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�e paper investigates DOA estimation of coherent Signals with the limited aperture sparse array. Mutual coupling between the
sensors of the array cannot be ignored in practical radar with a limited aperture of array sensors, which will result in a degradation
in the performance of Direction of Arrival (DOA) estimation. �is paper proposes a Mutual-coupling-optimized array (MCOA)
with a limited aperture in this scenario to reduce the mutual coupling e�ect. Firstly, we prove the sparse uniform linear array
(SULA) has the smallest mutual coupling leakage when the array aperture and the number of sensors is determined. Secondly, we
modify the spacing of the array sensors in SULA to make sure that the spacing between all array sensors and the reference sensor
are coprime aiming to estimate DOA without spatial aliasing. �irdly, we give an expression for the array element spacing
arrangement with reducedmutual coupling leakage. Finally, the coherent signals are well resolved by the Sparse Bayesian Learning
(SBL) algorithm. Numerous simulations are conducted to validate the advantages of the proposed array compared to several
sparse arrays for estimating coherent signals in the presence of mutual coupling.

1. Introduction

�e problem of Direction of Arrival (DOA) estimation has
attracted a lot of attention in the �elds of radar, sonar,
navigation, and astronomy [1–7], where the antenna arrays
are utilized for collecting the spatial sampling of incident
signals. Scholars propose many DOA estimation algorithms
based on the uniform linear array (ULA), such as multiple
signal classi�cation (MUSIC) [5], estimation of signal pa-
rameters via rotational invariance techniques (ESPRIT) [6],
propagator method (PM) [8], and parallel factor (PAR-
AFAC) technique [9].

However, the above-given algorithm is predicated on the
assumption that the incident signals are uncorrelated. �e
received signals are typically coherent and the rank of the
covariance matrix is insu¤cient due to the impact of the
transmission environment in actual applications. �e

aforementioned DOA estimation algorithm will be invalid at
this time [10]. To tackle this problem, some decoherence
algorithms are proposed to deal with coherent signals. �e
most representative method is the spatial smoothing (SS)
method [11], which regards ULA as many subarrays with the
same array ¥ow type and then averages the covariance
matrix of each subarray to obtain the full rank covariance
matrix. Later, people proposed the Forward/backward
spatial smoothing techniques [12], improved spatial
smoothing techniques [13] on this basis of SS and make a
series of improvement on these algorithms [14]. In [15], the
authors were devoted to establishing more accurate con-
ditions by studying the positive de�niteness of smoothed
target covariance matrix. �ere are also algorithms that
reconstruct the covariance matrix of the received signal,
such as SVD algorithms and the Toeplitz decoherence
method [16]. �ese methods estimate coherent signals at the
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expense of array aperture, which reduces DOA estimation
performance. )e compressed sensing (CS) algorithms
[17–19] can estimate DOA by exploiting the sparsity of the
target in the spatial domain without taking into account the
coherence of the signals. In [20], an iterative adaptive ap-
proach (IAA) is given for the beamforming design based on
the sparsity. In [21], the Orthogonal Matching Pursuit
(OMP) is used to recover the spare signal with high
probability, but the accuracy of OMP is lower than that of
MUSIC. In [22], both the Sparse Bayesian Learning (SBL)
and the relevance vector machine (RVM) are proposed. )e
weakness of CS algorithms is that they are more complex
than the previously described DOA estimating techniques.
)e traditional DOA estimation algorithms are generally
considered based on ULA, but sparse linear arrays are
seldom utilized.

Recently, sparse arrays such as Nested arrays (NA) [23]
and coprime arrays (CA) [24] have attracted wide attention
because such sparse arrays can achieve O(M2) degrees of
freedoms (DOFs) with only M antenna sensors. )ough the
DOA estimation performance of NA is better than that of
CA, the mutual coupling leakage of NA is much greater than
that of CA due to the influence of the dense ULA subarray,
which reduces performance in the presence of mutual
coupling. Despite the array positions of CA and NA can be
expressed in closed-form, their continuous degrees of
freedom are not the greatest. In comparison to CA and NA,
the minimum redundant array (MRA) [25] has the most
continuous degrees of freedom, allowing it to use more
virtual arrays. However, MRA lacks a closed-form expres-
sion for the locations of its sensors, and its array design
requires a significant amount of complicated calculations.

