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Using a class of claim distributions, we introduce the Weibull claim distribution, which is a new extension of the Weibull
distribution with three parameters. The maximum likelihood estimation method is used to estimate the three unknown pa-
rameters, and the asymptotic confidence intervals and bootstrap confidence intervals are constructed. In addition, we obtained the
Bayesian estimates of the unknown parameters of the Weibull claim distribution under the squared error and linear exponential
function (LINEX) and the general entropy loss function. Since the Bayes estimators cannot be obtained in closed form, we
compute the approximate Bayes estimates via the Markov Chain Monte Carlo (MCMC) procedure. By analyzing the two data sets,
the applicability and capabilities of the Weibull claim model are illustrated. The fatigue life of a particular type of Kevlar epoxy
strand subjected to a fixed continuous load at a pressure level of 90% until the strand fails data set was analyzed.

1. Introduction

The use of statistical distributions to model life phenomena has
attracted considerable research interest. Recent articles have
demonstrated the potential of statistical distributions in mod-
elling life data. The Weibull distribution with two parameters is a
well-known model that can be effectively used for data mod-
elling in lifetime analysis. The Weibull distribution was intro-
duced by Frechet [1] and first applied by Rosin and Rammler [2]
to describe the distribution of a particle size. The Weibull
distribution has many applications in most fields. Let X be a
random variable (R.V.) that follows the two-parameter Weibull
distribution (4, y), then its cumulative distribution function
(CDF), denoted by F (x; 4, y), is given by

F(x;Ap)=1- exp(«(%)y),xzo;)t,}»o. (1)

The corresponding probability density function (PDF),
survival function (SF), and hazard rate function (HRF) of the
Weibull R.V. are given, respectively, by

i =2 ()00

(2)
S(x;A,y) = exp<—<;>y>,x >0,
and
h(x:Ay) :%<%>y_l,x>0. (3)

In this article, we focus on modelling a new three-
parameter modification of the Weibull distribution, the
Weibull claim distribution. In 1997, Marshall and Olkin
[3] developed a new family by adding a shape parameter
to the basic distribution, which many researchers used to
find and study new distributions. The Weibull claim
distribution is introduced using the class of claim dis-
tributions introduced by Ahmad et al. [4] based on
the Marshall and Olkin mechanism. The CDF and the
PDF of a class of claim distributions are, respectively,
given by
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2
o(F(x;A, y))2
' = 4
G(x;0,M,p) 1_(1_0)F(x;/1’y),xe[R{, (4)
and
g0 y) = af (x; A, P)F(x; A, p)[2 - (1 - G)f(’“)" y)])x .
[1- (1= 0)F(x;A,p)]
(5)

In the field of Big Data science and other related fields,
the best possible description of real-world phenomena is an
important research topic (see [5-8] for details). Recent
studies have shown the potential of statistical models in
various areas of applied science. The aim of this paper is to
deepen this research area of distribution theory and propose
a new statistical model that provides a better fit to survival
time data.

The structure of this paper is as follows. Section 2 in-
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estimation of the Weibull claim distribution and the as-
ymptotic and bootstrap confidence intervals based on the
observed Fisher information matrix. We then discuss the
Bayesian estimation of the unknown parameters under the
squared error, LINEX, and the general entropy loss function
and perform a Monte Carlo simulation study. In Section 5,
simulations and two real data sets are performed to evaluate
the efficiency of the proposed model. Section 6 provides a
brief conclusion.

2. The Weibull Claim Distribution

The CDF and the PDF of the Weibull claim distribution can
be constructed directly by substituting the formulas (1)-(3)
into (4) and (5), respectively. Now, X is a Weibull claim R.V.
if its CDF is given by

o(1-exp (—(x/)t)y))2

troduces the Weibull claim distribution. The bivariate ex- G(x;0,A,y) = 1-(1-0)(1-exp (—(x/)t)y))’x eR. (6)
tension of the Weibull claim distribution is discussed in
Section 3. In Section 4, we first discuss the likelihood The corresponding PDF is given by
(0. 07) a(y/)t (x/0)" " exp (—(x//\)y)) (1 —exp(—(x/M)"))[2 - (1 - 0) (1 - exp(—(x/1)"))]
g(x;0,4,9) = ,
[1-(1- 0)(1- exp(=(x/)"))]? (7)
x € R.
. o , , o G(x1, %) = G(x1)G(x,)
The main motivations for using the Weibull claim in 9)

practice are as follows:

(1) A very simple and convenient way to modify the
Weibull distribution.

