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In engineering projects, the coordination and management of multiple objectives is an important part of project management,
which has a direct impact on the realization of objectives in terms of project duration, cost, and quality. +e current engineering
project investment presents the characteristics of large scale, long period, andmany risks, which puts forward higher requirements
for themultiobjective coordinatedmanagement of the project.+erefore, the analysis and optimization of the various objectives of
the engineering project is the basis for achieving multiobjective balance and coordination. +e comprehensive consideration of
the risks faced by the engineering project and the dynamics of the environment in which it is located can make the objective
optimization more realistic. On the basis of risk identification and risk evaluation, this paper is committed to considering multiple
objective factors that affect the outcome of risk decision-making to achieve the optimization of decision-making schemes and
applies multiobjective genetic algorithm to the optimization of decision-making schemes, thus finding a way to optimize the
decision-making scheme. +is paper analyzes the research progress and status of construction project risk management decision
and multiobjective evolutionary algorithm and points out the imperfections of the current research.+en it introduces the related
theory of construction project risk management decision, the related terminology of multiobjective optimization problem and the
method used in this paper—the principle, process, and characteristics of genetic algorithm and prepares for the following problem
solving. In this paper, a mathematical model for multiobjective decision-making of engineering project risk management is
established, and the multiobjective genetic algorithm is used to solve the model. +rough the analysis of examples, a series of
Pareto optimal solutions with good convergence and diversity are obtained, the best combination of various risk control measures
is found, and three goals of risk evaluation value, management cost, and risk loss are achieved.+e twomodels with or without risk
correlation present certain differences, the model with correlation considered is more accurate and applicable than the model
without correlation considered in the existing research.

1. Introduction

For a construction project, risks are latent in the whole
process, all aspects and even all links, so a comprehensive
and systematic risk management approach is needed [1].
+erefore, in order to strengthen construction project risk
management more effectively and improve the level of risk
decision-making, only to achieve a single goal (such as
minimizing the cost of risk control or minimizing the loss

caused by risk, etc.) can no longer meet the actual needs but
need to consider multiple goals at the same time to ensure
effective risk control [2]. For example, when the afore-
mentioned collapse in Dongguan construction process
caused casualties, there is a certain correlation between the
two risk factors of “collapse accident” and “casualties”; when
the collapse was caused by bad weather changes, there is a
certain correlation between the two risk factors of “collapse
accident” and “casualties” [3]. +ere is also a correlation

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 8786849, 11 pages
https://doi.org/10.1155/2022/8786849

mailto:liyanjun1@sust.edu.cn
https://orcid.org/0000-0002-5104-9424
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8786849


between “severe weather change” and “occurrence of col-
lapse” [4]. +ere are many other examples of correlation
between risk factors, but the current theoretical research
does not have a precise definition of risk correlation, and the
risk correlation is not taken into account in the research of
project risk decision model, which leads to the lack of ac-
curacy and applicability of the risk decisionmodel [5]. Chaos
is a relatively common nonlinear phenomenon because it
can be experienced in a specific region without repetition of
all states, so it can be used as an effective mechanism to jump
out when the particles stall. Combining it with particle
swarm algorithm will be very useful for improving the
performance of particle swarm algorithm [6]. +e main idea
of chaos search is to generate a random initial chaotic
variable when there is a particle in stagnation, use the chaos
mapping function to get a chaotic sequence, and “scale up”
the chaotic variable to the search space of the optimization
problem using the carrier wave, if the particle with the best
fitness function value in the chaotic sequence is better than
the stagnant particle, then. If the particle with the best fitness
function value in the chaotic sequence is better than the
stagnant particle, then replacement is performed [7]. Mul-
tiobjective optimization is a class of optimization problems
that we often encounter in real life. +e concept was in-
troduced by French economist V. Pareto as early as 1896,
and its main characteristic is that the objectives may be
contradictory to each other, so it is generally impossible to
optimize all the objectives in the optimization problem
together [8]. In the development of multiobjective optimi-
zation formore than 100 years, there have beenmore than 30
kinds of solutions [9]. Its optimization results are highly
competitive. However, it cannot be ignored that the particle
swarm algorithm, as a relatively new evolutionary algorithm
that has not appeared for a long time, still suffers from the
lack of sound theoretical research, has not really formed a
perfect theoretical system, and its application scope has not
yet been sufficiently expanded [10]. For example, the current
particle swarm algorithms are basically for single-objective
optimization problems, which is not in line with the fact that
most of the optimization problems are multiobjective op-
timization problems [11]. Although some scholars have
studied the application of PSO to multiobjective optimi-
zation, it is often only for low-dimensional optimization
problems, but once it is applied to solve relatively complex
high-dimensional multiobjective optimization problems, the
drawback of premature convergence is almost unavoidable
[12].

