
Research Article
Ray Tracing Acceleration Algorithm Based on FaceMap

Jian Wang, Hui Xiao, and Hongbin Wang

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China

Correspondence should be addressed to Hongbin Wang; whbin2013@kust.edu.cn

Received 7 January 2022; Revised 28 February 2022; Accepted 7 March 2022; Published 25 April 2022

Academic Editor: Wei Liu

Copyright © 2022 Jian Wang et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Raster method and ray tracing are two important algorithms in computer graphics. �e former, raster method, marked by high
speed and e�ciency, has the disadvantage of an unrealistic rendering e�ect. By contrast, ray tracing requires considerable
computing resources and time despite its advantages of high �delity and simple structure, thus only suitable for o�ine rendering.
Given such limitations, a ray-tracing acceleration algorithm that combines the raster method and ray tracing is proposed in this
study based on FaceMap, a two-dimensional data structure that stores surface distribution under point light or the view of a
camera. Firstly, all triangular surfaces of the 3Dmodel are rasterized by linear surface projection to form the surface distribution of
a spherical panorama. Secondly, the structure of FaceMap is adopted to store the distribution information of all the surfaces in the
scene. �irdly, the data on the intersecting surfaces in this direction are collected by projecting the ray onto FaceMap in the ray-
tracing process, thus reducing the intersection and propagation operations and improving the e�ciency. Four object models
including chessboard, grass patch, bust, and typewriter are selected for comparative rendering experiments. Our proposedmethod
is used to compare with Rhino and VRay rendering software, respectively. �e results show that our proposed method obtained
better rendering e�ects within greatly reduced rendering time (© 2018Optical Society of America).

1. Introduction

Raster method and ray tracing are two branches of computer
graphics. Raster method has the advantages of fast speed and
high e�ciency in scene rendering, but the disadvantage is
that the rendering degree is far less than the reality; ray
tracing has the advantages of high rendering reality and
simple structure, and the disadvantage is that it consumes
too much calculation, so it can only be used in o�ine
rendering.

Traditional ray-tracing algorithms adopt the Monte
Carlo illumination model [1], which simulates the
propagation of light in the real physical environment.
After the conduct of a series of operations such as specular
re�ection, perspective refraction, and di�use re�ection, an
image is �nally generated. However, it is di�cult to de-
termine which surfaces the light may intersect within the
propagation process due to the relatively complex ren-
dered scenes. �erefore, the main calculation in the ray-
tracing process lies in the intersection operation of the ray
and surface.

To narrow the range of surfaces requiring intersection
operation, commonly used techniques are ray-tracing ac-
celeration algorithms including the bounding box method,
three-dimensional DDA (3D-DDA) algorithm, and octree
division method:

(i) Bounding box method: the basic idea of the
bounding box is to use geometric objects of regular
shapes to wrap eachmodel in the scene, respectively.
�e adjacent bounding boxes are wrapped in larger
boxes to form a tree structure [2]. �e intersection
operation starts from the root node of the tree and
then to the subnodes. It will involve the sub-
bounding boxes or the surfaces of inner models of
the bounding box if there is an intersection point.
Otherwise, the ray will not intersect with any surface
of the inner models in the bounding box.

(ii) 3D-DDA algorithm: the low e�ciency of ray in-
tersection operation is mainly due to the uncertainty
about the surfaces that may intersect and that are
closest to the ray source. DDA algorithm evenly

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 8961577, 16 pages
https://doi.org/10.1155/2022/8961577

mailto:whbin2013@kust.edu.cn
https://orcid.org/0000-0001-7525-3027
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8961577

divides the space into three-dimensional grids,
within which the corresponding surface is stored
[3]. In the process of intersection operation, the ray
starts from the grid where the ray source is located
and successively intersects with the encountered
surfaces inside other grids. If an intersection point
appears, it will be the closest to the ray source.

(iii) Octree division method: similar to the 3D-DDA
algorithm, the octree division method divides the
space into nonuniform grids [4]. A cube that can
wrap the whole scene is divided into eight blocks,
and the number of surfaces in each block is cal-
culated. +e block will be further divided into eight
sub-blocks if the number is larger than the
threshold; otherwise, the division stops. +e above
steps are repeated until the surface number of every
sub-block is smaller than the threshold.

+e above three methods are all based on space dividing,
which means dividing the space capable of wrapping the
whole scene into different grids that contain some surfaces
inside. When the ray propagates between different grids, the
intersection operation is conducted between the ray and the
surface within a grid.

Although these methods are efficient in scene rendering,
they require additional calculation of ray propagation between
grids and fail to determine whether there is an intersection
between surfaces in a direction before the ray leaves the scene.
Such drawbacks are particularly serious when there are nu-
merous light sources in the scene [5].+e reason is that for each
intersection on a surface, a shadow test line is required to be
sent out to the light source for the purpose of examining
whether it would be obscured by other surfaces.