(2) The improvement of the functions and flexibility of

the Weibull distribution.

(3) The introduction of an extended version of the
Weibull distribution with a closed form of the dis-
tribution function.

(4) The best fit to data in many sciences and fields.

(5) Another important motivation for the proposed
approach is the introduction of new distributions by
adding only one additional parameter instead of two
or more parameters.

3. Bivariate Weibull Claim Distribution

Morgenstern [9] introduced the copula model. Copula
models are used to represent the common CDF of the two
marginal univariate distributions. If G (x;) is the CDF of X,
and X, and p is the dependence measure between X, and
X,, the joint CDF defined by the copula model, denoted by
G (x,,x,), is given by

G(x1,x,) = C,(G(x1), G(x,))- (8)

Conway [10] introduced the joint CDF and PDF of the
copula model, respectively, by

[+ p(1-G(x) (1 -G -1 <p<L,
and

g(x1%3) = g (x1)g () [1 +p(1-2G(x))) (1 - 2G(x,))].  (10)

If the R.V.s X, and X, follow the Bivariate Weibull claim
distribution, then its CDF is given by

G(xl,xz):<1_ oy (1 —exp (=(x,/4,)™)) >

(1=0) (1 = exp(=(x,/1)"))

1= (1-05) (1 - exp(=(x2/1,)"))

|1+ 3 o, (1 = exp(=(x,/1,)"))’
[l P<1 (1—(1—ol><1—exp(—(xum”))))

" 1_< 0,1 = exp(-(x2/1,)")) ]
=0 -a)(-ew (k) )|

X < 0, (1~ exp (~(x,/0,)"))" >

-1<p<l,

(11)

where x,, x5, A, V1, 015 A5, 92, 05 > 0. The corresponding PDF
be
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(6%, = <01(Y1//\1 (e /A, ) exp(—(xl/)tl)yl)) (1 - exp(=(x, /)" [2 - (1= o)) (1 - eXp(—(xl//ll)yl))]>
X2 [1-(1-0y)(1- exp(—(xl/)Ll)yl))]z

[ + B Ul(l_exp(_(xlml)Yl))z ]
: P<1 2<1-(1—%)0-emﬂ-@MAJ”D>>
X (12)
1-2 0y (1 —exp (_(xz/)‘z)yz))z
L 1= (1-0;) (1 - exp(~(x,/2,)")) i
« <02(Y2//\2 (xz//‘z)yz_1 exp (_(xzmz)yz)) (1 —exp(=(x2/2,)")) [2 = (1 = 0,) (1 = exp (~(x2/1,)"))] >
[1- (1= 0,) (1= exp(=(x2/1y)™))]’

Figures 1 and 2 show different PDF and CDF values of 4, Parameter Estimation
the bivariate Weibull claim model for p = 1. Figure 3, on the
other hand, shows the SF and HF of the bivariate Weibull =~ Many studies were examined in the articles to estimate the
distribution model. three unknown parameters. Let x = x;,x,,...,x, be a
sample from the Weibull claim distribution.

4.1. Maximum Likelihood Method. The likelihood function
corresponding to equation (7) is given by

L(a)w)—n'< ) (H") 7 exP<‘i<%>y>

i=

(13)

XH<1*w(wwwm4ku*@“?mwvmew
L (1 0)(1 - exp(- (/1))

The log-likelihood function corresponding to equation
(13) is given by

M:

=logn!+nlogo+nlogy—nylogA+n(y- I)ZIOg(xi)

> tog() - 3 (5)
e Ylog(1-ex(~(3))) + Yioe[2-0-0(1-ex(~(3)))] )

i=1

fai-u-af1-on(-(3))].

i=1

The equation in equation (14) can be solved by using
Newton-Raphson method. The corresponding partial de-
rivatives are
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FiGure I: Different plot for the PDF of the Bivariate Weibull claim distribution for o, = 3,4, = 1,y, = 1,0, = 5,1, =4,y, =2,and p = -0.9
(a) and p = -1 (b).
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FIGURE 3: Plots of the SF (a) and HF (b) of the Bivariate Weibull claim model for 0, = 3,1, = 1,9, = 1,0, = 5,1, =4,y, =2, and p = 1.