)e aperture of the array is usually limited in most
applications, and the number of array elements is fixed.
Because the spacing between the array elements is relatively
close, the mutual coupling effect cannot be ignored. ULA
and traditional sparse arrays will fail to estimate the DOA of
coherent signals and the research of DOA estimation in this
situation is relatively few. )ough there are some methods
[26–28] proposed to mitigate the mutual coupling effects by
utilizing a complex mutual coupling model, these methods
estimate mutual coupling coefficients at the cost of increased
complexity and decreased degree of freedom (DOFs).
)erefore, it is a good choice to consider how to reduce the
mutual coupling effect when designing the array. Under the
restrictions of a set array aperture and a number of array
sensors, this paper determines the array design approach
with the least mutual coupling leakage, and we further
propose a Mutual-coupling-Optimized Array (MCOA)
based on the theory of estimating DOA without spatial
aliasing [29, 30]. To estimate the DOA of coherent signals,
we use the sparse Bayesian learning-based (SBL) compressed
sensing algorithm. In particular, we summarize our main
contributions as follows:

(1) We propose a mutual-coupling-optimized array
under the restriction of a fixed number of sensors
and fixed array aperture. )en, we prove that the
mutual coupling leakage of the suggested array is

smaller than that of conventional sparse arrays
and that it can estimate DOA without spatial
aliasing.

(2) We employ the SBL algorithm to estimate coherent
DOA for the proposed array and compare the SBL
algorithm with other algorithms to demonstrate
that the estimation performance of the SBL algo-
rithm is better than other algorithms including
OMP and IAA.

)e remainder of this paper is given as follows: we
provide the mathematical model of the sparse array and the
definition of mutual coupling matrix in Section 2. In Section
3, we present how to design the mutual coupling optimized
array with a limited aperture. Section 4 introduces the
specific steps of the sparse Bayesian learning algorithm.
Section 5 analyses the CRB of the array in this context.
Section 6 verifies the theoretical performance of the pro-
posed array through simulation analysis while Section 7
concludes this paper.

Notations: scalars, vectors, matrices, and sets are
denoted by lowercase letters a, lowercase letters in boldface
a, uppercase letters in boldface A, and letters in blackboard
boldface A, respectively. AT, A∗, and AH are the transpose,
complex conjugate, and complex conjugate transpose of A.
Tr[·] denotes the trace operator for a matrix. ‖ · ‖F represents
the Frobenius norm and diag(·) represents the matrix
formed by the diagonal elements of thematrix. [A]i,j denotes
the (i, j) entry of A. gcd(n1, n2, · · · , nM) denotes the greatest
common divisor of the elements.

2. Mathematical Model

Consider a sparse array consisting of M sensors as shown in
Figure 1, and the position of the ith sensor is denoted by zid

with d � λ/2, zi represents the distance of the i- th sensor
relative to the reference sensor and λ stands for the wave-
length. Suppose that there are K far-field narrowband co-
herent signals from different directions θ � [θ1, θ2, · · · , θK]�������

b2 − 4ac
√

with powers p � [σ21, σ
2
2, · · · , σ2K] impinge on this

sparse array. )e received signal of the array can be
expressed as follows [2]:

X0 � AS + N, (1)

where A � [a(θ1), a(θ2), · · · , a(θK)] represents the direction
matrix and a(θi) � [1, ej2πz2d sin θi/λ, · · · , ej2πzMd sin θi/λ]T de-
notes the direction vector of the ith signal. λ is the wave-
length of the signal. S � [α1, α2, · · · , αK]s0 ∈ CM×J means the
narrowband coherent signals with J snapshots, where s0 is
the generate signals and αi stands for the complex constant.
N ∈ CM×J represents the additive white Gaussian noise
vector with noise variance σ2.

)ere is coupling between the array elements. )e re-
ceived signal model is expressed as follows [28]:

X � CAS + N, (2)

where C is the mutual coupling matrix. )e mutual coupling
matrix can be modelled as a B-banded symmetric Toeplitz
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matrix according to the assumption in the following
equation [28]:

[C]p,q �

0, zp − zq



>B

c
zp−zq




zp − zq



≤B,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where 1> |c1|> · · · > cB > 0, c1 � c0e
jπ/3, cs � c1e

− j(s− 1)/8/s,
s ∈ (0, B]. c0 is the mutual coupling constant and B denotes
the maximum spacing of sensor pairs with mutual coupling.
In addition, the mutual coupling is evaluated by the coupling
leakage, i.e.,

c �
‖C − diag(C)‖F

‖C‖F

. (4)

3. Mutual-Coupling-Optimized Array with
Limited Aperture

In this section, we first show that the mutual coupling
leakage of the sparse and uniform linear array is the
smallest under the condition of finite aperture and
number of elements. )en, we discussed how to change
the position of the array elements, so that the mutual
coupling leakage is still small, and there is no spatial
aliasing in DOA estimation.