It can be seen from the above analysis that both the raster
method and ray tracing have their own advantages and dis-
advantages. A natural idea is to combine the advantages of the
two algorithms to solve the aforementioned problems. As a
remedy, we propose FaceMap, a two-dimensional data structure,
to store surface distribution corresponding to the point light
source or camera. It is by virtue of FaceMap that the surfaces
intersected in a certain direction can be rapidly determined, and
the efficiency of intersection operation can thus be improved.

+e rest of this paper is organized as follows: Section 2
and Section 3 introduce the raster method and the ray-
tracing method, respectively. In Section 4, the ray-tracing
acceleration algorithm based on FaceMap is illustrated in
detail. Experimental results and analysis are presented in
Section 5. Finally, conclusions are drawn in Section 6.

2. Raster Method

Raster rendering has the advantages of speed and efficiency.
Because of its special rendering pipeline flow, raster ren-
dering can be well integrated into the hardware (such as
GPU). Besides, customized programming based on partic-
ular needs is made possible to obtain the desired picture
effect. +e pipeline flow mainly consists of vertex conver-
sion, primitive assembly, rasterization, and interpolation
coloring [6, 7].

2.1. VertexConversion. Each 3D rendering engine involves a
space camera, whose projection result of a 3D scene is an
image seen by a user. +e camera itself is in the 3D space,
capable of basic movement, rotation, and other different
view transformations.

+e basic unit of the 3D model is a triangular surface
with three vertices where the 3D coordinate data are stored
in accordance with the world coordinate system.+e data do
not change when the model remains static. However, if the
model coordinates cannot be calculated according to the
world coordinate system due to changing the camera's angle
of view, they should be converted to the camera's space. +is
is called vertex conversion. When the coordinate data of the
model’s vertices are transformed into the visual field of the
camera, the basic projection transformation can be con-
ducted. +ere are two kinds of projection transformation,
namely perspective projection and orthogonal projection.
+e former is similar to what is observed by human eyes, that
is, an object is big when near and small when far, complying
with the perspective principle. By comparison, the latter is
similar to the scene when all models are compressed to a
plane while retaining the original sizes, which is not in line
with the perspective principle. +erefore, raster rendering
mainly focuses on perspective projection.

2.2. Perspective Projection. +e camera used in the raster
method usually contains four parameters, namely viewing
angle θ, near clipping plane distance n, far clipping plane
distance f, and screen aspect ratio α, with the near clipping
plane, serving as the projection plane, as shown in Figure 1.

For points that have been converted to the camera space,
their 3D coordinates can be transformed accordingly by the
projection transformation matrix M. At this point, the
coordinates are not clipped in the screen space; the coor-
dinates on the near projection plane can then be obtained. In
addition, the transformation matrix can be regarded as the
process of the space points being transformed into the near
projection plane. Accordingly, the reverse process is to
transform the points on the projection plane into the vectors
in the camera space and thus is often used to solve the
coordinates and rotation angles of camera. +e transfor-
mation matrix M is expressed as follows:

M �

cot θ
α

0 0 0

0 cot θ 0 0

0 0
f

f − n
1

0 0
fn

n − f
0

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

. (1)

+en, the points after perspective projection can be
transferred to the screen coordinate system through the
screen matrix S, and the matrix S is shown as follows:

2 Mathematical Problems in Engineering

S �

width
2

0 0 0

0 −
height

2
0 0

0 0 1 0

width
2

height
2

0 1

. (2)

2.3. TriangularRasterization. �e smallest polygon in a two-
dimensional plane is a triangle, and any polygon can be
viewed as a combination of several triangles. Hence, tri-
angles are often used as basic structure for 3D models. For a
triangle that has been transferred to screen coordinate
system, its three edges and inside pixels need to be �lled with
progressive scanning being the frequently adopted method
[8], as shown in Figure 2.

�e pseudo-code of the process is described in Algo-
rithm 1.

�e highest and lowest points of a triangle should not
exceed the scope of the display screen and, if necessary,
should be reduced to 0∼(height− 1). Speci�cally, a triangle
edge intersects with a certain line y if and only if one vertex
of the edge is below y and the other vertex is not. Assume the
two vertices of the edge are (x1, y1) and (x2, y2), respec-
tively; then the equation that solves the x-coordinates of the
vertices is expressed as follows:

x � x2 + x2 − x1()
y − y1
y2 − y1

. (3)

�e two intersection points of the triangle edge and the
line y can be obtained by the abovemethod.�e rasterization
of the line is completed after �lling the pixels between the
two points. However, one drawback of triangle rasterization
lies in the serious jagged edges of a triangle. A normal
solution to such problem is to increase the sampling points
in the edge pixels, as shown in Figure 3.