Mathematical Problems in Engineering

noe” (x,-/)t)yxi (xi//\)_ 1+y

o vy 1< x;\ 1Y
a = X n+ X ;"9(7) - P (1 _ e—(xi//\)y)

e (x"/’\)yxi (/) z

e_(x‘“)yxi (x;/0)

n

S 2 P oy ey (o ey B

g_i - n<% —log[A] + ilog[xi]> B glog[%] <%>y

i=1

. i e_(x"m)ylog[x,-//\] (x,/0)" e (x"m)ylog[x,-//\] (/M)

+(1-0) 22

(15)

e_(x’“)ylog[xi/)t] (x/1)Y

M=

i=1 - e ()
And,

o n 5 n 1_6—(x,-//\)v

i=11 —(1 -

e_(x"m)y) (1-0) i

>

I
—

2 —(1 —e‘("t“)y)(l ~0)

l-e (x,-//\)y

o o "5 _<1 _e—(x,-//\)y)(l ~

The maximum likelihood estimators for the parameters
of the Weibull distribution A, y, and ¢ are the solutions of the
above nonlinear equations.

Then, we can calculate the asymptotic confidence in-
tervals of the parameters 0, A, and y. The covariance matrix
of the observed variance for the MLEs of the parameters V =
[a,»)j],i,j =1,2,3 was assumed as follows:

o 1
002 0o 0A 0o dy

o'l 'l
01 9o 0)* 01 0y

<
Il
|

(17)

o’ L
Ldy do 0y 0A 0y?

(a:EM L>/\:IML))/:;ML)

100(1 — )% two-sided approximate confidence inter-
vals for the parameters o, A, and y are then given by

&+ 2,V (),

Za/z VV(X)>
P £ 2y \(V (D), (19)

respectively, where V' (5), V(X), and V (p) are the estimated
variances of Gy, Ay, and Py, which are given by the

(18)

=)
I+

and

+ (16)

o) i=lp —(1 = e_(x"m)y> (1- 0).

diagonal elements of V, and z,, is the upper (a/2) percentile
of the standard normal distribution.

Next, obtaining the bootstrap C.I. for boot-p for the
unknown parameters ¢ = (0,4,y), we apply the following
algorithms (for more details, see [11, 12]).

Boot-p interval’s algorithm is as follows:

Step 1. Generate x,. ,,, X. > - - - » X, , from the Weibull
claim distribution and derive an estimate ¢ of ¢.

Step 2. Generate another sample X7, ,,x3 ..., X, ,
using ¢. Then, derive the updated bootstrap estimate ¢
from ¢.

Step 3. Repeat step 2 with a given number B of
repetitions.

Step 4. Using F(x) = P(g75* < x), i.e., the CDF ofi*, the
100(1 —t)% C.I of ¢ is given by

(@Boot—p(%)’ ;/;Bom—p<1 - %>>> (20)

where @, (x) = F ' (x) and x is prefixed.

4.2. Bayesian Estimation. Bayesian inference is an ap-
propriate method to work with the full samples of the
Weibull claim distribution. Given that Weibull claim
distributions are so rare, prior information is very useful.
We assume that 0, A, and y are R.V.s following prior DFs:
Uniform (0;0,a,), Uniform (A;0,a,), and Uniform
(y;0,a,), respectively. The posterior DF of 0,1, and y and
the data under the uniform priors can take the form as
follows:
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7, (0,4, yIx) o< L(0, A, y|x)m; (0,4, ),

y-1
- onl op\" [ 1+
_]uzzgcwzy (Ay> <Hx,-> exp<

i=1

5())

i=1

« 1-exp(-
("=

where ], is the normalizing constant. Next, we suppose that
0,A, and y are R.V.s that follow the prior DF Gamma
(0;a;,b)), Gamma (A;a,,b,), and Gamma (y;as,bs),

(A)))[2= (1= o) (1 - exp(~(x,/1)"))] )
1= (1= o) (1~ exp(-(x/M))]

respectively, where a; and b; are positive constants and
i = 1,2, 3. The posterior DF of 7,1,y and the data under the
Gamma priors can take the forms as follows:

T[; (0) /1) )/|X) S8 L (0> A) )/|X)7T1 (0: /\) V))

Tl!Ua]_ lAaz— 1 _a;-1

i=1

(1

y-1

. (22)
X exp<—<b10+b2/\+b3y+z</{> >>

y (1 -exp(—
("

where ] is the marginal probability DF of x.

