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 e Coimbra concept of fractional order derivative is used to build a numerical approach using radial functions in this paper.  e
Coimbra derivative is capable of modelling a dynamic system with varying fractional order behaviour over time.  e proposed
scheme’s stability and convergence are investigated. In one and two space dimensions, the developed approach is validated for the
given model. By applying a periodic boundary condition on a bounded domain, the model’s periodicity is shown statistically.  e
acquired �ndings demonstrate the new numerical scheme’s potency and, as a result, its high order accuracy.

1. Introduction

 e Korteweg-De Vries (KdV) equation is �rst derived by
Boussinesq in the year 1870. Later on in 1895, the same
model was retrieved by Korteweg and de Vries [1] with the
presumption of compact amplitude and huge wave length.
In many nonlinear dispersive physical systems, the evolution
of long wave can be expressed by the KdV type equation (see
[2–5] and the references therein). In mathematical sciences
and engineering, evolutionary nonlinear equations play a
major role to model physical phenomena [2, 6]. In the theory
of shallow water waves, the KdV equation is one of the most
essential equations in nonlinear evolution developed in [4]
and the references therein. Some of the important aspects of
solutions of these dispersive equations discovered through
observations are their long-time behaviour and known
periodicity in time [7].  e important event of eventual
periodicity has been presented previously in [8], and in more
recent work [9, 10], a new solution is reestablished corre-
sponding to the KdV equation. In addition, the forced os-
cillations and the stability of the KdV equation have been
carried out in a very recent work [11–14]. In applied
mathematics, physics, and other related �elds, a rich �led of
research has evolved within the last century because of

computational and analytic research on fractional and
classical KdV equation [15–19].

Both the theory and application of fractional calculus
have advanced dramatically in the previous two decades. e
nonlocal quality of fractional calculus and its e�ectiveness in
reproducing anomalous di�usion that happens in transport
dynamics in complex systems, such as �uid motion in
viscoelastic medium, are the most important advantages
[20], anomalous transfer in biology [21] and porous ma-
terials [22], etc. Control theory, entropy theory, image
processing, and wave propagation phenomena all employing
fractional calculus can be found in [23–26].  e creation of
tools to o�er a mathematical structure for sophisticated
physical systems and processes has been aided by break-
throughs in current variable order (VO) fractional calculus
[27]. As a result of its appropriateness for modelling in a
wide range of subjects, including science, engineering, and a
variety of other disciplines, variable order fractional dif-
ferential equations (VO-FDEs) have gained prominence
[28–31]. Physical modelling utilizing VO-FDE models has
been the subject of a large-scale investigation. For example,
Kobelev et al. [32] highlighted the dynamical and statistical
systems with varying memory di¥culties where the fractal
dimension changes with coordinate and time. Coimbra et al.
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[33] used VO-fractional operators to investigate the visco-
elasticity oscillator. Al-Mekhlafi and Sweilam [34] proposed
a new multistrain TB model based on the VO-fractional
derivative as a nonlinear ordinary differential equation
extension. Due to the enormous number of applications,
analytical and numerical techniques for solving variable
order fractional order differential equations (VO-FDEs)
have increased substantially in the last year. +e analytical
solution of VO-FDEs, on the other hand, is frequently
difficult to obtain. +erefore, numerical approaches are used
as sophisticated methods for numerical approximation of
VO-FDEs in general [29, 35–38].

+e Caputo, the Liouville, the Marchaud, the Grunwald,
and the Coimbra definitions are some of the recent variable
order operator definitions suggested in the literature
[33, 39]. Samko et al. [39] analyzed that the Riemann var-
iable order definitions lost some features, meaning that the
Marchaud operator is better than the Riemann-Liouville
type operator. Ramirez et al. [40] also compared the variable
order operators such as operators due to Riemann-Liouville,
Marchaud, Caputo, and Coimbra using a simple criterion:
the variable order operator must return the correct fractional
derivative that corresponds to the argument of the func-
tional order. Only the operator due to Coimbra and the
Marchaud satisfy the aforementioned elementary condition
[40], as well as the Coimbra variable order operator is more
efficient numerically. Soon et al. [41] also demonstrated that
the Coimbra variable order operator satisfies a mapping
requirement and that it is the only formulation that returns
the necessary derivatives as a function of x(t) for transitions
between elastic and viscous regimes. Ramirez [40] dem-
onstrated that the Coimbra concept is the most appropriate
for physical modelling since it has essential properties that
are desirable.