Owing to its simple concept and easy implementation, it
has received a lot of attention from scholars because it was
proposed, and now it is widely used in image processing,
neural network, objective optimization, and other fields. In
this paper, the basic principle of particle swarm algorithm,
parameter setting, algorithm improvement, and its appli-
cation in multiobjective optimization are studied. +e
particle-swarm-based algorithm is able to search for solu-
tions in the solution space implicitly and in parallel, and it
can improve the search efficiency of the algorithm by the
similarity between solutions, which is very suitable for
dealing with multiobjective optimization problems. In this

paper, we introduce the optimal solution evaluation selec-
tion and chaos idea into the multiobjective particle swarm
algorithm and propose a chaotic multiobjective particle
swarm algorithm based on optimal solution evaluation se-
lection.+e concept of credibility is proposed to evaluate the
results, and the obtained results are fitted into a curved
surface through linear interpolation, so as to provide an
intuitive basis for risk decision-making. +e decision-
making scheme obtained from the solution results also
provides a strong scientific basis for the actual risk control.

For the problems of premature convergence of particle
swarm algorithm, a particle swarm improvement algorithm
based on chaos idea is proposed, which uses chaotic se-
quence to reinitialize the inert particles that fall into local
extrema during the iteration process, thus helping the inert
particles to jump out of the local extrema and search for the
global optimal solution quickly.

2. Related Work

At present, the research on construction project risk
management at home and abroad is mainly on the iden-
tification of risk factors and risk response strategies, for
example, Song elaborates the relevant issues about risk
management of engineering projects, including the defi-
nition, characteristics and corresponding response strate-
gies of construction project risks, and analyzes the
problems arising from risk management of large con-
struction projects in China from the perspective of safety
[13]. Many scholars also study how to make reasonable and
effective assessment of construction project risks, consider
integrating relevant risk assessment and risk influencing
factors to establish risk assessment system; make risk as-
sessment of construction project based on Bayesian net-
work; research on risk decision objectives for construction
project, research on decision objective system for cross-
regional major engineering projects [14]; propose risk-
value model for risk decision, by establishing function of
risk and value as decision objectives, and then transform
the multiobjective problem into a single-objective problem;
multiobjective optimization algorithm based on decom-
position to consider the multiobjective equilibrium opti-
mization of large engineering projects with risk;
multiobjective study of risk decision using genetic algo-
rithm for construction projects, considering the relation-
ship between risk loss, risk control cost, and risk evaluation
value and conducting decision analysis [13].

In order to improve the performance of the algorithm
and accelerate the convergence speed of the algorithm, the
concept of inertia weights is introduced on the basis of the
basic PSO algorithm, and the size of the inertia weights is
chosen to be dynamically adjusted during the iteration
process in order to balance the convergence speed and the
global nature of the algorithm, and the iterative equation is
called the standard particle swarm algorithm. In the stan-
dard PSO algorithm, the inertia weights are taken to be
linearly decreasing as the iteration proceeds, which makes
the algorithm have a strong global search capability at the
beginning of the iteration and a strong local search capability
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at the late iteration [15]. An improved algorithm for dy-
namically adjusting the inertia weights based on fuzzy rules
is proposed. +e main idea of the algorithm is to use the
inertia weights to formulate fuzzy inference rules and the
corresponding affiliation functions, so as to determine the
increment of inertia weights [16]. +e test results show that
the fuzzy adaptive method has better results compared with
the method with linearly decreasing inertia weights. In
China, in order to discuss the selection of time-varying
weights and fixed weights, systematic experiments on the
selection of weights, and the effects of parameter changes on
the performance of the algorithm are discussed in detail in
terms of the size of the population, the dependence of the
problem, and the topology of the algorithm [17].

+e analysis results show that the value of inertia
weights should be reduced appropriately when the pop-
ulation size increases, and the dependence of the algorithm
performance on the problem is not very obvious, while the
value of inertia weights has more freedom when under the
local version [18]. Amethod for decreasing the cosine of the
inertia weights as the number of iterations increases is
given, and good test results are also obtained. +e scholars
found that the standard PSO algorithm has the disad-
vantage of falling into the local optimal solution, that is, the
algorithm converges prematurely during the iterative
process and does not perform the global search well, and
the diversity of the population decreases significantly with
the increase of the number of iterations due to the fast
convergence of the algorithm, which may not converge to
the global optimum [19]. Based on the idea of spatial
domain, an improved algorithm was proposed in which
particles in the same spatial domain evolve separately and
dynamically adjust the threshold to maintain the pop-
ulation diversity [20].