4.3. MCMC Method. In the following algorithm, we use
Metropolis Hastings (M-H) procedure with normal DF to
simulate samples from the distributions:

(1) Set the initial values 0@, 1?, and y©. Then, sim-
ulate sample of size n from Weibull claim distri-
bution, next let [ = 1.

(2) Simulate ¢®),1**), and y*). using the proposal
distributions N (g1 Var(a)) NOFY var(h)),
and N (y=Y, Var ().

(3) Obtaln the probablhty r = min (7* (¢ LA,
))/7.[ (O'I I)Al 1) (l 1) 1)

(4) Simulate U from Unlform (0, 1).

(5) If U<r, then (a®,1¥, y®) = (¢ A0 Y. If
Uzr, then (6®@,17,y®) = (¢0-D /1[ o) 1,1))

(6) Set I =1+1.

(7) Tterate Steps 2-6, M repetitions, and get (7, A?, and
y(l) forl=1,...,M.

In order to conduct a Bayesian analysis, usually qua-
dratic loss function is considered. A very popular quadratic
loss is the squared error loss function given by
Ler (9, 9) = (9-9), where 9 is an estimate of the unknown
parameter 9 against SE loss function. By using the generated
random samples from the above Gibbs sampling technique
and for N is the n burn, then the Bayes estimator of 9, say
SSE, can be obtained as

(sD)))[2 = (1= 0) (1 = exp(~(x/1)"))] )
L= (1= 0)(1 - exp(~(x/A))]’

1 f 0)
- 9. (23)
M-N I=N+1

9 = Ey[9]x]

The second loss function is the LINEX loss function,
given by

L (9,9 =explp(9-9)]-p(9-9) —1,p#0. (24)

The approximate Bayes estimate of 9 = 0,1,y under LE
loss function based on the Gibbs sampling technique
becomes

~ -1 -1 Zﬂf +1 €XP{~ 9(1)
Ip = ?log(Ee [exp (-pI)Ix]) = p10g<lN}VI—S\7p) .
(25)

Finally, the general entropy (GE) loss function is given

by
Lop (9,9) = (g) —-¢ log(g) -1 (26)

The approximate Bayes estimate of the parameters is
given by

M —1/e
9GE=(ES[9‘SIX])”E=<—M1 < 2 (9“’)'5) @)

I=N+1

MCMC HPD credible interval algorithm is as follows:
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(1) Sort 6,1, and y™ in rising values.

(2) The lower bounds of 0,1, and y in the rank
(M = N) * a/2.

(3) The lower bounds of 0,1, and y in the rank
(M -=N) = (1-a/2).

(4) Iterate the previous steps M times. Get the average
value of the lower and upper bounds of ¢, A, and y.

5. Simulation Study

The simulation study is conducted as follows:
(1) Random samples of size n = 25, 30, . .., 100 from the
Weibull claim distribution are simulated.

(2) Parameters were estimated using maximum likeli-
hood and Bayesian methods.

(3) Two LINEX loss functions are used: LE1 when p =
—0.1 and LE2 when p = 0.5.

(4) M iterations are performed to obtain the absolute
biases and expected risk (ER) of these estimators.

(5) The point estimates of the parameters using MLE
and MCMC methods are obtained.

(6) We obtain 95% and 90% HPD credibility intervals
using MCMC methods.

(7) The biases and ERs are, respectively, given by

NP G N
Bias (9) = Zl (8, -9). (28)
and
-~ 14 2
ER(9) =-- > (9 -9)" (29)

i=1

The MLE and Bayes simulation results of the Weibull
claim distribution parameters A,y, and ¢ are presented in
Tables 1 and 2.

