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(is article focuses on the application of wind speed data of 4 coastal areas of Baluchistan, that is, Gawadar, Jiwani, Ormara, and
Pasni on 4-Component Rayleigh Mixture Model (4-CRMM) under Bayesian context. Type I right censoring scheme is used
because it is popular in reliability theory and survival analysis. To accomplish the objective, the Bayes estimates (BEs) of the
parameter of the mixture model along with their posterior risks (PRs) using informative prior (IP) and noninformative prior
(NIP) are obtained. Hyperparameters are obtained by employing the prior predictive method. BEs are calculated under two
distinct loss functions, squared error loss function (SELF) and modified squared error loss function (MSELF). (e statistical
properties and performance of the BEs under said loss functions are also evaluated by simulation study for different sample sizes.

1. Introduction

Wind plays an important role in modifying and controlling
climate and weather on our globe. It is originated by irregular
heating patterns of sun on the surface of the Earth. (is is rich
and clean enough to produce electricity and used for different
purposes. Due to power demand and lack of fossil fuels
presently in the world, the use of wind resource plays a vital
role in power supply. (erefore, the use of wind energy is
expanding and it is increasingly becoming a new source to
generate power energy. Wind is extensively available all over
the world as an important resource. It has been proven fact that
China, USA, India, Spain, and Germany are the sole producers
of wind energy. Many other countries have also invented new
and resourceful regulation for wind power, Azhar et al. [1]. In
advancing wind energy plan, Pakistan is also playing a vital
role. It has the capability to generate electrical power through
wind energy. According to World Energy Statistics, published
by IEA, Pakistan’s per capita electricity consumption is one-
sixth of the world average. World average per capita electricity
consumption is compared to Pakistan’s per capita electricity
consumption; 40% of Pakistanis still have no access to

electricity [2]. As we know, to utilize the power in the wind
reasonably, strong wind is required, and developing wind
energy clear knowledge of wind resources like location of the
site, performance, condition of turbine, physical impacts of
turbulence, and energy extraction is necessary. Normally, the
coastal belts are considered favorable for the consistent wind
resources. (e geological structure, climate, and geographical
position of Pakistan favors the great wind potential, Azhar et al.
[1]. (e theoretical and technical capability of existing wind
data of the coastal belt of Baluchistan is estimated by con-
sidering population density at highwind areasHarijan et al. [3].
Pakistan Meteorological department performs vital role in
spreading the network of regular meteorological stations all
over the country which record wind data for research purpose.

Wind is changing with respect to space and time;
therefore, regionalized study according to statistical point of
view is necessary to model wind speed data. Many proba-
bility functions were fitted to represent wind data. Rayleigh
distribution has proven an important candidate to model
wind speed. Kiss and Jánosi [4] applied Rayleigh, Weibull,
and Gamma distributions to model wind speeds over both
land and sea. Abbas et al. [5] applied two-parameter
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Gamma, Weibull, Lognormal, and Rayleigh and three-pa-
rameter Burr and Frechet distribution on wind data and
applied different goodness of fit tests. Azhar et al. [1] pre-
sented wind data analysis of coastal region of Baluchistan
using Weibull and Rayleigh models.

(e combination of different probability distributions is
marked as mixture model. It is used to represent a statistical
population with subpopulation. In recent few years due to
rapid growing computational techniques, applications of
mixture models in various fields are spreading day by day.
Mixture models can be formed by using the same functional
form for each component, known as type I mixture models,
while it may consist of different probability distributions
known as type II mixture models. For the continence and
simplicity, type I mixture models are more frequently used.
Several authors have applied mixture modeling in various
practical situations. To model the crime and justice data,
Harris [6] applied mixture distributions. Mixture of normal
and Laplace distributions to wind shear data was fitted by
Jones and McLachlan [7]. Applications of mixture models in
many fields has inspired the researchers and they have
performed the classical and Bayesian analysis on two or
three-component mixtures. Noor and Aslam [8] presented
Bayesian inference of the Inverse Weibull mixture distri-
bution using type I censoring. Noor et al. [9] have analyzed a
mixture model formed by mixing Rayleigh and Burr XII
distribution under a Bayesian setup. Aslam et al. [10] dis-
cussed 3-component mixture of Rayleigh distributions,
properties and estimation under the Bayesian framework.
Inspired by the stated applications of mixture models, which
mainly focus on two- or three-component mixture models,
we intend to introduce advancement in the field by pre-
senting a four-component mixture model of Rayleigh dis-
tribution. (ough many authors have considered the
problem of modeling wind data using different probability
models, it is noticed that these types of data have not been
analyzed using mixture models that are far more important
and flexible than simple probability distributions. So, the
proposed mixture model is analyzed by applying wind speed
data of four coastal areas, that is, Gawadar, Jiwani, Ormara,
and Pasni of Baluchistan as coastal areas are good/com-
petitive source of wind that can be utilized to convert into
energy. (e parameters of component distributions are
assumed to be unknown. Two different priors and two
distinct loss functions are used for Bayesian analysis.