3. Multiobjective Search for Engineering
Risk Decisions

3.1.Multiobjective AlgorithmwithChaotic Search. Chaos is a
relatively common nonlinear phenomenon that can be used
as an effective mechanism to jump out of a particle stag-
nation because it can go through all states in a specific region
without repetition. Combining it with particle swarm al-
gorithm will be very useful for the improvement of the
performance of particle swarm algorithm. +e main idea of
chaos search is to generate a random initial chaotic variable
when a particle is stagnant, use the chaos mapping function
to obtain a chaotic sequence, and “scale up” the chaotic
variable to the search space of the optimization problem
using a carrier wave. +e replacement is carried out. +e
mathematical procedure is as follows:

A one-dimensional vector is randomly generated if there
are particles in the stagnant state during the iteration.

x0 � x01, x01, . . . , x0n , x0n ∈ [0, 1]. (1)

Using the random vector 0y as the initial value of the
iteration, the chaotic sequence is obtained by iterating
according to the modified Tent chaos mapping equation:

NM � x01, x01, . . . , x0n ,

xn+0 �

xn +
random[0, 1]

1000
, 0<yn < 0.5,

1 − xn−1 −
random[0, 1]

1000
, 0.5<yn < 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where n� 0, 1, 2, 3,. . ..
+e chaotic variable ynd is enlarged into a spatial domain

centered on the current particle with a radius of Rid
according to Eq. where Rid denotes the chaos search radius,
which is generally taken to be 20% of the defined domain of
the function independent variable x:

Ri d � xi d −
random[0, 1]

1000
. (3)

Calculate the fitness function value f(yn), while updating
the optimal position xi and the optimal fitness function value
f at any time during the search process. If f is to be better than
Fi, the original velocity and position of the stalled particle are
replaced by the new velocity v and position x, where v is
taken as shown in equation:

xi �
xi d − random[0, 1] /1000

����
����

x′
. (4)

3.2. Particle SwarmAlgorithm. In the iterative process of the
particle swarm algorithm, a unified mechanism consisting of
stagnation detection and stagnation processing is used to
keep the population from stagnating or to jump out quickly
when stagnation occurs. +e stagnation detection is the
stagnation determination method of the particles, while the
stagnation processing is the chaotic search technique used
when stagnation occurs. +is section specifies the stagnation
determination method for particles. Assume that Fi and
Fpbest are the current fitness function value and the indi-
vidual historical optimal fitness function value of the ith
particle, respectively, and δ and Nc are the predetermined
constant thresholds. If ∆Fi< δ is satisfied for Nc consecutive
times in the iteration, the particle is determined to be stalled,
where ∆Fi is taken as shown in equation:

ΔFi �
Fi − Fpbest 

Fi

. (5)

+e particle swarm algorithm with chaotic search is
shown in Figure 1.

Step 1. Initialization: Set the population size and the
maximum number of iterations of the population and use
chaos search technique to randomly initialize the position
and velocity of the particles.

Step 2. Evaluate the fitness function value Fi of the particles
in the population and update the individual historical op-
timal position and its optimal value Fpbest and the global
historical optimal position and its optimal value Fgbest.
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Step 3. Determine whether there is particle stagnation, if
not, go to Step 4, if yes, then perform chaos search.

(1) Initialize the chaos iteration counter G � 1 and set
the number of chaos searches Nmax and the search
radius Rid.

(2) Generate a chaotic sequence according to the im-
proved Tent chaos mapping equation and scale it up
to a spatial domain with a radius of Rid centered on
the stalled particle according to equation.

(3) Calculate the value of the fitness function f(yn) of the
particle and update the optimal f∗ and x∗i in the
chaotic search process.

(4) Update the counter Gc � G + 1 and skip to Step 2
until Gc >Nmax.

(5) Replacing the position and velocity of the stalled
particles with x∗i and v∗i during the chaotic search.

Step 4. Calculate the new velocity and new position of each
particle.

Step 5. If the termination condition is met or the maximum
number of iterations is reached, then stop and output the
final result, otherwise, go to Step 2.