5.1. Application of the Weibull Claim Model. The data set
represents the lifetimes of Kevlar 49/epoxy strands subjected
to constant sustained pressure at 90% stress level until strand
failure. For previous studies on data, see [13-16]. The data
are as follows: 0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451,
0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696,
0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836,
1.0483, 1.0596, 1.0773,1.1733, 1.2570, 1.2766, 1.2985, 1.3211,
1.3503, 1.3551, 1.4595, 1.4880, 1.5728,1.5733, 1.7083, 1.7263,
1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808,
1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093,
2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951,
2.5260,2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455,
3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, and 9.0960.
Table 3 presents the point estimation of the Kevlar 49/
epoxy strands parameters while Table 4 presents the cor-
responding interval estimation. Table 5 compares the
Weibull claim distribution based on some detection criteria,

TaBLE 1: Point estimation of the parameters A = 0.25,y = 2.5, and
o=1.77.

Point
n Par. ML SE LE1 LE2 GE
0.7731 0.4948 0.499 0.4717 0.4004
o 0.5189 0.2407 0.2448 0.2176 0.1462
1.1062 0.1774 0.1825 0.1498 0.1106
1.1854 2.3515 2.3562 2.3252 2.3245
25 B -1.3166 -0.1505 -0.1459 -0.1769 -0.1776
4.5458 0.2117 0.2104 0.2194 0.2243
1.2235 1.6291 1.6316 1.6153 1.6099
y -0.5508 -0.1453 —0.1428 -0.159 —0.1645
1.3222 0.0591 0.0587 0.0617 0.0635
0.7668 0.3421 0.3444 0.3296 0.2842
o 0.5127 0.0879 0.0903 0.0755 0.0301
1.0357 0.0844 0.0865 0.0735 0.0598
1.2194 2.4733 2.4775 2.4498 2.4511
50 B —1.2826 -0.0288 -0.0246 -0.0523 -0.051
4.9297 0.1642 0.1642 0.1643 0.1667
1.1609 1.7314 1.7333 1.7208 1.7177
y -0.6135 —-0.043 -0.041 -0.0535 -0.0567
1.0077 0.0429 0.0431 0.0423 0.0428
0.7788 0.2381 0.2387 0.235 0.2185
o 0.5246 -0.016 -0.0154 —0.0191 -0.0356
1.0116 0.0235 0.0239 0.0216 0.0198
1.1982 2.5796 2.5813 2.5705 2.5715
200 B -1.3039  0.0776 0.0792 0.0684 0.0695
4.6889 0.0899 0.0904 0.0876 0.0884
1.2423 1.7735 1.7739 1.7706 1.7699
y -0.5321 -0.0009 -0.0004 -0.0038 —0.0045
1.2619 0.0187 0.0188 0.0186 0.0186

First line represents estimate, second line represents bias, and third line
represents ER.

such as the Akaike information criterion (AIC), Bayesian
information criterion (BIC), Hannan-Quinn information
criterion (HQIC), and consistent Akaike information cri-
terion (CAIC). The goodness-of-fit results of the Weibull
claim model (W-claim) are compared with those of some
other models, including the Exponential claim distribution
(Exp-claim), the Weibull distribution (W-D), and the ex-
ponential distribution (EXP-D). Table 6 compares the
W-claim with the Kolmogorov-Smirnov test for one sample.