�e edge pixel is divided into several pixels for raster-
ization, and then, the average value of the pixel color is
calculated, serving as the color of the edge pixel. �is ap-
proach can greatly alleviate the jag e�ect and meanwhile
achieves low consumption since only edges require

upsampling. �erefore, it can also be applied to mobile
devices such as cell phones [9].

Given the triangular surfaces of the model, its �neness
can be regarded as equivalent to the number of triangles.
However, a detail-emphasized model will signi�cantly in-
crease rendering time due to its large number of triangular
surfaces. �erefore, existing improved algorithms use a
small number of points to simulate a high-accuracy model.
After �tting surfaces by voxel rendering (as shown in Fig-
ure 4), the numbers of vertices and triangular surfaces are
reduced, and the rendering of the model is accelerated [10].

3. Ray Tracing

Scene rendering of ray tracing mainly involves the process of
sampling, reconstructing, synthesizing, and resampling the
global illumination, for the virtual 3D space that can be
viewed as the combination of objects and light sources.
Unlike in the raster method, objects in ray tracing are not
directly observed by cameras. Instead, certain light distri-
bution forms in space after the light source and objects are
illuminated by light, and what the camera captures is the
re�ected light as a result of the intersection of the ray and
surface [11].

Ray tracing mainly computes the intersection of the
point-based ray and the triangular surface in the space and
then obtains u and v of the intersection point relative to the
triangle vertices.

Assume the ray starts from point O, and the unit di-
rection vector is D which intersects with the triangle
(V0, V1, V2) at point P. �en, P can be viewed as translated
from V0 corresponding toV1 andV2, the distance between P
and O being t, as displayed in Figure 5.

�e equation obtained is expressed as follows [12]:

O +Dt �(1 − u − v)V0 + uV1 + uV2

u≥ 0

v≥ 0

u + v≤ 1
.

(4)

By rearranging the above equation and extracting t, u,
and v as unknowns, the linear equations can be described as
follows:

α

f

n

θ

Figure 1: Perspective camera.

y

(x,y)

(x1,y1)

(x2,y2)

Figure 2: Triangle rasterization.

Mathematical Problems in Engineering 3

−D V1 − V0() V2 − V0()[]
t

u

v

 � o − V0, (5)

−D E1 E2[]
t

u

v

 � T. (6)

Assume E1 � V1 − V0, E2 � V2 − V0, and T � O − V0,
and then, equation (5) can be rewritten as equation (6).

Next, according to Cramer’s rule and the mixed product
formula, t, u, and v are solved, as expressed as follows:

t

u

v

�

1
D × E2 · E1
∣∣∣∣

∣∣∣∣

T × E1 · E2

D × E2 · T

T × E1 ·D

. (7)

To avoid repeated operations, assume R � D × E2 and
Q � T × E1, and thus, equation (7) is simpli�ed as follows:

t

u

v

�

1
R · E1
∣∣∣∣

∣∣∣∣

Q · E2

R · T

Q ·D

. (8)

4. Ray-Tracing Acceleration Algorithm
Based on FaceMap

�e raster method is characterized by high speed and e�-
ciency but has the disadvantage of an unsatisfactory ren-
dering e�ect. In contrast, the ray-tracing method features in
simple mechanism and high �delity, but it only applies to
o�ine rendering due to its high computational complexity
and time complexity. �erefore, the idea of combining the
advantages of the two algorithms becomes very natural and
intuitive.

4.1. Basic Idea of FaceMap. Conventional raster projection is
a kind of linear plane projection, with linear variations of the
distance between points relative to the origin. By contrast,
the projection of FaceMap belongs to linear surface pro-
jection, with linear variations of angles between points
relative to the origin. FaceMap consists of four parts as
follows: linear surface projection, curve approximation by
bisection method, �lling of the curved triangle, and reverse
solution of light vector.

Figure 6 clearly shows that in terms of ordinary plane
projection, the angle between point’s narrows with the
decrease in the distance between points and the screen edge.
Consequently, serious deformation can occur at the screen
edge, and the larger the �eld angle is, the more serious the
deformation becomes.

A typewriter model was extracted via Adobe After E�ect
2015 (AE for short), and the conversions of the camera’s �eld
angle are shown in Figure 7. To go into detail, the upper left
�eld angle was 50°, basically without deformation; the upper

Input: A triangle vertex information
(1) Find the highest and lowest points of the triangle;
(2) Traverse from the highest point to the lowest point:

(a) Calculate the two intersection points of the current line and the triangle edge;
(b) Fill from the left node to the right node;

Output: Results after transfer

ALGORITHM 1: A triangle transfer to the screen coordinate system.

Figure 3: Edge pixel sampling.

Figure 4: Surface simulation by the sparse point set.

P

u

v

t

D

O

V1

V2

V0

Figure 5: Intersection of the ray and surface.