(e rest of the paper is organized as follows. (e 4-
CRMM, likelihood function along with expressions of
posterior distributions for both NIP and IP are derived in
Section 2. (e elicitation of hyperparameters and expres-
sions of Bayes estimators and posterior risks are also pre-
sented in Section 2. Simulation study and real data
application is in the Results and Discussions section. Finally,
conclusion of the study is presented.

2. Materials and Methods

2.1. Four-ComponentMixtureofRayleighDistribution. If Y is
a Rayleigh distributed random variable with parameter θm,

its probability density function (PDF) and cumulative dis-
tribution function (CDF), respectively, is

fm y; θm( 􏼁 �
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where y≥ 0 and θm is the scale parameter of the distribution.
A finite 4-CRMMwith the unknownmixing proportions
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(3)

(e CDF of the 4-CRMM is given by

F(y) � p1F1(y) + p2F2(y) + p3F3(y)
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In Figures 1 and 2, the shape of the PDF and CDF of 4-
CRMM is depicted for different values of component
parameters.

From Figure 1, it is noted that PDF curve of 4-CRMM for
different parametric values is positively skewed and can be
considered suitable to model mixture models and particu-
larly phenomena that have such trend like wind speed, flood
extremes, and so on.

2.2. 3e Posterior Distribution Using Noninformative and
Informative Priors. We use uniform prior as a non-
informative prior (NIP) and Square Root Inverted Gamma
(SRIG), which has compatible functional form with
Rayleigh distribution and most often used as informative
prior (IP) for determining the posterior distribution such
as [11].
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2.3. 3e Likelihood Function. Suppose a life testing experi-
ment is performed on 4-CRMM and n units are used in the
experiment. (e predetermined test termination time is t.
Let k out of n units be failed and the remaining n − k units
work till fixed test termination time. Out of k failures,
k1, k2, k3, and k4 failures are considered to belong to sub-
population I, subpopulation II, subpopulation III, and
subpopulation IV, respectively. Uncensored observations

depend upon different failure reasons, which are
k � k1 + k2 + k3 + k4. Now, let a random variable yji such
that, 0<yji ≤ t be the observed failure time of the ith unit that
belongs to the jth subpopulation, where j� 1, 2, 3, 4 and i� 1,
2, . . ., kj.

(e likelihood function of the 4-CRMM when data is
type I right censored (see Everitt and Hand [12]) is

L(φ|y)∝ 􏽙
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After simplifying, the likelihood function of 4-CRMM
becomes
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Figure 1: PDF of 4-component mixture of the Rayleigh distributions for different values of parameters.
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Figure 2: CDF of 4-component mixture of the Rayleigh distributions for different values of parameters.
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where y � (y11, y12, . . . , y1k1
, y21, y22, . . . , y2k2

, y31,

y32, . . . , y3k3
) are the recorded failing times for the uncen-

sored observations and φ � (θ1, θ2, θ3, θ4, p1, p2, p3).

2.4. 3e Posterior Distribution Using Uniform Prior (UP).
(e NIP is expected to be the UP when slight prior infor-
mation is specified. Laplace [13] and Geisser [14] proposed
that it is possible to select UP for unknown parameters. A UP
for a parameter θ is symbolized as p(θ) ∝ 1. Ups over the
intervals (0,∞) and (0, 1) are taken for the parameters

(θ1, θ2, θ3, θ4) of Rayleigh distribution and for the mixing
proportions (p1, p2, p3), respectively. Assuming parameters
to be independent and joint prior distribution of parameters
(θ1, θ2, θ3, θ4, p1, p2, p3) is given by

π1(φ)∝ 1, θ1, θ2, θ3, θ4 > 0, p1, p2, p3 ≥ 0, p1 + p2 + p3 ≤ 1.