3.3. Risk Correlation Interactivity Coefficient Inscription.
Interactivity coefficient, as an important indicator, is used to
characterize the degree of correlation between risks and is
generally taken as [−1, 1], (0,1] means that the correlation
between two risks is positive, that is, if two risks occur si-
multaneously, the sum of their losses is greater than the sum
of their losses occurring separately; 0 means that there is no

correlation between two risks at the loss level, that is, the two
risks do not affect each other, and their losses exhibit ad-
ditivity; [−1,0] means that the correlation between two risks
is negative, that is, the sum of their losses occurring si-
multaneously is smaller than the sum of their losses oc-
curring separately. (−1, 0) indicates that the correlation
between the two risks is negative, that is, the sum of losses
generated by their simultaneous occurrence is smaller than
the sum of losses generated by their separate occurrence.
Assuming that two risks i and risk j are correlated, define Iij
as the coefficient of interactivity between risk i and risk j.
Obviously Iij � Iji. Define Lij as the correlated loss they
generate when two related risks i and risk j occur simul-
taneously, obviously Lij � Lji.

Choquet integral, as a kind of fuzzy integral, is now
widely used in decision analysis, data mining, and other
fields. It can effectively solve the problem of interaction
between attributes, that is, integrating the correlation in-
formation into the decision analysis process involving at-
tributes through the fuzzy measure of fuzzy sets, so it can be
used to measure the loss of risk correlation (the decision
attribute at this point is the risk loss). From the Choquet
integral, the integration operator at this point is equivalent
to Lij, that is, we have

Lij �
μi ∗ΔL + Δμi ∗ L

μi ∗L
,

Δμi � μi − μi+1.

(6)

μi denotes the fuzzy measure of the fuzzy set consisting
of the ith risk, which is under the fuzzy measurement based
on

Start

Initialization

fitness function value Fi

particles in the population

update the individual 
historical optimal 

position

optimal value Fpbest and the 
global historical optimal position

its optimal value Fgbest

Ev
al

ua
te

 th
e fi

tn
es

s f
un

ct
io

n 
va

lu
e

Initialize the chaos iteration 
counter G=1

generate a chaotic 
sequence

Calculate the value of 
the fitness function

Update the counter 
Gc=G+1

Replacing the position and 
velocity

D
et

er
m

in
e w

he
th

er
 th

er
e i

s 
pa

rt
ic

le
 st

ag
na

tio
n

Calculate the new velocity and new position

stop and output the final result

Figure 1: Particle swarm algorithm with chaotic search.
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Δμi � ωi + 
n

i�1
Iij − Iji . (7)

Based on the derived loss-at-risk values and incorpo-
rating them into the risk decision model, REC is defined as
the expected value of risk loss considering correlated losses,
then according to the definition is specified as follows:

Ri d � 
i�1

Iij ×
1 − xi(  1 − xj 

Lij

⎡⎣ ⎤⎦, (8)

where W denotes the set of correlated risks, i, j≤W means
that risk i and risk j are correlated. Since xi and xj can only
take 0 or 1, there is no correlation as long as at least one risk
of xi or xj is controlled, that is, at least one of xi or xj has a
value of 1. In addition, correlated risk losses include not only
losses caused by themselves but also losses from correlations
between their risks. In order to further analyze the changes
of the model before and after considering correlation, the
multiobjective risk decision model of the project without
considering correlation is compared with the multiobjective
risk decision model of the project considering correlation at
the loss level, and the differences are shown in Table 1 below:

As can be seen from the table, the multiobjective risk
decision model under consideration of correlation is more
complete, taking into account not only the impact of its own
individual risk loss, but also the impact of risk loss related to
it, which is also more relevant to the actual situation.
According to the expression of risk-loss expectation:

REi � Pi ⊗Li. (9)

+e correlation between risk factors can be analyzed at
the loss level and at the probability level. Since the model
mentioned in this chapter places more emphasis on the
probability of the occurrence of risks, the correlation be-
tween risks is analyzed only for the probability level to
portray the correlation between risks. When there is a
certain correlation between two risks, the occurrence of one
risk will facilitate or inhibit the occurrence of the other risk
to some extent, which is expressed in probability as the
probability of occurrence of one risk will be influenced by
the probability of occurrence of its related risk, and this
logical relationship can be expressed by conditional prob-
abilities, which can be obtained by solving Bayesian net-
works. Dynamic Bayesian network introduces time series on
the basis of the original static Bayesian network, and through
its own prior network and transfer network can get the
conditional probabilities of nodes at different moments in
time effectively. Since the dynamic Bayesian network itself is
more complex, in order to simplify its inference process, it is
generally necessary to attach some assumptions to the dy-
namic Bayesian network to simplify the calculation.