6. Discussion and Future Framework

The experimental side showed, depending on the two sta-
tistical criteria, the mean square errors and the bias in es-
timating the parameters, that the Bayes method ranks first in
computing the parameter estimates and that the MLE
method ranks second, especially for small samples. As the
sample size increases, the MSE values for each experiment
decrease. The values of the cumulative distribution are be-
tween zero and one, and they increase and are directly
proportional to time. Based on the test results, it was shown
that the proposed distribution best represents the data
compared with competing distributions based on some AIC,
BIC, HQIC, and CAIC. The goodness-of-fit results of the
Weibull claim model are compared with Exp-claim, W-D,
and EXP-D. The results in Tables 5 and 6 suggest that the
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TaBLE 2: Interval estimation of the parameters A = 0.25,y = 2.5, and ¢ = 1.77.
Interval
Par.
ML Boot HPDj HPD,j, HPD,, HPD;,
0.4904 1.0557 0.032 4.419 0.044 1.185 0.0439 1.1964 0.0434 1.1168 0.0308 1.0389
0.5654 4.387 1.141 1.1525 1.0734 1.0081
0.5351 1.011 0.06 2.393 0.1 1.099 0.0999 1.1164 0.098 1.0685 0.077 0.9656
0.476 2.333 0.999 1.0165 0.9705 0.8886
0.9039 1.4669 0.321 7.427 1.286 3.036 1.2912 3.0424 1.2611 3.0142 1.246 3.0178
25 0.563 7.106 1.75 1.7511 1.7531 1.7717
0.9484 1.4224 0.339 5.861 1.562 2.966 1.5691 2.9687 1.5198 2.9512 1.4956 2.9544
0.474 5.522 1.404 1.3997 1.4313 1.4588
0.9431 1.504 0.632 4.698 1.225 1.921 1.2262 1.9241 1.2189 1.9026 1.214 1.899
0.561 4.066 0.696 0.6979 0.6837 0.685
0.9874 1.4597 0.672 2.948 1.294 1.916 1.2955 1.9189 1.2844 1.8904 1.277 1.8838
0.4723 2.276 0.622 0.6234 0.606 0.6068
0.476 1.0575 0.027 3.965 0.055 1.134 0.055 1.1445 0.0548 1.0708 0.0473 0.9557
0.5815 3.938 1.079 1.0894 1.016 0.9084
0.522 1.0116 0.06 2.621 0.094 1.016 0.0941 1.0293 0.0936 0.9373 0.0733 0.7855
0.4895 2.561 0.922 0.9352 0.8437 0.7122
0.8653 1.5736 0.327 7.597 1.585 3.293 1.5862 3.2973 1.5808 3.2636 1.5788 3.2719
50 0.7083 7.27 1.708 1.711 1.6828 1.6931
0.9213 1.5176 0.348 6.879 1.769 3.216 1.7706 3.2208 1.7526 3.1854 1.7449 3.1936
0.5963 6.531 1.447 1.4502 1.4327 1.4487
0.8316 1.4902 0.639 3.469 1.331 2.124 1.3318 2.1294 1.3276 2.098 1.3251 2.0963
0.6585 2.83 0.793 0.7976 0.7704 0.7712
0.8837 1.4381 0.674 2.24 1.367 2.078 1.3683 2.0805 1.3587 2.061 1.3567 2.059
0.5544 1.566 0.711 0.7123 0.7022 0.7023
0.494 1.0635 0.031 3.946 0.078 0.538 0.0781 0.5402 0.0779 0.5244 0.0701 0.4669
0.5695 3.915 0.46 0.4621 0.4464 0.3968
0.539 1.0185 0.056 2.561 0.096 0.404 0.0965 0.4056 0.0958 0.3958 0.083 0.3698
0.4795 2.505 0.308 0.3091 0.3 0.2868
0.9225 1.4739 0.324 7.627 1.929 3.129 1.9309 3.1324 1.9188 3.1103 1.9171 3.1152
200 0.5515 7.303 1.2 1.2015 1.1916 1.1981
0.9661 1.4303 0.354 6.49 2.138 2.983 2.138 2.9868 2.1262 2.9604 2.1257 2.9653
0.4642 6.136 0.845 0.8488 0.8341 0.8395
0.9646 1.5201 0.633 4.604 1.499 2.037 1.4991 2.0382 1.4971 2.0323 1.4962 2.0316
0.5555 3.971 0.538 0.539 0.5352 0.5354
1.0085 1.4762 0.67 2.883 1.548 1.967 1.5486 1.9677 1.5467 1.9624 1.546 1.9616
0.4677 2.213 0.419 0.4191 0.4157 0.4157

The first, second, third, and fourth lines show a 95% credible HPD interval, the corresponding 95% width, 90% credible HPD interval, and the corresponding
95% width of the parameter, respectively.

TaBLE 3: Point estimation of the Kevlar 49/epoxy strands parameters.