3.1. A Minimum Mutual Coupling Leakage Array.
Considering the M- element array with an array aperture of
N, we propose an array which has no spatial aliasing in DOA
estimation and has the smaller mutual coupling leakage than
most sparse arrays.

Lemma 1. For an M element array with an array aperture of
N, the mutual coupling leakage is minimized if and only if the
array elements are equally spaced.

zi+1d − zid � zid − zi−1d �
N

(M − 1)
, i � 2, 3, · · · , M − 1.

(5)

Proof. According to equation (3), the mutual coupling
matrix can be expressed as follows:

C �

c0 cz2−z1
· · · czM−z1

cz2−z1
c0 · · · czM−z2

⋮ ⋮ ⋱ ⋮

czM−z1
czM−z2

· · · c0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

)en, the expression of the coupling leakage can be
calculated as follows:

c �
‖C − diag(C)‖F

‖C‖F

�

�����������������

2
M−1
i�1 

M
j�i+1 czj− zi




2



������������������������

M
2
c0| | + 2

M−1
i�1 

M
j�i+1 czj−zi




2

 , (7)

where



M−1

i�1


M

j�i+1
czj− zi




2

� c1



2



M−1

i�1


M

j�i+1

1

zjd − zid 
2 � c1



2
S, (8)

where S � 
M−1
i�1 

M
j�i+1 (zjd − zid)− 2. )e value of zi, i �

1, 2, · · · , M corresponding to the minimum value of S is the
position of each array sensor when the mutual coupling
leakage is minimum.

Denote the M − 1 array spacings as x1, x2, · · · , xM−1
respectively. )en,

S � 
M−1

i�1


M

j�i+1
zjd − zid 

− 2
� 

M−1

i�1
zi+1d − zid( 

− 2

+ 
M−2

i�1
zi+2d − zid( 

− 2
+ · · · + 

1

i�1
zMd − zid( 

− 2

� 
M−1

i�1
x

−2
i + 

M−2

i�1
xi + xi+1( 

− 2
+ · · ·

+ 
1

i�1
xi + xi+1 + · · · + xi+(M− 2) 

− 2
.

(9)

Calculate the minimum value of S by Lagrange multi-
plier method.

g x1, · · · , xM−1, μ(  � S + μ x1 + x2 + · · · + xM−1 − N( .

(10)

Take the partial derivative of each variable in the
function and set the result equal to zero.

s

0

θ

z2d z3d zM-1d zMd

Figure 1: Array model.
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zg x1, · · · , xM−1, μ( 

zx1
� 0

⋮

zg x1, · · · , xM−1, μ( 

zxM−1
� 0

zg x1, · · · , xM−1, μ( 

zμ
� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

)ere is an extreme point in (10) when x1 � x2 � · · · �

xM−1 � N/(M − 1) and the cost function S has a minimum
value at this time.)erefore, the value of zi, i � 1, 2, · · · , M

corresponding to the minimum value of S is the position of
each array element in the array when the mutual coupling
leakage is minimum. From the above-given discussion, it can
be seen that the M elements array with an aperture of the
array N reach the minimum mutual coupling leakage when
(5) holds. )e array designed in (5) is a sparse uniform line
array (SULA) when N> (M − 1)λ.

However, SULA will cause spatial aliasing during DOA
estimation [29] because the spacing of the adjacent sensors

are larger than half-wavelength. Next, we discuss how to
fine-tune the position of SULA’s array elements to solve the
angular ambiguity problem and maintain the advantage of
low mutual coupling leakage. □

3.2. B Mutual-Coupling-Optimized Array (MCOA).
Suppose that the first sensor is located at the origin without
loss of generality, then the position of the array can be
expressed as follows:

Z � 0, z2, · · · , zM d. (12)

In order to facilitate the subsequent discussion, zi needs
to be adjusted to integer by choosing an appropriate d.