3.4. Variables in the Nodes. Under the aforementioned as-
sumptions, a set of variables y� {y1, y2,. . .,yn} is defined as n
hidden nodes, and a set of variables z� {z1, z2,. . ., zn} is
defined as n observation nodes, and a static Bayesian net-
work with n hidden nodes corresponding to n observation

nodes is established, in which there is a logical relationship
between hidden nodes and observation nodes, and between
observation nodes and observation nodes. +e probability
distribution of the hidden nodes can be obtained by using
the conditional probability through the observation values of
the observation nodes. Based on the aforementioned defi-
nition, the prior network as shown in Figure 2 can be
constructed, and the prior probability of each node can be
obtained through the prior network, and the interaction
between different risk factors will produce different prior
networks.

Both risk-related multiobjective decision models at the
loss level and probability level reflect multiobjective opti-
mization problems. Traditionally, multiobjective optimiza-
tion problems are solved by converting multiple objectives
into a single-objective using classical methods, such as linear
weighting method, constraint method, and maximum-
minimum method. Although these traditions are simple to
operate, they exhibit the following limitations when the
multiobjective optimization objectives are in conflict.

(1) Using traditional methods to solve each algorithm
can only get one Pareto optimal solution, and the
merit of the solution is directly related to the pa-
rameters used in the multiobjective transformation
of a single objective, while in practical application,
multiple Pareto optimal solutions are often needed
for decision-makers to make a choice, so that each
time to obtain multiple Pareto optimal solutions
requires constant adjustment of parameters, result-
ing in a lot of time consuming.

(2) +e traditional method needs to combine multiple
objectives, which requires the decisionmaker to have
a high a priori knowledge of the optimization
problem and due to the different parameter settings
will generally produce different Pareto optimal so-
lutions, if the decision maker has little background
knowledge of the research problem, improper pa-
rameter settings will lead to poor quality of the
obtained Pareto optimal solutions.

(3) Unlike traditional solution methods, the optimal
solution obtained by the multiobjective particle
swarm algorithm (MOPSO) is not unique, but a set
of noninferior solutions, and each iteration produces
a set of noninferior solutions that can be used for the
next iteration, avoiding the trouble of resetting the
parameters for each operation.

Table 1: Comparison of models with and without correlation.

Multiobjective risk decision model Model 1 Model 2

Same point

1. Decision variables and
risk assessment values
2. Minimize risk control

cost targets
3. Models are integers

Differences
Losses are nonadditive No Yes
Different types of risk

losses
But the
risks

Related
risks
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In addition, the multiobjective particle swarm algorithm
does not have high requirements on the problem itself, and
its solution distribution and approximation are better, which
makes the multiobjective particle swarm algorithm more
suitable for solving multiobjective problems than the tra-
ditional multiobjective algorithm, as shown in Figure 3. In
the multiobjective decision model of this paper, since
minimizing the cost of risk control and minimizing the loss
expectation of risk are two conflicting objectives, how to
weigh their optimal can be achieved by multiobjective
particle swarm algorithm.

4. Optimization and Risk Controlling

4.1. Optimization of Risk and Decision-Making. Risk loss
expectation and risk control cost show some nonlinear re-
lationship, and it can be seen that the risk loss expectation will
gradually decrease with the increase of risk control cost, and
when the control cost is equal to 0, which means that all risks
are chosen not to be controlled, the corresponding risk loss
expectation reaches the maximum value; conversely, as the
risk control cost gradually increases, the risks are gradually
controlled, which shows conversely, as the risk control cost
gradually increases, the risk is gradually controlled and the
risk loss expectation slowly decreases, and when the risk
control cost increases to the maximum value, the risk loss
expectation equals 0, which means that all risks are controlled
at this time. However, in real life, it is almost impossible to
control all risks, so decision-makers need to choose to control
one or more risks based on the existing risk control cost to
achieve the best risk control effect, so as to ensure that the
resulting losses are minimized, as shown in Table 2.