(7)

(e joint posterior distribution of φ given data y using
UP is expressed by
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where M11 � k1 − (1/2),M21 � k2 − (1/2),M31 � k3 − (1/2),
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2.5. 3e Posterior Distribution Using SRIGP. Bayesian esti-
mation needs specifying independent priors for the pa-
rameters of the model. Informative prior may provide more
efficient Bayes estimates with lower posterior risks. We use
Square Root Inverted Gamma prior SRIGP as an informative

prior for determining the posterior distributions of the 4-
CRMM for the component parameters (θ1, θ2, θ3, θ4) and
bivariate beta prior for proportion parameters (p1, p2, p3).
Assuming independence of all parameters, the joint prior
distribution of φ is given as
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(e joint posterior distribution of φ given data y by using
SRIGP is given by

q2(φ|y)∝L(φ|y)π2(φ). (11)

Simplification leads to
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2.6. Elicitation of Hyperparameters. Elicitation is an im-
portant step in subjective Bayesian. It is the method, which
specifies the prior distribution of random parameters. It is
the way of quantifying prior information of the random
parameters. Aslam [15] and Hanh [16] have suggested
different procedures of elicitation based upon prior pre-
dictive distribution.

2.6.1. 3e Prior Predictive Distribution. It is the distribution
of unobserved data point and is the product of the prior and
the single variable density. Here, the uncertainty in the
parameter is averaged and a distribution is obtained for the
unobserved data point and is defined as

p(y) � 􏽚
∞

0
p(θ)f(y; θ)dθ. (14)

2.6.2. Elicitation of Hyperparameters Using SRIG Prior.
(e prior predictive distribution assuming the SRIGP for a
random variable Y is given as

p(y) � 􏽚
φ
f(y|φ)π2(φ)dφ. (15)

By substituting (4) and (12) into (16), we get
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Using the prior predictive distribution given in (16), we
have considered twelve intervals (0, 1), (1, 2), (2, 3), (3, 4), (4,
5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 11), and (11, 12)

having probabilities 0.12, 0.26, 0.24, 0.15, 0.10, 0.05, 0.03,
0.02, 0.01, 0.06, 0.20, and 0.35, respectively, that express an
experienced point of view. (e following twelve equations
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using (17) are solved simultaneously in Mathematica
package for eliciting the hyperparameters e1, e2, e3, e4, f1, f2,

f3, f4, e, f, g and h as
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1
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(e elicited values of hyperparameters
e1, e2, e3, e4, f1, f2, f3, f4, e, f, g and h are 2.795, 2.641,
2.397, 2.346, 2.179, 2.026, 1.872, 1.718, 1.564, 1.410, 1.256
and 1.103 respectively.

2.7. Bayes Estimators and Posterior Risks Using the UP and
SRIGP under SELF and MSELF. If 􏽢θ is a Bayes estimator,

then ρ(􏽢θ) is called posterior risk and is defined as
ρ(􏽢θ) � Eθ|y L(θ, 􏽢θ)􏽮 􏽯. (e purpose of this study is to look for
efficient Bayes estimators of the different parameters of the
mixture model used to analyze wind speed. (ere is no hard
and fast rule to decide about loss function, so to fulfil the
required purpose, two different loss functions, namely, SELF
and MSELF, are used to obtain Bayes estimators and their
posterior risks. A suitable loss function is chosen on the basis
of obtained posterior risk. (e SELF, defined as
L(θ, 􏽢θ) � (θ − 􏽢θ)2, was introduced by Legendre [17] to de-
velop the least squares theory. MSELF was presented by
DeGroot [18], and it is defined as L(θ, 􏽢θ) � θ − 􏽢θ/􏽢θ􏽮 􏽯

2
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2
, respectively. Similarly, the

Bayes estimators and posterior risks with MSELF are cal-
culated as 􏽢θ � Eθ|y(θ2|y)/Eθ|y(θ|y) and
ρ(􏽢θ) � var(θ|y)/Eθ|y(θ|y), respectively.
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Bayes estimators and posterior risks using the UP and
the SRIGP under MSELF are
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Where v � 1 forUP v � 2 for SRIGP.