+e numerical solution of the KdV problem of order
0< τ(t)< 1 and its eventual periodicity over confined domain
is achieved using RBF with Coimbra variable order derivative.
+e following equations represent the proposed models in
both one-dimensional and two-dimensional space:

D
τ(t)
t w(x, t) + εw(x, t)wx(x, t) + ]wxxx(x, t) � f(x, t), t> 0, x ∈ Ω,

(1)

with the following initial condition

w(x, t) � g(x), t � 0, x ∈ Ω, (2)

and the boundary conditions given by

w(x, t) � h(x, t), t≥ 0, x ∈ zΩ, (3)

where 0< τ(t)< 1.

D
τ(t)
t w(x, y, t) + εw2

(x, y, t)wx(x, y, t)

+ wxxx(x, y, t) + wxyy(x, y, t) � f(x, y, t),
(4)

where (x, y) ∈ Ω, with the following boundary and initial
conditions

w(x, y, t) � h(x, y, t) ∈ zΩ , t≥ 0, w(x, y, 0),

� g(x, y), (x, y) ∈ Ω.
(5)

+emodels in the above form are selected for the sake of
comparison given in [42]. +e Coimbra variable order de-
rivative is defined by (7) in the next section.

1.1. 'e KdV Equation. Suppose that a wave propagates
along a horizontal channel of the unform width along the
positive direction of x-axis alone. Let the depth of the
channel be d, t be the time, and x be the horizontal coor-
dinate and let w(x, t) be the vertical distance of the fluid
surface in equilibrium position. Let the amplitude of the
wave be small enough, then the irrotational wave propa-
gation can be modelled by the following equation known as
the KdV equation

w(x, y)t + εw(x, y)wx(x, y) + ]wxxx(x, y) � 0, (6)

where the first term ut represents the unform wave trans-
lation, and the other two terms εw(x, t)wx(x, t) and
]wxxx(x, t) serve for the modification of the wave under the
influences of nonlinear term wwx and dispersive term wxxx,
respectively.

1.2. Coimbra Variable Order Derivative. Modelling physical
problems is better using the Coimbra concept. Variable
order differentials are a useful tool for studying systems
where the order changes with regard to one or more pa-
rameters, such as the management of a nonlinear visco-
elasticity oscillator.

D
τ(t)
t w(t) �

1
Γ(1 − α(t))

􏽚
t

0+

w′(s)ds

(t − s)
τ(t)

+
βt

− τ(t)

Γ(1 − τ(t))
. (7)

0< τ(t)< 1, β � w(0+) − w(0− ), and the above operator
require only one initial condition w(0+). +e integer order
derivative with respect to the variable t is denoted by w′(t)

[33].

2. Analysis of RBF Approximation Method for
Fractional Order KdV Equations

In the theory of multivariate approximation, the radial basis
functions (RBF) method is the most extensively used tool. A
generalized refinement of the multiquadric approach is RBF
approximation methods. +e MQ has a long history of
application and theoretical research can be found in [43, 44].
+e MQ approach is widely used in geology, geodesy,
geophysics, and other domains, see [44]. Franke [45] con-
ducted a comparative study in the field of MQ. Meanwhile, a
key period in RBF history occurred, see for example [46],
when Charles Micchelli refined the theory of the MQ
method by establishing requirements that guarantee the
system matrix nonsingularity for MQ methods. Schoenberg
[47] is attribute with the results that generate the invertibility
of the system matrix. Micchelli went on to say that
Schoenberg’s constraints could be relaxed to allow many
more functions to be included and that adequate conditions
for functions could be applied to make the system matrix
nonsingular. In 1990, physicist Kansa [48] discovery quickly
disseminated the study, and RBF is used in a systematic
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approach for numerically solving partial differential equa-
tions and is meshless [49]. In numerous branches of applied
areas [50, 51], a huge amount of mathematical applications
of RBF are employed. In numerical techniques for solving
PDEs with reasonable accuracy in multidimensions, Madych
exposed the convergence rate of spectral order for MQ
interpolation in [52]. In comparison to other state-of-the-art
methodologies, these findings propelled RBF research for-
ward swiftly, and the RBF methods drew appreciable at-
tention in the literature as mesh-free approaches and their
capacity to attain spectral accuracy for PDE numerical so-
lutions on irregular domains [53]. In this work, a numerical
scheme based on RBF and Coimbra derivative is constructed
for fractional order KdV equations (1)–(5) defined in the
following form:

D
τ(t)
t w(t, x) � f(t, x) + Lw(t, x), 0≤ t≤T, x ∈ Ω ⊂ Rd

, d≥ 1, (8)

with the following boundary and initial conditions

Bw(t, x) � g(t, x), x ∈ zΩ , w(t � 0, x) � w0(x), x ∈ Ω, (9)

with 0< τ(t)< 1.