Theorem 1 (see [29]). İe array manifold a(θ) � [1,

ej2πz2 sinθ/λ, · · · , ej2πzM sinθ/λ]T is invertible if and only if the sensor
locations zi (assumed integers) are coprime.

gcd z2, z3, · · · , zM(  � 1. (13)

According to Theorem 1, we design the array structure as
follows:

d � x1, x2, . . . , xM−1 

�

a − 1, a, . . . , a√√√√√√
[(M−2)/2]

, a + 1, a, . . . , a⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, N � a(M − 1),

a, . . . , a + 1, . . . , a + 1√√√√√√√√√√√√
b

, . . . , a⎡⎢⎣ ⎤⎥⎦, N � a(M − 1) + b, b<M − 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

where d1×(M−1) represent the spacing of adjacent sensors in
array and a, b are integers.

In fact, the different arrangement order of elements in d
will also cause the structural change of Z, which leads to
different mutual coupling leakage. Due to the large number
of repetitions of elements in d, there will be many repeated
combinations of corresponding Z. Obviously, when the

larger distance between adjacent sensors in the center of the
array, the mutual coupling between the middle sensors and
the sensors on both sides can be effectively reduced so that
the mutual coupling leakage of the whole array degrades
significantly. )is is the reason why we make d as (14). )e
relationship between Z and d is zi+1 − zi � di, then the
expression of the array position Z can be written as follows:

Z �
0, a − 1, 2a − 1, · · · , N{ }d, N � a(M − 1),

0, a, · · · , ka + 1, · · · , N{ }d, N � a(M − 1) + b , b<N + 1.
 (15)

We will prove that the position in (15) satisfies )eorem
1 in the following part.

Proof. When N � a(M − 1), then

gcd(2a − 1, a − 1) � gcd(a − 1, 2a − 1moda − 1)

� 1

� 1,

(16)

where amodb represents the remainder of dividing a by b.
When N � a(M − 1) + b , b<N + 1, then.

gcd(a, ka + 1) � gcd(a, ka + 1moda)

� gcd(a, 1) � 1.
(17)

In summary gcd(z2, z3, · · · , zM) � 1, that is, the designed
array structure satisfies )eorem 1. Suppose that an antenna
array with array aperture N � 8λ and the number of sensors
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M � 8 needs to be designed. According to (15), since N is not
divisible by M − 1, we can calculate that N � 2(M − 1) + 2
with a � 2, b � 2 and write the expression of d and Z.

d � [2, 2, 3, 3, 2, 2, 2],

Z � 0, 2, 4, 7, 10, 12, 14, 16{ }d.
(18)

Figure 2 shows the example of the above MCOA. )e
array structure is very similar to that of the SULA. )ere are
five spacing between the sensors are 2 d and the remaining
two are 3 d. We place the 3 d in the middle of the array to
make the mutual coupling between the middle sensors and
sensor on both sides decreasing, which effectively reduces
the coupling leakage of the whole array. )e array locations
also satisfy )eorem 1.

gcd(2, 4, 7, 10, 12, 14, 16) � 1. (19)
□

4. Sparse Bayesian-Based Compressed
Sensing Method

In the sparse signal representation framework [23, 24], the
direction matrix A in (2) should be replaced by a transfer
matrix Ag, thus the signal model in (2) can be rewritten as
follows:

X � CAgSg + N, (20)

where Sg � [s1, · · · , sJ] ∈ CG×J represent the complex signal
amplitudes containing G DOAs and J snapshots. )e
transfer matrix Ag � [a1, · · · , aG] ∈ CM×G consists of all
hypothetical DOAs. )e likelihood function of the received
signal X can be represented as follows:

p X|Sg; σ2  �
exp −1/σ2 X − CAgSg

�����

�����
2

F
 

πσ2 
NL

. (21)

)e SBL algorithm treats s as a zero mean complex
Gaussian random vector with unknown diagonal covariance
Γ � diag(c1, · · · , cM) � diag(c). )e prior model is given by
the following equation:

p Sg  � 

J

j�1
p sj  � 

J

j�1
AC(0, Γ). (22)

For Gaussian prior and likelihood, the evidence p(X) is
Gaussian and represented as follows:

p(X) �  p Sg p X|Sg dSg � 

J

j�1
AC xj; 0,Σx , (23)

where Σx � σ2I + CAgΓAH
g C

H and I stands for the identity
matrix of order M × M. )e SBL algorithm is to estimate the
diagonal entries of Γ by maximizing the evidence

c1, · · · , cM(  � argmax
γ

− 

J

j�1
xH

j Σ
−1
y xj − L log Σx




⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (24)

the derivative of (24) is

z − 
J
j�1 x

H
j 

−1
y xj − L log Σx


 

zcm

� tr XH


−1

x
ama

H
m 

−1

x
X  − LaH

mΣ
−1
x am

� XH


−1

x
am

���������

���������

2

2
− LaH

m 

−1

x
am

�
cold

m

cnew
m

 

2

XH


−1

x
am

���������

���������

2

2
− LaH

m 

−1

x
am.