Point
N Par. ML SE LE1 LE2 GE
0.3541 0.4319 0.4319 0.4319 0.4318
o -0.0107 0.0778 0.0778 0.0778 0.0776
0.0076 0.0061 0.0061 0.0061 0.0061
5.8049 5.7685 5.7686 5.7681 5.7684
76 B 0.3423 —-0.0364 -0.0363 —-0.0368 —-0.0365
0.0855 0.002 0.002 0.0021 0.002
1.0619 0.9862 0.9863 0.9862 0.9862
y 0.0597 -0.0757 -0.0757 —-0.0757 —-0.0758
0.0082 0.0058 0.0058 0.0058 0.0058

First line represents estimate, second line represents bias, and third line represents ER.
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TaBLE 4: Interval estimation of the Kevlar 49/epoxy strands parameters.
Interval
Par.
ML Boot HPDj HPD,, HPD,;, HPD;
0.1831 0.5251 0.213 0.5 0.418 0.442 0.4176 0.4415 0.4176 0.4415 0.4174 0.4415
0.342 0.287 0.024 0.0239 0.024 0.0241
0.2102 0.4981 0.222 0.491 0.422 0.441 0.4217 0.4412 0.4217 0.4412 0.4214 0.4412
0.2879 0.269 0.019 0.0195 0.0196 0.0198
5.2317 6.3781 5.337 6.284 5.719 5.824 5.7186 5.8241 5.7186 5.8236 5.7186 5.8239
76 1.1464 0.947 0.105 0.1055 0.105 0.1053
5.3224 6.2874 5.363 6.263 5.729 5.812 5.7287 5.8119 5.7287 5.8112 5.7287 5.8117
0.9651 0.9 0.083 0.0832 0.0825 0.083
0.8839 1.2399 0.909 1.212 0.973 1.009 0.9732 1.0086 0.9732 1.0083 0.9732 1.0081
0.356 0.303 0.036 0.0353 0.0351 0.0349
0.9121 1.2118 0.916 1.204 0.975 1.002 0.9753 1.0023 0.9753 1.0023 0.9753 1.0023
0.2997 0.288 0.027 0.027 0.027 0.027

The first, second, third, and fourth lines show a 95% credible HPD interval, the corresponding 95% width, 90% credible HPD interval, and the corresponding
95% width of the parameter, respectively.

TaBLE 5: Relative quality of the W-claim vs. competing models.

Model AIC CAIC BIC HQIC

W-claim (0.0087, 0.4494, 0.0497) 246.5292 246.8625 253.5214 249.3236
Exp-claim (1.1915, 1.3556) 249.3394 249.5038 254.0009 251.2024
W-D (1.3348, 2.1229) 249.0626 249.227 253.7241 250.9255
EXP-D (1.9587) 256.2287 256.2827 258.5594 257.1601

TaBLE 6: One-sample Kolmogorov-Smirnov test.

Model KS p value
W-claim (0.0087, 0.4494, 0.0497) 0.078999 0.700
Exp-claim (1.1915, 1.3556) 0.091496 0.518
W-D (1.3348, 2.1229) 0.10734 0.322
EXP-D (1.9587) 0.1664 0.026

W-claim distribution provides a better fit than other
competing models and could be chosen as a suitable model
for analyzing heavy-tail engineering data.

We recommend the use of the Bayes method for pa-
rameter estimation. In the future, it is possible to expand the
scientific aspects associated with the application, such as the
medical, engineering, and industrial aspects. Other esti-
mation methods can also be used to estimate the parameters
of the proposed new Weibull claim model and compare
them with the methods used in this study.

7. Concluding Remarks

In this paper, we introduced a new extension of the Weibull
distribution, the Weibull claim model. We determined the
maximum likelihood estimators for the parameters of the
Weibull claim distribution and performed a Bayesian Monte
Carlo simulation study. The performances of the Bayesian
estimators are better than those of the corresponding ML
estimators. The new Weibull claim model outperformed
many other old models. The performance of the Bayesian
estimates is more excellent than that of the corresponding
ML estimators. We found that the proposed model provides
a better characterization of industry events by analyzing the

Kevlar 49/epoxy strands data. Therefore, it can be a perfect
model for predicting future cases.
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