+rough further investigation and based on the results of
expert evaluation, three pairs of correlated risk sets were

identified, among which two pairs were positively correlated
and one pair was negatively correlated, as shown in Figure 4.
By comparing the loss caused by a single risk with the loss
caused by two risks occurring at the same time, it is found that
when the two risk factors “unreasonable design change re-
quirements” and “damage to the substructure” occur at the
same time, the unreasonable design will often change. +ere
must also be cost loss in the whole process from design change
determination to implementation, such as the coordination
cost between the contractor and the builder, so when both of
them occur at the same time, the loss sum generated by them is
larger than the loss sum generated by them alone, showing a
positive correlation; when the “engineer’s approval delay” and
the “construction damage” occur at the same time, there is a
positive correlation. When the two risk factors of “engineer’s
approval delay” and “schedule delay” occur at the same time,
on one hand, the schedule delay occurs not only from the
various delays approved by the engineer but also from other
reasons, such as technical reasons, resource allocation reasons,
environmental reasons, and so on; on the other hand, for the
critical path in the. On the other hand, the delay caused by the
engineer’s approval of the process on the critical path directly
affects the schedule delay. +e two are mutually inclusive
relationship, so when the two occur at the same time, they
produce losses and smaller than the losses and occur sepa-
rately, showing a negative correlation.

+e model is solved by applying the MOPSO algorithm
again considering the risk-loss correlation, and 18 Pareto
optimal solutions are obtained. It can be found that com-
pared with the Pareto optimal solution set without con-
sidering correlation, although the number of solution sets
remains the same, the optimal solution values change. By
comparing the results of solving the model with and without
considering correlation, the Pareto optimal solution set
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before and after considering correlation, that is, the image of
the relationship between risk control cost and risk loss
expectation, can be made, as shown in Figure 5.

4.2.ModelDetection andDecisionOptimization. At a certain
risk control cost, the expectation of risk loss under con-
sideration of correlation is much larger than the expectation
of risk loss without consideration of correlation, and the
increasing trend is slightly moderated in the interval [104,
2×104); in the interval [2×104, 3.6×104], the gap between
the two gradually decreases and eventually reduces to zero.

+e reason for this trend is that the risk control cost held in
the first two intervals is relatively small compared to the
third interval, and thus the risk loss caused by considering
correlation is greater, so that the first two intervals show
more of a positive correlation between the two risks; while
for the third interval because there is already sufficient risk
control cost to gradually control the risk, the consideration
of the correlation does not have a significant impact on the
risk loss expectation, and the difference between the two
decreases to zero. It can be seen that if the risk correlation is
ignored, there will be certain differences before and after the
model because only the loss caused by a single risk is
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Figure 3: Distributivity and approximability of multiobjective particle swarm algorithm.

Table 2: Risk control effectiveness.

Risk nodes Risk loss expectation Risk control costs
Node 1 NA 0.4739± 0.157
Node 2 NA 0.5652± 0.148
Node 3 0.6213± 0.269 0.6220± 0.169
Node 4 0.6349± 0.253 0.6539± 0.165
Node 5 0.7365± 0.183 0.8186± 0.129
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considered without considering the correlation loss,
resulting in the risk loss expectation not greater than the risk
loss expectation under the consideration of correlation,
which means that the loss caused by the occurrence of risk is
underestimated, and thus the assessment of construction
project risk is not accurate. In this section, a multiobjective
risk decision model is established by considering the loss
correlation to measure the risk correlation from a quanti-
tative perspective, so as to improve the risk management of
construction projects. Similarly, the multiobjective particle
swarm algorithm is applied to solve the model, and the
parameter sets are all the same as those set. +e results are
compared with those obtained using static Bayesian net-
work, and the results are shown in Figure 6. It is found that
13 Pareto optimal solutions can be obtained after several
iterations, but there are some differences between the op-
timal solutions of both. +e two aforementioned models
only portray the correlation of risks from two different
perspectives; the loss-level risk-related multiobjective deci-
sion model considers loss correlation, while the probability-
level risk-related multiobjective decision model considers
probability correlation, and there is no difference between
the two.

From Figure 7, we can see that regardless of whether
dynamic Bayesian network or static Bayesian network is
used, the risk loss expectation and risk control cost of
construction projects show an approximately nonlinear
relationship, and the risk loss expectation gradually de-
creases with the increase of risk control cost; not only that,
when the risk control cost is less than $15,000, it leads to a
larger risk loss expectation because the control cost invested
in risk is less. +e risk loss expectation under dynamic
Bayesian network is larger than that under static Bayesian
network, which indicates that using static Bayesian network
to estimate the risk probability will underestimate the loss
caused by the risk; when the risk control cost is larger than
$15,000, the risk is gradually controlled as the risk control
cost increases, and at this time, no matter using dynamic
Bayesian network When the risk control cost is greater than

$15,000, the risk is gradually controlled as the risk control
cost increases, at which time the difference between the two
risk exposure values gradually decreases and eventually
tends to zero regardless of whether the dynamic Bayesian
network or static Bayesian network is used.