(25)

)e factor (cold
m /cnewm )2 is introduced to obtain an iter-

ative equation in cm. Equate the derivatives to zero and we
can get the fixed-point update rule [1, 2, 4].

c
new
m � c

old
m

1
L

XH


−1
x am

����
����
2
2

aH
m 

−1
x am

� c
old
m

Tr Sx 
−1
x ama

H
mΣ

−1
x 

aH
m 

−1
x am

.

(26)

where Sx � 1/JXXH is the sample covariance matrix.
)e main steps of the SBL algorithm are summarized as

follows:

Step 1: Set the parameters as ε � 10− 3 and get the input
data X,Ag, σ2, kmax;
Step 2: Initialization the parameters cold

m � 1,∀m;
Step 3: Calculate Σx � σ2I + CAΓoldAHCH;
Step 4: Update cnew

m by using equation (27);
Step 5: Set cold � cnew, Γold � diag(cold), k � k + 1;
Step 6: If ‖cnew − cold‖1/‖cold‖1 > ε and k< kmax, go back
to step 3;
Step 7: )e K largest peaks in c are the required DOA
values.

5. Performance Analysis

5.1. Comparison of Mutual Coupling Leakage between Dif-
ferent Arrays with the SameAperture. We select some sparse
arrays for comparison. In order tomake the array aperture of
all arrays consistent, we compress the element spacing of CA
and ECA. )e result is shown in Table 1, it can be seen that
the mutual coupling leakage of the proposed array is the
smallest except SULA, and its mutual coupling leakage is
very close to SULA.

5.2. Crarmer–Rao Bound (CRB). According to the knowl-
edge of the literature [32], the Crarmer–Rao Bound (CRB)
matrix can be represented as follows:

2d 2d 2d 2d 2d3d 3d

Figure 2: MCOA array with an array aperture of 8 wavelengths and
a sensor count of 8.
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CRB �
σ2n
2J

Re DH


⊥

A
DP

T⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭

−1

, (27)

where Re[·] stands for the operation of taking the real part,A
represents the manifold matrix of the array,
Π⊥A � I − A(AHA)− 1AH is the orthogonal projection of A,
and I stands for the identity matrix of order M × M,
P � 1/J 

J
t�1 s(t)sH(t), σ2n denotes the average power of

signal source, D can be written as follows:

D �
za θ1( 

zθ1
,
za θ2( 

zθ2
, · · · ,

za θK( 

zθK

 , (28)

where a(θK) denotes steering vector.

5.3. Computational Complexity. In this section, we provide
the complexity of the SBL method compared with OMP and
MUSIC. Assuming that the number of array elements is M,
there are G grid points and J snapshots, the maximum
number of iterations is kmax, then the computational com-
plexity of main operations are as follows: (a) calculate the
covariance matrix: O(M2J); (b) update the Σx in Step 3:
O(2M2G + G2M + M3); (C) update cnew

m in Step 4:
O[G(2M3 + 3M2 + M)]. )e computational complexity of
SBL is O[M2J + kmax(2GM3 + 5GM2 + G2M + GM + M3)].

6. Simulation Results

In this part, we provide numerical simulations of the per-
formance of the proposed MCOA as well as a comparison
with the other sparse arrays and the CRB.)e array aperture
is limited to 8 wavelengths and the number of array sensors
is 8. Two coherent signals with equal power impinge on the
array with directions θ1 � 10∘, θ2 � 40∘, and the correlation
coefficient is set to [α1, α2] � [1, ejπ/4]. Define the RootMean
Square Error (RMSE) of the DOA estimates as follows:

RMSE �

�������������������

1
K

1
Q



K

k�1


Q

q�1

θq,k − θk 
2




, (29)

where Q and K are the number of Monte Carlo trials and the
total number of coherent signals, respectively. θq,k means the
qth estimate of the real angle θk . Unless other stated, we
assume that the mutual coupling constant is c0 � 0.12 and

the maximum spacing of sensor pairs is B � 100. For each
Figure, 1000 Monte Carlo simulations were run to estimate
the Root Mean Square Error (RMSE).