3. Variable Order Differential
Operator Approximation

+ere are numerous definitions of varying order operators in
the literature [54], but in the current study, we are using the
definition due to Coimbra [33]. Because this variable order
derivative has a great capability to model many complicated

mechanical problems with accuracy, the Coimbra variable
order operator has the capability to investigate and analyze
the dynamics behaviour of many physical models, for ex-
ample, the fractional forces which cannot be approximated
accurately with constant order fractional operator or some
other variable order derivatives. In the work [40], the au-
thors performed a comparative study for solving a dy-
namical system and demonstrated that the Coimbra variable
order derivative produced better results in many aspects
than the nine definitions of variable order derivatives used in
this study.

Now, for the numerical approximation of the Coimbra
variable order derivative, we consider for t ∈ [0, T], and let
tn � (n − 1)δt, where n � 1, . . . , M + 1, then at time level tn,
the Coimbra variable order derivative defined in (7) can be
given by the following equation:

D
τ tn( )
tn

w �
1

Γ 1 − τ tn( 􏼁( 􏼁
􏽚

tn

0
tn − s( 􏼁

− τ tn( )w′(x, s)ds

+
βt

− τ tn( )

Γ 1 − τ tn( 􏼁( 􏼁
.

(10)

Let us denote the last term of this equation by hn, then we
have

hn � t
− τ tn( ) β
Γ 1 − τ tn( 􏼁( 􏼁

. (11)

By using (11) in (10), we get the following form:

D
τ tn( )
n w x, tn( 􏼁 � Cn 􏽘

n− 1

k�1
􏽚

tk+1

tk

tn − s( 􏼁
− τ tn( )ds

w x, tk+1( 􏼁 − w x, tk( 􏼁

δt
􏼢 􏼣 + hn, (12)

where Cn � (1/Γ(1 − τ(tn))); after further simplification, we
get

D
τ tn( )
n w x, tn( 􏼁 � Cn 􏽘

n− 1

k�1

w x, tk+1( 􏼁 − w x, tk( 􏼁

δt
􏼢 􏼣 􏽚

tk+1

tk

tn − s( 􏼁
− τ tn( )ds + hn, (13)

and by simplifying the integral involved, we have

D
τ tn( )
n w x, tn( 􏼁 � Cn 􏽘

n− 1

k�1

tn − tk( 􏼁
1− τ tn( ) − tn − tk+1( 􏼁

1− τ tn( )

1 − τ tn( 􏼁( 􏼁
⎡⎢⎣ ⎤⎥⎦

w x, tk+1( 􏼁 − w x, tk( 􏼁

δt
􏼢 􏼣 + hn. (14)
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Denoting the quantity (tn − tk)1− τ(tn) − (tn − tk+1)
1− τ(tn)

by the bk+1, we get

D
τ tn( )
n w x, tn( 􏼁 �

(δt)
− 1

Cn

Γ 1 − τ tn( 􏼁( 􏼁
􏽘
n− 1

k�1
bk+1 w x, tk+1( 􏼁 − w x, tk( 􏼁􏼂 􏼃 + hn, (15)

and assuming the value (δt)− 1Cn/Γ(1 − τ(tn)) be denoted by
an, we get

D
τ tn( )
n w x, tn( 􏼁 � an 􏽘

n− 1

k�1
bk+1 w x, tk+1( 􏼁 − w x, tk( 􏼁􏼂 􏼃 + hn. (16)

Splitting the first term of this series and rewriting in the
form, we have

D
τ tn( )
n w x, tn( 􏼁 � an 􏽘

n− 2

k�1
bk w x, tk+1( 􏼁 − w x, tk( 􏼁􏼂 􏼃 + anbn w x, tn( 􏼁 − w x, tn− 1( 􏼁􏼂 􏼃 + hn. (17)

Assuming Sn � an􏽐
n− 2
k�1bk[w(x, tk+1) − (x, tk)] + hn, the

approximation of Coimbra variable order derivative can be
represented in the more simplified form

D
α tn( )
n w x, tn( 􏼁 � anbn w

n
(x) − w

n− 1
(x)􏽨 􏽩 + Sn, (18)

which is the Coimbra variable order differential operator’s
finite-difference approximation.