4.3. Network Algorithm Clustering Results. In practical sit-
uations, risks are often controlled in order to effectively
prevent and avoid the occurrence of risks, but the economic
conditions such as cost constraints often prevent the
implementation of control for all risks. By solving the Pareto
optimal solution obtained from the model, it is possible to
select the appropriate decision solution based on the
available risk control cost, that is, selectively control certain
risks, such as risk avoidance, risk prevention, and risk
transfer, while implementingmeasures such as risk retention
for the uncontrolled risks. For the aforementioned example,
assuming that there is only 6000 USD risk control cost, then
the best decision is to control only the risk of “schedule
delay”, with specific measures such as strengthening con-
struction supervision andmanagement, establishing a sound
project organization job responsibility system, and so on, so
that the maximum return can be achieved with limited cost,
as shown in Figure 8.

+e two aforementioned models only portray the cor-
relation of risks from two different perspectives; the loss-
level risk-related multiobjective decision model considers
loss correlation, while the probability-level risk-related
multiobjective decision model considers probability corre-
lation, and there is no difference between the two. However,
either model considers correlation, which improves the
accuracy and applicability of the model compared to the
existing multiobjective risk decision models that do not
consider correlation. +e aforementioned examples show
that the results obtained by the two models are still relatively
close, and the risk loss expectation and the risk control cost
both show an approximately nonlinear relationship, with a
decreasing trend of the risk loss expectation as the risk
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control cost increases. When the probability of risk oc-
currence cannot be estimated by the lack of historical data,
the loss-level risk-related multiobjective decision model can
be used, and the model can be solved by the risk evaluation
value obtained from the expert assessment and the existing
risk control cost, and then the decision solution can be
obtained for risk decision; when the probability of risk
occurrence can be estimated by the sufficient historical data,
the probability-level risk-related multiobjective decision.
When the historical data are sufficient to estimate the
probability of risk occurrence, the risk-related multi-
objective decision model can be used to make risk decisions
and achieve dynamic risk management using dynamic
Bayesian networks.

5. Conclusion

In this paper, we apply the loss-level risk-related multi-
objective decision model and the probability-level risk-
related multiobjective decision model to a specific example
and solve the risk control problem reflected by the example
with a multiobjective particle swarm algorithm and find
that there are some differences between the multiobjective
risk decision model with risk correlation and the multi-
objective risk decision model without risk correlation. In
addition, the multiobjective risk decision model based on
dynamic Bayesian network has higher risk assessment
accuracy than the multiobjective risk decision model based
on static Bayesian network, and the decision solution
obtained from the model solution helps risk managers to
make scientific and effective decisions to ensure that the
risk loss is minimized with limited risk control cost.
Compared with other decision models of construction
projects, the decision model of construction projects in this
paper takes into account the existence of certain correlation
between risks, and tries to portray risk correlation from
different perspectives such as the probability of risk oc-
currence and the loss caused by risk and establishes a
multiobjective decision model that takes into account risk
correlation to enhance the applicability and accuracy of the
model, so as to provide some practical risk assessment and
decision-making. +e two models with or without risk
correlation present certain differences, the model with
correlation considered is more accurate and applicable
than the model without correlation considered in the
existing research, and compared with the static Bayesian
network, the dynamic Bayesian network can improve the
accuracy of estimating the risk probability of construction
projects, can better explain the correlation between risks,
and its results can more correctly reflect the results can
more correctly reflect the actual situation of construction
project risk management, thus improving the risk decision
management. In the future, 13 Pareto optimal solutions can
be obtained after several iterations, but there are some
differences between the optimal solutions of both.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

+is work was supported by the ‘Key Art Projects of the
National Social Science Foundation (grant no.18AH008)’.

References

[1] S. Antomarioni, M. M. Bellinello, M. Bevilacqua,
F. E. Ciarapica, R. F. D. Silva, and G. F. M. D. Souza, “A data-
driven approach to extend failure analysis: a framework de-
velopment and a case study on a hydroelectric power plant,”
Energies, vol. 13, no. 23, pp. 6400–6421, 2020.

[2] X. Gou, Z. Xu, W. Zhou, and E. Herrera-Viedma, “+e risk
assessment of construction project investment based on
prospect theory with linguistic preference orderings,” Eco-
nomic Research-Ekonomska Istraživanja, vol. 34, no. 1,
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M. Zeynalian, “Enhancement of bid decision-making in
construction projects: a reliability analysis approach,” Journal
of Civil Engineering and Management, vol. 27, no. 3,
pp. 149–161, 2021.