4 Mathematical Problems in Engineering

right �eld angle was 90°, with tensile deformation near the
bottom corners; the bottom left �eld angle was 120°, with
particularly evident tensile deformation; the bottom right
�eld angle was 170° (because AE is unable to set the �eld
angle as 180°, or in other words, the �eld angle in plane
projection cannot reach 180°), with the whole typewriter
model being stretched to a strip.

In comparison, the linear surface projection based on
FaceMap is similar to real optical lens in everyday life, with a
complete 360-degree visual �eld. It can generate various
image e�ects including wide-angle, �sheye, and ultra-wide-
angle. As shown in Figure 8, the upper left �eld angle was 50°,
basically without deformation (similar to that in plane
projection); the upper right �eld angle was 90°, with an
overall bent deformation; the �eld angles of the lower left
and the lower right were 120° and 170°, respectively, both
with the e�ect closer to that obtained by �sheye lens.

FaceMap is a two-dimensional data structure that stores
the spherical panorama distribution of the scene. �erefore,
after mapping the object in the scene to FaceMap, a spherical
panorama can be generated. Figure 9 presents the FaceMap
schematic diagram of the interior of a typewriter model with
spatial origin (0, 0, 0), the �eld angle being 360°. Each point
in the �gure stored the surface data in that direction. A
darker color of points indicated a larger number of surfaces
in the direction, and a lighter color, a smaller number of
surfaces.

In the ray-tracing process, for ray vectors emitted by
the camera, surfaces that might intersect can be deter-
mined directly by FaceMap. In addition, the shadow test
line facing the light source can also �nd out whether there
is any surface as an obstacle, requiring no light propa-
gation operation.

In this study, the scene surface was projected onto
FaceMap by the raster method so as to accelerate the
generation. Instead of using ordinary linear plane projection
whose maximum �eld angle is approximately 180°, this
paper adopted the linear surface projection which has a 360-
degree visual �eld for the generation of FaceMap.

As shown in Figure 10, the central point of FaceMap was
O. After projecting a triangular surface in the scene onto the
sphere of FaceMap, a curved triangle ABC was formed, and
the three corresponding edges, denoted as a, b, and c, were
all curves.

�e detailed raster process is shown in Figure 11. �e
three vertices A, B, and C of the triangle were projected onto
the two-dimensional structure of FaceMap by virtue of
linear surface projection. �en, the bisection method was
used to approximate any curved edge of the triangle, and
�nally, the scanning line �lling method was employed to �ll
the curved triangle.

4.2. FaceMap Algorithm

4.2.1. Linear Surface Projection. �e BIT-VBF left-handed
3D coordinate system was adopted in this paper. �e
vertex coordinate transformation was viewed as con-
verting points from the world coordinate system to the
camera coordinate system, by virtue of the transformation
matrix [13]. �e position coordinates of any point in 3D
space were represented by (x, y, z), while the world co-
ordinate axes were described as axis X(1, 0, 0), axis
Y(0, 1, 0), and axis Z(0, 0, 1) successively. Similarly, a
camera also possessed position coordinates and three
axes. �e position of the camera was assumed as camPos,

(a) (b)

Figure 6: (a) Plane projection. (b) Surface projection.

Mathematical Problems in Engineering 5

with the three axes being camAX, camAY, and camAZ,
respectively, and the axis coordinates would change
according to the rotation of the camera.

+e angle changes relative to the screen center are linear
in linear surface projection. In other words, if the distance
between a point and the central origin is two times that of
another point, then the angle between this point and the line
of sight is also two times that of the other point.

+e field angle of a surface was denoted as θ, the center as
camPos, and the three axes as camAX, camAY, and camAZ.
For a certain point v in the space, its vector cv relative to the
camera was calculated by

cv.x � v.x − camPos.x,

cv.y � v.y − camPos.y,

cv.z � v.z − camPos.z.

(9)

Vector operation was expressed as

cv � v − camPos. (10)

+e calculated cv was the converted coordinates when
the camera remained static, while the axis coordinates
changed when the camera rotated, and the correspondingly
converted vertex coordinates tv were calculated by

tv.x � cv.x × camAX.x + cv.y × camAX.y

+ cv.z × camAX.z,

tv.y � cv.x × camAY.x + cv.y × camAY.y

+ cv.z × camAY.z,

tv.z � cv.x × camAZ.x + cv.y × camAZ.y

+ cv.z × camAZ.z.

(11)

After simplification, the transformation matrix was
expressed as

tv �

camAX

camAY

camAZ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[cv]. (12)

+e transformation matrix can operate a series of
transformations of the model, such as translation, rota-
tion, and scaling. Only one point in the space is needed to
move and rotate, and then, all the vertices of the model
experience coordinate transformation relative to that
point, thereby resulting in the converted model. Besides,
scaling could be realized merely by multiplying one factor
in the matrix [14].