4. RBF Approximation Scheme

+e RBF interpolant can be characterized as a linear com-
bination of radial basis functions, as seen in the equation
below. For a set of N scattered nodes xi ∈ Ω ⊂ Rd, d≥ 1,

w x, tn( 􏼁 � 􏽘
xj∈Ω

λnκj x − xj

�����

�����􏼒 􏼓, x ∈ Ω, (19)

where λn denotes the expansion coefficients at any time tn, κj

denotes an RBF centred at xj ∈ Ω, and ‖.‖ denotes a distance
norm in Rd, d≥ 1. It is possible to obtain the matrix form of
(19) by

w
n

� Aλn
, (20)

where A is a square matrix termed a system matrix, and the
entries are Aij � κj(‖xi − xj‖). IfL is a spatial operator and
B is a boundary operator, then (19) is obtained.

Lw x, tn( 􏼁 � 􏽘
xj∈Ω

λn
Lκj x − xj

�����

�����􏼒 􏼓, x ∈ Ω,

Bw x, tn( 􏼁 � 􏽘
xj∈Ω

λn
Bκj x − xj

�����

�����􏼒 􏼓, x ∈ zΩ.

(21)

+e above two equations can be expressed in matrix
form by

Lw
n
(x)

Bw
n
(x)

􏼠 􏼡 �

Lκj x − xj

�����

�����􏼒 􏼓, x ∈ Ω

Bκj x − xj

�����

�����􏼒 􏼓, x ∈ zΩ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠λn

. (22)

We obtain it in a more compressed form

MLBw
n
(x) � Dλn

, (23)

In case of identity operators L, B, the equation above can
be written as

w
n
(x) � Bλn

. (24)

Model equations (1)–(5) can be approximated in the
following way employing the θ− weighted scheme, VODO
finite-difference approximation, and RBF spatial operator
approximation

anbn w
n
(x) − w

n− 1
(x)􏽨 􏽩 + Sn � θMLBw

n
(x)

+(1 − θ) MLBw
n− 1

(x) + f
n
(x).

(25)

Substituting the values of from (19) and (20), we get

anbnBλn
− anbnBλn− 1

􏽨 􏽩 + Sn �(1 − θ))Dλn− 1
+ θDλn

+ f
n
(x),

bnanB − θD􏼂 􏼃λn
� (1 − θ)D + anbnB􏼂 􏼃λn− 1

+ f
n
(x) − Sn.

(26)

+is numerical strategy based on RBF can be solved at
any point in time tn to acquire the value of λn, for which we
can use (20). Using equation (20) to remove the value of λn,
we get

bnanB − θD􏼂 􏼃A
− 1

w
n

� (1 − θ) D + bnanB􏼂 􏼃A
− 1

w
n− 1

+ f
n
(x) − Sn.

(27)

+e amplification matrix of the numerical scheme (27) is
the following matrix E:

E � A bnanB − θD􏼂 􏼃
− 1

(1 − θ)D + bnanB􏼂 􏼃A
− 1

. (28)

In fact, the matrices A and B are identical, as shown by
(20) and (24), because matrix B is a special instance of matrix
D for identity operators. It is evident from the definitions of
an and bn that they are positive real integers, hence
η � anbn > 0. As a result, (28) amplification matrix can be
represented in a more basic form as follows:

E � anbnAA
− 1

− θDA
− 1

􏽨 􏽩
− 1

anbnAA
− 1

+(1 − θ) DA
− 1

􏽨 􏽩. (29)

Now, for θ � (1/2), and denoting (1/2)DA− 1 by Q, we
obtain

E � [ηI − Q]
− 1

[ηI + Q]. (30)
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Lemma 1. If Q is a square matrix of rank N × N with
negative eigenvalues, then the estimate for any η> 0 is

(ηI − Q)
− 1

(ηI + Q)
����

����≤ 1. (31)

'is is also true for the Euclidean norm.