[5] P. Jiang, Z. Liu, J. Wang, and L. Zhang, “Decomposition-
selection-ensemble forecasting system for energy futures price
forecasting based on multi-objective version of chaos game
optimization algorithm,” Resources Policy, vol. 73, Article ID
102234, 2021.

[6] M. Ehsanifar and M. Hemesy, “A new hybrid multi-criteria
decision-making model to prioritize risks in the construction
process under fuzzy environment (case study: the Valiasr
Street underpass project),” International Journal of Con-
struction Management, vol. 21, no. 5, pp. 508–523, 2021.

[7] B. Liu and D. Rodriguez, “Application of multi-objective
optimization model to assess the energy efficiency measures
for the cases of Spain,” Journal of Building Engineering, vol. 38,
Article ID 102144, 2021.

[8] X. Xu and P. X. W. Zou, “System dynamics analytical
modeling approach for construction project management
research: a critical review and future directions,” Frontiers of
Engineering Management, vol. 8, no. 1, pp. 17–31, 2021.

[9] X. Ren, Y. Wu, D. Hao, G. Liu, and N. Zafetti, “Analysis of the
performance of the multi-objective hybrid hydropower-
photovoltaic-wind system to reduce variance and maximum

10 Mathematical Problems in Engineering



power generation by developed owl search algorithm,” En-
ergy, vol. 231, Article ID 120910, 2021.

[10] M. S. Sanaj and P. M. Joe Prathap, “Nature inspired chaotic
squirrel search algorithm (CSSA) for multi objective task
scheduling in an IAAS cloud computing atmosphere,” En-
gineering Science and Technology, an International Journal,
vol. 23, no. 4, pp. 891–902, 2020.

[11] A. Seifi, M. Ehteram, and F. Soroush, “Uncertainties of in-
stantaneous influent flow predictions by intelligence models
hybridized with multi-objective shark smell optimization
algorithm,” Journal of Hydrology, vol. 587, Article ID 124977,
2020.

[12] Z. Shao, F. Si, H. Wu, and X. Tong, “An agile and intelligent
dynamic economic emission dispatcher based on multi-ob-
jective proximal policy optimization,” Applied Soft Comput-
ing, vol. 102, Article ID 107047, 2021.

[13] A. Qazi, A. Daghfous, andM. S. Khan, “Impact of risk attitude
on risk, opportunity, and performance assessment of con-
struction projects,” Project Management Journal, vol. 52,
no. 2, pp. 192–209, 2021.

[14] Y. Song, K. Zhang, X. Hong, and X. Li, “A novel multi-ob-
jective mutation flower pollination algorithm for the opti-
mization of industrial enterprise R&D investment allocation,”
Applied Soft Computing, vol. 109, Article ID 107530, 2021.

[15] R. Syah, S. Faghri, M. K. Nasution, A. Davarpanah, and
M. Jaszczur, “Modeling and optimization of wind turbines in
wind farms for solving multi-objective reactive power dis-
patch using a new hybrid scheme,” Energies, vol. 14, no. 18,
pp. 5919–5926, 2021.

[16] C. E. Obodo, Z. Xie, B. B. Cobbinah, and K. D. Y. Yari,
“Evaluating the factors affecting contractors tender for project
construction: an empirical study of small scale indigenous
contractors in awka, Nigeria,” Open Journal of Social Sciences,
vol. 9, no. 7, pp. 381–397, 2021.

[17] X. Wang, X. Mao, and H. Khodaei, “A multi-objective home
energy management system based on internet of things and
optimization algorithms,” Journal of Building Engineering,
vol. 33, Article ID 101603, 2021.

[18] C. Xie, D. Y. Lin, and S. T. Waller, “A dynamic evacuation
network optimization problemwith lane reversal and crossing
elimination strategies,” Transportation Research Part E: Lo-
gistics and Transportation Review, vol. 46, no. 3, pp. 295–316,
2010.

[19] J. Zhang, Y. Huang, G. Ma, Y. Yuan, and B. Nener, “Auto-
mating the mixture design of lightweight foamed concrete
using multi-objective firefly algorithm and support vector
regression,”Cement and Concrete Composites, vol. 121, Article
ID 104103, 2021.

[20] D. Chenger and J. Woiceshyn, “Executives’ decision processes
at the front end of major projects: the role of context and
experience in value creation,” Project Management Journal,
vol. 52, no. 2, pp. 176–191, 2021.

Mathematical Problems in Engineering 11