Figure 7: Plane projection with field angles of 50°, 90°, 120°, and 170°.

6 Mathematical Problems in Engineering

Figure 8: Surface projection with field angles of 50°, 90°, 120°, and 170°.

Figure 9: FaceMap schematic diagram.

Mathematical Problems in Engineering 7

�e angle β between tv and the sight axis was calculated
by

β � acos
tv · camAZ
|tv||camAZ|(). (13)

Next, the screen radius was assumed to be R, so the
distance t between point sv after mapping and the screen
center was obtained by the following equation:

t �
2β
θ
R. (14)

Given the x-coordinate and y-coordinate of tv, the di-
rection of its projection on the XOY plane of FaceMap could

be determined. �e distance between tv on the XOY plane
and the central origin was denoted as Dist, and then, the
ratios kx and ky of components in the OX and OY di-
rections were obtained, as calculated by

Dist �
�������
x2 + y2,
√

kx �
x

Dist
,

ky �
y

Dist
.

(15)

At last, the sx − coordinate and sy − coordinate of point
sv projected onto FaceMap were calculated by

B

a

c

b

C

O

A

Figure 10: Surface projection.

C B

B

AA

A A

B

c c bb

a a

B

C

C

C

Figure 11: Curved triangle rasterization.

8 Mathematical Problems in Engineering

sx

sy
 � t

kx

ky
 . (16)

4.2.2. Curve Approximation by the Bisection Method. A
curve can be seen as a collection of countless points, while a
line in screen space is a collection of finite points. +erefore,
curves in a space can be approximated by calculating finite
pixels. Given the method of perspective projection, the curve
mapping method in screen space is described in Algorithm
2.

4.2.3. Filling of the Curved Triangle. +e curved triangle
needs to be filled after all its points are obtained. Similar to
the rasterization of regular triangles, the filling of the curved
triangle also employed the progressive scanning method is
described in Algorithm 3.

+e number of intersections per row, though might
more than two due to the curved triangle edges, could only
be even, so the filling was conducted in pairs.

For a curved triangle, the intersection of each line and
the curved edge is described in Algorithm 4.

+is method is capable of conflict detection and the
recognition of multipoints on the same line, thus avoiding
the occurrence of odd number of intersection points on a
line.

4.2.4. Reverse Solution of the Light Vector. In the reverse ray
tracing, each pixel on the screen needs a reverse solution of
the ray vector.

By the nature of surface projection, the distance from a
point to the screen center is linearly correlated with the angle
between the vector corresponding to the point and the sight
axis camAZ. Accordingly, for a point (sx, sy) on the screen,
the radius of the screen was assumed as R, and the field angle
as θ. +en, the relation between the coordinates of the point
and those of the screen center was dx � sx − R and
dy � R − sy.+e angle β between its vector and the sight axis
was calculated by

β �

��������

dx
2

+ dy
2

2R
θ.

(17)

After the normalization of both the ray vector and sight
axis camAZ, its module became 1. +e characteristics of the
vector inner product indicated that the axis Z’s component
Lz of the ray vector could be calculated by

Lz � cos(β). (18)

+e module of the normalized ray vector was 1, as
mentioned above. Next, the components of axis X and axis Y

of the ray vector were assumed as Lx and Ly, respectively.
According to the calculation of vector modulus, (19) could
be expressed as

��������������

Lx
2

+ Ly
2

+ Lz
2

� 1. (19)

With the ratio of Lx to Ly being denoted as k, (20) could
be derived based on projection characteristics as

k �
Ly

Lx
�
dy

dx
. (20)

+en, (19) was embedded into (20) to form (21), de-
scribed as

Lx �

������

1 − Lz
2

1 + k
2

. (21)

In summary, the ray vector L(Lx, Ly, Lz) was calculated
by

Lx �

�����������
1 − cos2 β
1 +(dy/dx)

2

,

Ly �
dy

dx
Lx,

Lz � cos β.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Nonetheless, this calculated ray vector L was still within
FaceMap space, thus needed to be converted to a world
coordinate system. +erefore, the ray vector of the world
coordinate system was denoted as T, and (23) was obtained
as

camAX

camAY

camAZ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[T] � [L]. (23)

+e value of the determinant was calculated according to
Cramer’s rule, as shown as follows:

D �

camAX.x camAX.y camAX.z

camAY.x camAY.y camAY.z

camAZ.x camAZ.y camAZ.z

,

D1 �

L.x camAX.y camAX.z

L.y camAY.y camAY.z

L.z camAZ.y camAZ.z

,

D2 �

camAX.x L.x camAX.z

camAY.x L.y camAY.z

camAZ.x L.z camAZ.z

,

D3 �

camAX.x camAX.y L.x

camAY.x camAY.y L.y

camAZ.x camAZ.y L.z

.