Proof: Let the eigenvectors of the matrix Q be ui􏼈 􏼉
N

i�1 with
the corresponding eigenvalues ]i, thus we have the following
equation:

(ηI − Q)
− 1

(ηI − Q)u
i

�
η + ]i

η − ]i

u
i
, i � 1, . . . N. (32)

Suppose the vectors be orthonormal eigensystem for the
matrix (ηI − Q)− 1(ηI − Q), since η> 0 and all the eigen-
values of the matrix Q are negative, so we obtain

(ηI − Q)
− 1

(ηI − Q)‖ � ‖
η + ]i

η − ]i

��������

��������
≤ 1,∀ i � 1, . . . N. (33)

□

5. The Numerical Scheme’s Error Analysis

+e VODO numerical scheme of order in time is
O((δt)2− τ), whereas RBF numerical scheme is mostly de-
pendent on the RBF utilized for the derivation of other
differentiation matrices and the RBF system matrix, as
demonstrated in the previous work discussion. +e order of
convergence of several forms of RBF has been determined in
[51]. Let the spatial numerical approximation corresponding
to the present numerical scheme for a given RBF be of order
O(hq), q≥ 0, and h be the separation distance between the
scattered nodes utilized for RBF interpolant. For the nu-
merical scheme specified in (22), let wn be the approximate
solution, w be the precise solution, and Θn � wn − w be the
error at time tn:

Θn � EΘn− 1 + O (δt)
2− τ)

+ h
q

􏼐 􏼑. (34)

+e above numerical technique’s amplification matrix,
E, is mostly determined by the type of RBF and the scale
factor used. Assume that when the condition of Lemma 1
holds for a given optimal shape parameter value and optimal
RBF option, then

‖E‖≤ 1, (35)

is a criterion for the numerical scheme’s stability in (27).
Assuming that both the initial solution value and the so-
lution are sufficiently smooth along with δt⟶ 0,

Θn‖≤ ‖E
����

���� Θn− 1
����

���� + C1 h
q

+(δt)
2− τ

􏼐 􏼑, n � 1: M + 1, (36)

where C1 stands for a constant. At time t � 0, the error ‖Θn‖

always fulfils the initial as well as the boundary condition via
mathematical induction.

Θn

����
����≤C1 1 + 􏽘

n− 1

i�1
‖E‖

i⎛⎝ ⎞⎠ (δt)
hq+2− τ

􏼐 􏼑, n � 1: M + 1, (37)

when the condition (35) holds, then

Θn

����
����≤ nC1 (δt)

2− τ
+ h

q
􏼐 􏼑, n � 1: M + 1, (38)

+is demonstrates that the current numerical method for
VODO is convergent.

6. The Numerical Methodology for Variable
Order Diffusion Models

Problem 1. We consider the KdV equation defined in
(1)–(3) for the following value of function f:

f(x, t) �
t
5
e

− x2

25
t
− τ

Γ(6 − τ)
−

t
2
xe

− x2

180000
+

x

10
−

x
3

15
⎡⎣ ⎤⎦, (39)

with the following initial condition

w(x, 0) � 0, a≤x≤ b, (40)

where the boundary conditions can be extracted from the
exact solution

w(x, t) �
t
5
e

− x2

3000
, (41)

where 0< τ < 1 is the fractional order. +e compactly sup-
ported radial basis function defined as κ(r, ε) � (35(εr)2 +

18εr + 3)(1 − εr)6+, with a support size of ε � 0.5, is used to
solve this issue across the spatial domain [− 4, 4] and the
number of points N � 100 are used. For various settings of
order τ, step size δt, and collocation points N, the results are
presented in Figures 1 and 2 and Table 1, where the accuracy
is quantified in terms of maximum error norm. When we
gave a periodic boundary condition at x � − 1, like w(a, t) �

sin(20πt)tanh(5t) with f � 0, the solution at each point of
the domain is periodic in time for 1D fractional order KdV
equation.