First, we compare the CRB of different arrays in Figure 3.
)e result shows that the CRB of the coprime array is very
close to the CRB of the proposed array, but the CRB of the
proposed array is the smallest among all arrays, which in-
dicates that its performance is optimal.

Figure 4 depicts the spatial spectrum of the SBL method
with the proposed array. )e signal-to-noise ratio (SNR) is
10 dB and the snapshot is J � 200. )ere are many spectral
peaks in the estimation result, but the peak of the incident
signal is the highest, which is 40 dB higher than other
spectral peaks. It shows that the estimation result of this
method is accurate enough to be used for the coherent signal
estimation when there is mutual coupling between array
sensors.

)e proposed array is also compared with other arrays
with different SNRs in Figure 5. )e SNR varies from −5 dB
to 20 dB and the number of snapshots is J � 200. All five
kinds of arrays can accurately estimate the incident angle of
the relevant signals. Due to the influence of mutual coupling,
the angle estimation of the CA and ULA decreases greatly,
and their RMSE value is larger than the proposed array.
Because the influence of mutual coupling leakage is less than
that of other arrays, the proposed array can better estimate
the DOA of coherent signals.

Figure 6 shows the performance of different arrays with
snapshots changing, the coherent signal is consistent with
the previous simulation and the SNR is 5 dB. )e snapshot
varies from 10 to 600. When the snapshot is less than 100, all
five arrays cannot work well and the performance is not good
enough. However, the RMSE of all the arrays reduces with
the snapshot increasing. When the snapshot is larger than
100, the curve of RMSE of the CA and ULA is almost a
straight line, because the impact of the mutual coupling
leakage at this time is greater than the performance

Table 1: Comparison of mutual coupling leakage of different
arrays.

Array
aperture d Z

Mutual
coupling
leakage

Proposed 8 λ 0.5 λ 0,2,4,7,10,12,14,16 0.0826
CA 8 λ 0.5 λ 0 4 5 8 10 12 15 16 0.1076

ECA 8 λ 0.4444
λ 0 2 4 5 6 8 13 18 0.1140

NA 8 λ 0.4211 λ 0 1 2 3 7 11 15 19 0.1194
SULA 8 λ 1.1429 λ 0 1 2 3 4 5 6 7 0.0806
ULA 3.5 λ 0.5 λ 0 1 2 3 4 5 6 7 0.1819
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-5 0 5 10 15 20
SNR (dB)

RM
SE

 (°
)

CA
ULA
ECA

NA
Proposed

Figure 3: CRB comparison of different arrays.
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improvement brought about by the increase of snapshots.
On the other hand, the performance of the proposed array
and NA is better than the other three arrays, and the pro-
posed array has the best performance because the mutual
coupling leakage of the proposed array is the smallest among
these arrays.

Finally, we compared the SBL algorithm with two other
compressed sensing algorithms including the IAA [20] and
the OMP [21]. In Figure 7, the SNR changes from −5 dB to
20 dB and the snapshot is 200. )e other simulation con-
ditions were the same as before. At low SNR, the SBL has the
same performance as IAA and OMP, but when the SNR
increases, the performance of OMP hardly improves, and the
performance of IAA is better than OMP.)e curve of SBL is
smoother than the other two algorithms, which means that

in this case, its performance is more stable than other
algorithms.

7. Conclusions

In this paper, the mutual coupling optimization array with a
given number of sensors under the condition of the finite
aperture is studied. Compared with the sparse arrays in-
cluding CA, NA, and ECA, the mutual coupling leakage of
the proposed array is smaller. When there is mutual cou-
pling between array sensors, we apply the SBL to DOA
estimation of coherent signals and compare its performance
with other compressed sensing methods including IAA and
OMP. Finally, various simulations are carried out to prove
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Figure 5: )e DOA estimation performance with different SNRs.
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Figure 6: )e DOA estimation performance with different
snapshots.
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Figure 7: Comparison of RMSE of different algorithms with SNR.
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the superior performance of the proposed array for esti-
mating coherent signals in the condition of mutual coupling.
In fact, this paper mainly focuses on the coherent signal
estimation problem of the sparse array in the 1D-DOA case.
By using the previous related research, this result can be
extended to an L-shaped array to realize DOA estimation of
coherent signal in the 2D-DOA case. Reference [31].
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