performs worst.
)e IRLS performs almost identically to the FOCUSS, except
for a little better performance during the transition region.
)e ideal TANZN method stays constant for any value of K.
It is worse than its actual implementations, such as the
FOCUSS and the IRLS, for K< 10. However, it is worth
noting that both fixed-point iteration techniques each in-
volve multiple iterations, e.g., maximal Nmax � 30 iterations
in the FOCUSS, while the TANZN represents the best case
for a single substitution or the first iteration.

In Figure 3, we assume that the length of the input el-
ements is N � 256 and the number of nonzero elements is
K � ⌊0.3125M⌋, which depends on the number output el-
ements M, where ⌊ · ⌋ is the operator of rounding to the
nearest lower integer. One can see that when more observed
data are available, the RMSRE decreases or the signal ac-
quisition is more precise from all the abovementioned
methods. )e FOCUSS approach preforms identically to the
IRLS algorithm. )e ℓ1-norm minimization is the realistic
method that provides the least amount of signal recovery
error. )e TANZAN technique indicates that if the desired
signal x reaches its true value, the possible acquisition error
can be lower than that by the ℓ1-norm minimization.

7. Conclusion

A normalization of the p-norm, denoted by ‖ · ‖p is pre-
sented. A compressive sensing criterion using the normal-
ized zero norm ‖ · ‖0 is proposed. Based on the method of
Lagrange multipliers, the solution of the proposed optimi-
zation framework, i.e., x0 is derived. It turns out that the new
solution is a limit case of the fractional norm solution for
p � 0, where its fixed-point algorithm can readily follow the
FOCUSS algorithm in [30]. In our companion works, we
find that the minimization of the normalized zero norm by
Tikhonov regularization method provides a different solu-
tion from that of the fractional norm [28, 29].
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