(19)
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3. Results and Discussions

3.1. Simulation Study. To investigate the behavior of the
estimators under NIP and IP, the simulation consisting of
500 repetition is conducted and the average results are
obtained. Random sample for 4-CRMM is obtained from
p1n, p2n, p3n and (1 − p1 − p2 − p3)n, respectively. (e
observations higher than the fixed test termination time t� 8
are declared as censored observations. Failed observations
are classified either as member of subpopulation I, sub-
population II, subpopulation III, or subpopulation IV of 4-
CRMM. BEs of 4-CRMM are estimated based upon different
sample sizes. Simulated results for two sets of parameters
(θ1, θ2, θ3, θ4, p1, p2, p3) � (4, 3.9, 3.5, 5, 0.30, 0.20, 0.15)

and (3, 2.9, 2.5, 4, 0.30, 0.20, 0.15) are taken for n� 200, 300,
400, and 500 under SELF andMSELF.(e BEs and PRs have
been computed using Mathematica 11.0. (e results are
provided in Tables 1–4, respectively.

In Table 1, BEs and PRs are estimated assuming UP, and
it is observed that while increasing the sample sizes, the
values of the BEs become closer to the true parametric
values. Under SELF and MSELF, overestimation in the
values of θ1, θ2, θ3 and underestimation in θ4 are seen.
Among SELF and MSELF the estimators of SELF are closer
to parametric values. It is also observed that under MSELF
we have less PRs as compared to the SELF. For the same
parametric values Bes and PRs under SRIGP are estimated in
(Table 3). Under estimation is observed in the estimates
obtained from SELF while a slight over estimation is noticed
in the values of θ1, θ2, θ3 and under estimation in θ4 which
are obtained from MSELF. Here, it is again observed that
increase in sample size allows the estimated values move
towards the parametric values. MSELF is showing minimum
risks. In (Table 2) second set of parametric values are
considered assuming UP. Minimal over estimation under
SELF is noticed for θ1, θ2 and θ3 and under estimation can be
seen for n� 200 and 300 for θ4, at n� 400 and 500 under
both loss functions estimated values are equal to the
parametric values. Fluctuation is observed in the values of θ2,
and again MSELF provides less PRs than SELF. For the same
parametric values, BEs and PRs under SRIGP are estimated
in Table 4. It is concluded from the simulated results that for
both sets of parametric values, UP is observed better as it
provides minimum risks.

3.2. RealDataApplication. As wind is changing with respect
to space and time, so regionalized study according to sta-
tistical point of view is necessary to model wind speed data.
Rayleigh model has been found more flexible and suitable to
analyze wind speed data as compared to other distributions;
therefore, we consider 4-CRMM to conduct Bayesian
analysis of wind speed data. Mixture models can be formed
by using same functional form for each component, known
as type I mixture models, while it may consist of different
probability distributions known as type II mixture models.
For the convenience and simplicity, type I mixture models
are more frequently used. (e wind data is statistically
analyzed by selecting four locations of coastal belt (Gawadar,

Jiwani, Ormara, and Pasni) of Baluchistan for the period of
sixteen years from 2003 to 2018. (e daily wind speed data
(in knots) of four coastal belts including Gawadar, Jiwani,
Ormara, and Pasni of the Province Baluchistan are taken
from the PakistanMetrology Department from 2003 to 2018.
(e wind data (in knots) is converted into km/h.(is data is
used to analyze the proposed four components mixture
model assuming type I censoring scheme. In type I censoring
experiment is stopped at some predetermined time or on
unavailability of test equipment. As the wind of speed more
than 54 km/h damages the turbine, hence, the turbine is
stopped immediately when this threshold level is encoun-
tered. So, 54 km/h is fixed as censoring point. Further, more
different seasons have different trends in wind; the data for
each year are divided into four quarters which are consid-
ered to form four components of mixture model. For every
quarter, the maximum value of the month is selected.
According to this arrangement of values for 16 years, each
quarter has 48 values and, overall, 192 values in each region.
Furthermore, goodness of fit of data to Rayleigh model is
checked using a command Distribution FitTest in Mathe-
matica, which returned test statistic fromCramér–vonMises
test of 0.11 against p value 0.278. So, the null hypothesis that
the data is distributed according to the Rayleigh distribution
is not rejected at the 5 percent level based on the Cramér-von
Mises test.

Summary information from real data (Gawadar) for
4CRMM is

T � 54, n � 192, 􏽘

k1

i�1
y
2
1i � 5947.09613,

􏽘

k2

i�1
y
2
2i � 76003.24274, 􏽘

k3

i�1
y
2
3i � 67054.62321,

􏽘

k4

i�1
y
2
4i � 45963.98795,

k1 � 46, k2 � 48, k3 � 47, k4 � 46,

k � k1 + k2 + k3 + k4 � 187,

n − k � 5.