(24)

+e calculation of ray vector T in the world space was
shown as follows:

Mathematical Problems in Engineering 9

T.x

T.y

T.z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

1
D

D1

D2

D3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (25)

In accordance with Cramer’s rule, only one solution
exists when D is greater than 0; innumerable solutions exist
when D equals 0; no solution exists when D is less than 0.
Geometrically, (23) is similar to the intersection operation of
three planes, with the normal vectors of the three planes
being camAX, camAY, and camAZ, respectively, serving as
three sight axes of FaceMap. +erefore, the three normal
vectors would certainly intersect at a point. Moreover, since

the sight axes were normalized unit vectors with modules of
1 and the value of D was also calculated as 1, (25) was
simplified as

T �

D1

D2

D3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (26)

4.3. Renderer Design Based on FaceMap Algorithm.
FaceMap, being abstract in the program, can be inherited by
other components to obtain the panorama distribution of
the scene model. +en, FaceMap can be used or modified

Input: A curve information
(1) Plot function of space curve (Input the two vertices of the curve):

(1) Project the two vertices onto the screen space as two endpoints
(2) Add the first endpoint
(3) if the distance between the two endpoints is longer than one pixel:

(i) Find the midpoint of the two vertices
(ii) Curve approximation function (the first vertex and the midpoint)
(iii) Add the endpoint after the midpoint projection
(iv) Curve approximation function (the midpoint and the second vertex)

(4) else Add the second endpoint
(2) Curve approximation function (input the two 3D vertices):

(1) if the distance between endpoints after vertex projection is longer than one pixel:
(i) Find the midpoint of the two vertices
(ii) Curve approximation function (the first vertex and the midpoint)
(iii) Add the endpoint after the midpoint projection
(iv) Curve approximation function (the midpoint and the second vertex)

(2) else null
Output: Results after mapping

ALGORITHM 2: Screen space curve mapping algorithm.

Input: All point information of curve triangle
(1) Find the highest and lowest points of the triangle;
(2) Traverse from the highest point to the lowest point:

(a) Traverse from the highest point to the lowest point: Calculate all intersection points of the current line and the triangle edge;
(b) For every two intersect points: Fill from the left node to the right node;

Output: Results after filling

ALGORITHM 3: Filling algorithm of the curve triangle.

Input: A triangle vertex information
Traverse all points on a curve:

if the current point is online y and the next point is below line y:
Add the x-coordinate of the current point

else null
if the next point is online y and the current point is below line y:
Add the x-coordinate of the next point else null

Output: Intersection information

ALGORITHM 4: Algorithm for calculating the intersection of each line and curve edge of curve triangle.

10 Mathematical Problems in Engineering

according to specific needs. +e structure of Renderer based
on the FaceMap algorithm is shown in Figure 12:

(1) Vector class contains attribute coordinate values x, y,
and z and basic vector operations such as addition,
subtraction, point multiplication, and cross
multiplication

(2) Face class is used for storing basic triangular sur-
faces, involving vertex arrays with a length of 3 and
normal arrays with a length of 3

(3) OBJ class stores model data and helps to load Obj
model files which are then converted to face object
arrays

(4) Space vector class represents a basic space point, with
attributes including space position, rotation angle,
and self-space coordinate axis

(5) FaceMap class, deriving from space vector, is also
abstract. However, compared with space vector,
FaceMap contains additional attributes including
field angle and field radius

(6) Camera inherits FaceMap. While generating Face-
Map structure, it only stores the information of
surfaces closest to itself, and then, the closest in-
tersection point can be directly calculated during
rendering

(7) Point Light also inherits FaceMap. While generating
the FaceMap structure, it stores the distribution data
of all surfaces. Furthermore, the point light class
provides the method of get_lighten_up (). It judges
by virtue of its FaceMap whether an entered space
point will be blocked by other surfaces, namely
whether the point is in shadow

(8) Color class is used for color operation and contains
the values of three components R, G, and B. While
rendering a certain point, shadow test of multiple
light sources should be performed. If can be irra-
diated, the value of illumination color should be
accumulated. Color class provides several basic
methods including addition, subtraction, numerical
multiplication, and conversion to 24 bit color

(9) Image class is a two-dimensional image buffer,
storing scene graphs for ray-tracing rendering; [10]
Renderer class controls the whole Renderer, which
contains OBJ model, Camera, Point Light array, and
Image buffer.