Problem 2. In this last example, we consider the following
2D KdV equation defined in (3)–(5) with the following value
of the function f

f(x, y, t) � t
6sech(x))sexh(y)

720
Γ(7 − τ)

t
− τ(t)

+ tanh(x) − 6 t
6sech(x)sech(y)􏼐 􏼑

2
− tanh2(x) + 5sech(x)

2
− tanh2(y) + sech(y)

2
􏼒 􏼓􏼢 􏼣, (42)

Mathematical Problems in Engineering 5
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Figure 2: Approximate solution: periodicity of solution at x � − 1 (red), x � − 0.7588 (blue), and at x � − 0.5075 (green) at time t ∈ [0, 0.5],
x ∈ [− 1, 1], τ � 0.2, and δt � 0.001, with CS-RBF, ε � 0.5, corresponding to Problem 1.
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Figure 1: Approximate solution of RBF-based method (red) and exact solution (green) to Problem 1 at time t ∈ [0, 1], x ∈ [− 4, 4], α � 0.5,
and δt � 0.01, with CS-RBF, ε � 0.5.
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with the following initial:

w(x, y, 0) � 0, − 1≤ x, y≤ 1, (43)

and the boundary conditions can be taken from the fol-
lowing exact solution:

w(x, y, t) � t
6sech(x)sech(y), t> 0, (x, y) ∈ zΩ, (44)

0< τ(t)< 1, τ(t) � 0.4 + 0.2 sin(0.5πt/T). +e current
RBF-based solution solves this problem, and the results are
displayed in Figure 3 and Table 2, respectively. +e current
numerical technique appears to be convergent and stability
attained when δt⟶ 0. +is backs up the prior sections’

convergence and stability analysis of the current numerical
system is achieved.

Problem 3. In the last example, we consider the irregular
domain within the regular domain [− 1, 1]2. +e variable order
which is used in this computation is defined by the function
α(t) � 0.4 + 0.2 sin(0.5πt/T), T � 1. We used different
number of nodes N � 56, 196, 400, 676 in the irregular do-
main. +e radial basis function defined by κ(r, ε) �

�����
r2 + ε

√
is

implemented in this problem and its corresponding shape
parameter value changes solution accuracy, which is calculated
using the formula ε � (1/log(N)) [55]. +e results are shown
in graphical form and can be seen in Figure 4.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

Numerical solution, L∞ = 1.3902e−005, t = 0.5

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

Exact solution, t = 0.5

0.006

0.008

0.01

0.012

0.014

0.016

0.006

0.008

0.01

0.012

0.014

0.016

Figure 3: A comparison of RBF-based numerical method and exact solution of Problem 2, for N � 102, t � 0.5,
τ(t) � 0.4 + 0.2 sin (0.5πt/T).

Table 2: An approximate solution to Problem 2 based on RBF, when t � 0.5, error � max (|wap − wex|).

(ε, N) δt � 0.1 δt � 0.01 δt � 0.001 δt � 0.0001
(1, 52) 0.0104 0.0016 1.7022e-004 1.8747e-005
(1, 62) 0.0111 0.0017 1.7335e-004 2.2170e-005
(1, 72) 0.0102 0.0016 1.7993e-004 1.8235e-005
(1, 102) 0.0114 0.0017 1.2957e-004 4.3734e-005

Table 1: An approximate solution to Problem 1 based on RBF, when t � 1, error � max (|wap − wex|).

(τ, N) δt � 0.1 δt � 0.01 δt � 0.001
(0.1, 102) 1.3572e-006 3.6674e-008 1.8149e-008
(0.2, 102) 3.2295e-006 7.7781e-008 1.6031e-008
(0.3, 102) 5.7785e-006 1.5589e-007 1.6168e-008
(0.5, 102) 1.3801e-005 5.2623e-007 2.4744e-008
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7. Conclusion

+e numerical solution of the variable order KdVmodels in
1D and 2D is achieved using an RBF-based numerical
approach. +e RBF is used to approximate the spatial
derivative, whereas the Coimbra derivative is used to ap-
proximate the variable order time differential operator. +e
numerical scheme’s stability and convergence are estab-
lished. +e current numerical technique is found to have a
sensitivity in temporal integration. +e periodicity of the
KdV equation in 1D is explored, and it is demonstrated that
the solution is periodic in time at each point of the domain
for the fractional order KdV in 1D. +e suggested nu-
merical system provides the capacity to numerically ap-
proximate numerous complex mechanical problems with
ease and precision. +e Coimbra variable order operator
can be used to examine and analyze the dynamics of a
variety of physical models, such as fractional forces, which
cannot be accurately modelled with a constant order
fractional operator.
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