(20)

Summary information from real data (Jiwani) for
4CRMM is

T � 54, n � 192, 􏽘

k1

i�1
y
2
1i � 36713.87027,

􏽘

k2

i�1
y
2
2i � 36699.9728, 􏽘

k3

i�1
y
2
3i � 25285.25229,

􏽘

k4

i�1
y
2
4i � 22503.60014,

k1 � 48, k2 � 47, k3 � 46, k4 � 47,

k � k1 + k2 + k3 + k4 � 188,

n − k � 4.

(21)
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)

0.
24
73
2
(0
.2
22
96
)

0.
26
38
5
(0
.0
01
02
)

0.
24
84
7
(0
.0
00
96
)
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i

21
.1
55
42

(5
.9
92
61
)

20
.6
33
56

(5
.4
56
19
)

16
.3
34
69

(3
.7
22
34
)

15
.5
28
21

(3
.2
05
69
)

0.
25
31
1
(0
.0
01
01
)

0.
26
08
9
(0
.0
01
03
)

0.
24
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0
(0
.0
00
95
)

O
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a

26
.9
21
66

(6
.7
75
69
)

27
.3
08
46

(6
.4
43
04
)

29
.2
93
14

(6
.8
32
88
)

22
.6
21
08

(4
.7
12
42
)

0.
24
76
1
(0
.0
00
97
)

0.
25
73
4
(0
.0
00
10
)

0.
25
36
0
(0
.0
00
99
)
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i

25
.4
37
29

(6
.3
75
42
)

28
.5
31
99

(6
.8
13
71
)

27
.0
47
67

(6
.1
96
91
)

22
.0
59
9
(4
.6
78
84
)

0.
24
68
1
(0
.0
00
96
)

0.
25
95
1
(0
.0
01
00
)

0.
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20
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(0
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00
98
)

M
od

ifi
ed
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n
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.4
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(0
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)
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.6
43
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(0
.0
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89
)

19
.2
73
7
(0
.0
11
51
)

17
.9
94
23

(0
.0
11
52
)

0.
25
12
1
(0
.0
15
45
)

0.
26
77
3
(0
.0
14
44
)

0.
25
23
4
(0
.0
15
31
)
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an
i

21
.4
38
69

(0
.0
13
21
)

20
.8
97
09

(0
.0
12
65
)

16
.5
62
57

(0
.0
13
76
)

15
.7
34
65

(0
.0
13
12
)<

0.
25
70
8
(0
.0
15
52
)

0.
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48
2
(0
.0
14
91
)

0.
25
02
4
(0
.0
15
41
)
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a
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.1
73
34

(0
.0
09
26
)

27
.5
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(0
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57
)

29
.5
26
40

(0
.0
07
90
)

22
.8
29
40

(0
.0
09
13
)

0.
25
15
2
(0
.0
15
57
)

0.
26
12
1
(0
.0
01
49
)

0.
25
74
9
(0
.0
15
16
)

Pa
sn
i

25
.6
87
92

(0
.0
07
96
)

28
.7
70
80

(0
.0
08
30
)

27
.2
76
78

(0
.0
08
40
)

22
.6
14
81

(0
.0
09
23
)

0.
25
07
2
(0
.0
15
51
)

0.
26
33
8
(0
.0
14
63
)

0.
25
59
5
(0
.0
15
19
)
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Summary information from real data (Ormara) for
4CRMM is

T � 54, n � 192, 􏽘

k1

i�1
y
2
1i � 66457.8199, 􏽘

k2

i�1
y
2
2i � 70463.94778, 􏽘

k3

i�1
y
2
3i � 78435.04467, 􏽘

k4

i�1
y
2
4i � 46962.24557,

k1 � 42, k2 � 35, k3 � 44, k4 � 48,

k � k1 + k2 + k3 + k4 � 169,

n − k � 23.

(22)

Summary information from real data (Pasni) for
4CRMM is

T � 54, n � 192, 􏽘

k1

i�1
y
2
1i � 59447.09613, 􏽘

k2

i�1
y
2
2i � 76003.24274, 􏽘

k3

i�1
y
2
3i � 67054.6232, 􏽘

k4

i�1
y
2
4i � 45963.98795,

k1 � 46, k2 � 45, k3 � 48, k4 � 44,

k � k1 + k2 + k3 + k4 � 183,

n − k � 9.