5. Experimental Results and Analysis

5.1. Experimental Environment. +e computer configura-
tion used in the experiments is as follows:

System: Windows 7 Ultimate
Processor: Intel Core i7-4710 HQ 2.50GHz
Memory: 12GB

5.2. Comparison Methods Introduction. In order to reflect
the superiority of the performance of this method, this paper
selects the more mature products on the market for

comparative experiments. Apart from the proposed Ren-
derer, Rhino 5 and VRay 2.00.02 were also chosen for the
comparative experiment. Rhino, introduced by American
company Robert McNeel in 1998, is a 3D modeling software
based on NURBS (nonuniform rational B-spline). It has
been widely used in 3D animation, industrial manufactur-
ing, scientific research, mechanical design, and other fields
[15]. VRay, produced by chaos group and ASGVIS Com-
pany, is high-quality rendering software and one of the most
popular rendering engines in the industry [16].

5.3. Selection of the Rendering Model in Comparative
Experiment. A total of four object rendering scenes was used
in the comparative experiment, with detailed data of the
scene as shown in Table 1.

5.4. Experimental Results and Analysis. Rhino 5, VRay
2.00.02, and Renderer presented in this paper were
employed successively to render the four models, and the
corresponding effects are shown in Figures 13–16, mainly
from the rendering effect for comparison.

Judging from the rendering effects as reflected in
Figures 13–16, the effects achieved by the proposed Renderer
were similar to those by Rhino and VRay, with main dif-
ferences lying in the deformation at the edge of the visual
field and the brightness. Firstly, in terms of the deformation
at the field edge, since surface projection was used in the
proposed Renderer, the reserve resolution of the ray vector
was also based on surface distribution. As shown from the
effects of rendering chessboard in Figure 13 and typewriter
in Figure 16, lines close to the camera were slightly bent
when using Renderer, while they were straight in the results
obtained by Rhino and VRay. Consequently, the rendering
effects by the proposed Renderer were closer to those by a
real camera.+e second inference consisted of the brightness
of illumination. Distinct illumination models used by dif-
ferent renderers resulted in diverse calculations of brightness
and propagation attenuation of the light source, thus causing
differences in brightness and contrast degree of the whole
image. Nonetheless, the difference in brightness only led to
various displaying effects, with a negligible impact on
computational cost.

+e specific time consumption of each rendering shown
in Figures 13–16 is listed in Table 2.

Table 2 demonstrates that the proposed Renderer spent
the least time in total, less than half the total time spent by
either of the other two renderers. +e computational effi-
ciency of Renderer was 2.34 times that of Rhino and 2.15
times that of VRay 2.0. It is worth noting that the rendering
by Renderer was completed in a single-thread environment,
indicating an even lower CPU resources occupancy and a
higher speed, while Rhino and VRay 2.0 used multithread
rendering.

In summary, in this study, the proposed FaceMap-based
ray-tracing algorithm, Rhino, and VRaywere successively
used to render four object models including chessboard,
grass patch, bust, and typewriter. +e comparison in terms
of rendering effect and rendering time indicated that the

Mathematical Problems in Engineering 11

Color
(8)

Space Vector
(4)

Vector
(1)

Face
(2)

FaceMap
(5)

OBJ
(3)

Camera
(6)

Renderer
(10)

PointLight
(7)

Image
(9)

Figure 12: Renderer structure based on FaceMap algorithm.

Table 1: Model data.

Scene name No. of vertices No. of surfaces Size (MB)
Chessboard 61749 123314 11.4
Grass patch 52600 86864 6.93
Bust 22299 44590 4.01
Typewriter 73920 145558 11.3
Each scene was rendered in white mode with the same camera view, and eight point light sources were added to the scene.

(a) (b)

Figure 13: Continued.

12 Mathematical Problems in Engineering

(c)

Figure 13: Effects of rendering chessboard. (a) Rendering effect by Rhino. (b) Rendering effect by VRay. (c) Rendering effect by Renderer
(our method).

(a) (b)

(c)

Figure 14: Effects of rendering grass patch. (a) Rendering effect by Rhino. (b) Rendering effect by VRay. (c) Rendering effect by Renderer.

Mathematical Problems in Engineering 13

(a) (b)

(c)

Figure 15: Effects of rendering a bust. (a) Rendering effect by Rhino. (b) Rendering effect by VRay. (c) Rendering effect by Renderer (our
method).

(a) (b)

Figure 16: Continued.

14 Mathematical Problems in Engineering

proposed method achieved relatively better rendering effects
and significantly reduced the rendering time in the
meanwhile.

6. Conclusion

+is study intends to solve the shortcomings of the poor
rendering effect of the raster method and the high
computational complexity caused by the ray-tracing
method. We propose a ray-tracing acceleration algorithm
based on FaceMap by combining the raster method and
ray-tracing method. FaceMap can be defined as a data
structure that stores the surface distribution corre-
sponding to a point light source or a camera. With the
help of FaceMap, one can quickly determine the surfaces
that may intersect in a certain direction, which can help
improve the efficiency of intersection operation and thus
speed up the overall rendering task and reduce compu-
tational complexity.