(23)

(e BEs and the PRs using the UP and the SRIGP under
SELF and MSELF are presented in Tables 5 and 6.

(e values of BEs are representing the average wind
speed of all four quarters. Censoring point is fixed as 54 km/
h because wind speed above this limit damages the wind
turbine. θ2 represents the estimates for the months of April,
May, and June, which shows higher estimated values than
θ1, θ3, and θ4. From this, it is observed that in these months,
wind speed is high in all 4 regions that will be the favorable
condition for the power generation. It is also observed that
while assuming both priors (UP and SRIGP), the perfor-
mance of MSEL is a better choice.

From real data results, it is observed that assuming UP
under loss functions, the average wind speed is greater in the
second quarter (April, May, and June), and it is smaller in
the fourth quarter (October, November, and December).
Under SELF, the average wind speed in the second quarter is
25.174 km/h, 21.391 km/h, 36.902 km/h, and 31.292 km/h,
and in the fourth quarter, it is 18.375 km/h, 15.848 km/h,
23.757 km/h, and 24.003 km/h for Gawadar, Jiwani, Ormara,
and Pasni, respectively.(e PRs are comparatively higher for
all four regions. For UP under MSELF in the second quarter,
average wind speed is noticed as 25.335 km/h, 21.545 km/h,
37.255 km/h, and 31.496 km/h, and in the fourth quarter, it is
18.495 km/h, 15.947 km/h, 23.933 km/h, and 24.170 km/h
for respective four areas. (e posterior risks for Gawadar
and Pasni are almost equal and smaller than Jiwani and
Ormara.

Real data results assuming SRIGP under loss functions
shows that the second quarter (April, May, and June) is
showing higher average speed, and it is smaller in the fourth
quarter (October, November, and December). Under SELF,

the average wind speed in the second quarter is 24.399 km/h,
20.633 km/h, 27.308 km/h, and 28.532 km/h, and in the
fourth quarter, it is 17.787 km/h, 15.528 km/h, 22.621 km/h,
and 22.405 km/h for Gawadar, Jiwani, Ormara, and Pasni,
respectively. (e PRs are again higher for all four regions
under SELF. For SRIGP under MSELF in the second quarter,
the average wind speed is noticed as 24.643 km/h,
20.897 km/h, 27.544 km/h, and 28.771 km/h, and in the
fourth quarter, it is 17.994 km/h, 15.735 km/h, 22.829 km/h,
and 22.614 km/h for respective four areas.(e posterior risks
for Ormara and Pasni are almost equal with slight difference
than other regions.

4. Conclusion

Motivated by the widespread applications of the mixture
models, a 4-CRMM is presented by applying wind speed
data from four coastal areas of province Baluchistan Paki-
stan. Wind speed data is often modeled by appropriate
probability model, but due to different seasonal trends re-
flected in the speed of wind, it can also be applied to mixture
models. To accomplish the desired objective, the Bayes es-
timates (BEs) of the parameter of the mixture model along
with their posterior risks (PRs) using informative prior (IP)
and noninformative prior (NIP) are obtained. (e values of
BEs represent the average wind speed of all four quarters. It
is observed from the analysis that winds are observed strong
enough in the second quarter. So, it can be concluded that in
the second quarter (April, May, and June), wind speed is
comparatively stronger so these months would be better for
power generation and should be effectively utilized. It is also
concluded that assuming both priors, the PRs under MSELF

Mathematical Problems in Engineering 15



are almost equal with slight difference, but overall MSELF is
considered better loss function and hence is suggested for
such analysis.
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(e data are available from the corresponding author upon
request.
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[13] P. S. Laplace, 3éorie Analytique des Probabilités, Courcier,
Paris, France, 1820.

[14] S. Geisser, “On prior distributions for binary trials,” 3e
American Statistician, vol. 38, no. 4, pp. 244–247, 1984.

[15] M. Aslam, “An application of prior predictive distribution to
elicit the prior density,” Journal of Statistical 3eory and
Applications, vol. 2, no. 1, pp. 70–83, 2003.

[16] E. D. Hahn, “Re-examining informative prior elicitation
through the lens of Markov chain Monte Carlo methods,”

Journal of the Royal Statistical Society: Series A, vol. 169, no. 1,
pp. 37–48, 2006.

[17] A. M. Legendre, Nouvelles Méthodes Pour la Détermination
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