+e novelty of this study and the advantages of the
proposed method can be described as follows: (i) it can
directly determine the data of a surface in a certain direction,
requiring no calculation of light propagation process; (ii) the
camera can rapidly determine intersection points based on
FaceMap, which in turn greatly improved the speed of
rendering operation; (iii) once generated, the FaceMap
corresponding to a specific point light source can be reu-
tilized, thus further reduces computational complexity.

To sum up, based on the theory of rendering acceleration
and optimization, this paper proposes a new structure
representation and corresponding projection algorithm,
which provides a new research angle and an efficient
technology for the actual rendering requirements and has a
promising application prospect in the field of computer
graphics. In spite of what stated, the present study is not
without limitations, which can be addressed in future re-
search: (i) FaceMap consumes relatively large memory and
considers compression as a feasible solution; (ii) the texture
and the material of rendered object have not yet been
considered by the current model; (iii) the shadow processing
caused by light conditions also needs to be further improved.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is work was supported by the National Natural Science
Foundation of China (61462054) and the Science and
Technology Plan Projects of Yunnan Province (2015FB135).

(c)

Figure 16: Effects of rendering typewriter. (a) Rendering effect by Rhino. (b) Rendering effect by VRay. (c) Rendering effect by Renderer
(our method).

Table 2: Time consumption of each rendering.

Renderer
Rendering time (s)

Total time
Chessboard Grass patch Bust Typewriter

Rhino 5 2.2 25.2 7.1 45.2 79.7
VRay 2.0 4.7 25.6 9.2 33.7 73.2
Renderer 7.3 11.0 4.8 11.0 34.1

Mathematical Problems in Engineering 15

References

[1] H. W. Jensen and N. J. Christensen, “Photon maps in bidi-
rectional Monte Carlo ray tracing of complex objects,”
Computers & Graphics, vol. 19, no. 2, pp. 215–224, 1995.

[2] J. Gao, K. Xu, and J. Cui, “An algorithm based on bounding
box technology to improve the light and the objects inter-
section efficiency,” Journal of Traffic information and security,
vol. 22, no. 6, pp. 65–68, 2004.

[3] J. Amanatides and A. Woo, “A fast voxel traversal algorithm
for ray tracing,” Eurographics, vol. 87, no. 3, pp. 3–10, 1987.

[4] W.-x. Wang, S. Xiao, M. Wen, and H. Dong, “Ray tracing
algorithm based on octree space partition method,” Journal of
Computer Applications, vol. 28, no. 3, pp. 656–658, 2008.

[5] H. Weghorst, G. Hooper, and D. P. Greenberg, “Improved
computational methods for ray tracing,” ACM Transactions
on Graphics, vol. 3, no. 1, pp. 52–69, 1984.

[6] A. Fujimoto and K. Iwata, “Accelerated ray tracing,” Com-
puter Graphics, vol. 85, pp. 41–65, 1985.

[7] A. Fujimoto, T. Tanaka, and K. Iwata, “ARTS: accelerated ray-
tracing system,” IEEE Computer Graphics and Applications,
vol. 6, no. 4, pp. 16–26, 1986.

[8] T. L. Kay and J. T. Kajiya, “Ray tracing complex scenes,” ACM
SIGGRAPH Computer Graphics, vol. 20, no. 4, pp. 269–278,
1986.

[9] J. G. Cleary, B. Wyvill, G. M. Birtwistle, and R. Vatti, Mul-
tiprocessor Ray Tracing, Deptartment of Computer Science
University of Calgary, Calgary, Canada, 1983.

[10] A. S. Glassner, “Space subdivision for fast ray tracing,” IEEE
Computer Graphics and Applications, vol. 4, no. 10, pp. 15–24,
1984.

[11] M. A. J. Sweeney and R. H. Bartels, “Ray tracing free-form
B-spline surfaces,” IEEE Computer Graphics and Applications,
vol. 6, no. 2, pp. 41–49, 1986.

[12] E. Haines and D. Greenberg, “+e light buffer: a shadow-
testing accelerator,” IEEE Computer Graphics and Applica-
tions, vol. 6, no. 9, pp. 6–16, 1986.

[13] T. Whitted, “An improved illumination model for shaded
display,” Communications of the ACM, vol. 23, no. 6,
pp. 343–349, 1980.

[14] S. M. Rubin and T. Whitted, “A 3-dimensional representation
for fast rendering of complex scenes,” ACM SIGGRAPH
Computer Graphics, vol. 14, no. 3, pp. 110–116, 1980.

[15] https://baike.baidu.com/item/rhino/4065831?fr=aladdin.
[16] https://baike.baidu.com/item/vray/894350?fr=aladdin.

16 Mathematical Problems in Engineering

https://baike.baidu.com/item/rhino/4065831?fr=aladdin
https://baike.baidu.com/item/vray/894350?fr=aladdin

