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�is paper presents a U-model-based adaptive slidingmode control (SMC) using a deep deterministic policy gradient (DDPG) for
uncertain nonlinear systems. �e con�guration of the proposed methodology consisted of a U-model framework and an SMC
with a variable boundary layer.�e U-model framework forms the outer feedback loop that adjusts the overall performance of the
nonlinear system, while SMC serves as a robust dynamic inverter that cancels the nonlinearity of the original plant. Besides, to
alleviate the chattering problem while maintaining the intrinsic advantages of SMC, a DDPG network is designed to adaptively
tune the boundary and switching gain. From the control perspective, this controller combines the interpretability of the U-model
and the robustness of the SMC. From the deep reinforcement learning (DRL) point of view, the DDPG calculates nearly optimal
parameters for SMC based on current states and maximizes its favourable features while minimizing the unfavourable ones. �e
simulation results of the single-pendulum system are compared with those of a U-model-based SMC optimized by the particle
swarm optimization (PSO) algorithm. �e comparison, as well as model visualization, demonstrates the superiority of the
proposed methodology.

1. Introduction

A U-model is a generic and systematic control method that
was proposed by Zhu et al. [1]. Di�erent from other model-
based and model-free control methods, it is a model-in-
dependent method in that it uses the dynamic model of the
plant to design the controller, while the �nal performance is
independent of the target plant. In doing this, the U-model
provides a general routine to separate the system design and
control design processes [2]. �e gist of the U-model lies in
designing a robust dynamic inverter that transforms the
original plant into an identity matrix [2, 3].�is brings about
two advantages. First, by cancelling the dynamics and
nonlinearity, the overall system performance can be pre-
scribed by a unit-negative feedback loop. Besides, the phase
delay between the control and the output is eliminated,
increasing the response speed of the system [4]. Due to its
critical importance, the U-model has been combined with

other control methods and has yielded a satisfying outcome.
For examples, a U-model-based adaptive neural network [5],
a U-model-based predictive control [6], a U-model-based
fuzzy PID control [7], etc. However, the conventional
U-controller has some drawbacks [8]. Firstly, it does not take
into account disturbances and uncertainties. Second, di¢-
culties in calculating dynamic inversion in continuous-time
make it hard to be applied to continuous-time systems.
Finally, the complexity of the U-control inverter depends on
the target plant itself. If the plant is itself complex, then the
U-model inverter is also hard to calculate. �erefore, �nding
a robust and simple dynamic inverter that can be concisely
applied to continuous-time systems is a critical criterion for
the success of the U-model.

A sliding mode control (SMC) is a robust nonlinear
controller. Its implementation is usually based on the
Lyapunov stability theorem and is distinguished from other
controllers by its discontinuity [9]. By constructing a

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 8980664, 14 pages
https://doi.org/10.1155/2022/8980664

mailto:changyi.lei@kcl.ac.uk
https://orcid.org/0000-0002-9743-693X
https://orcid.org/0000-0001-8173-1179
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8980664


sliding mode variable, it forces the state variables of the
system to slide to equilibrium within a given trajectory. )e
outstanding characteristics of the SMC are robustness,
quick response, and easy implementation [10]. Indeed, the
SMCmakes a good supplement to a U-model control, and a
combination of those two methods has attained certain
accomplishments [11, 12]. However, its discontinuity in
rationale is afflicted by the chattering problem, which has
been widely studied [13]. )e chattering issue not only
impairs the system’s performance but also causes damage
to physical instruments. Some solutions have been pro-
posed to alleviate the chattering problem of SMC, including
the fuzzy system [14], the boundary layer method [15], the
PID-based method [16], high-order SMC [17], a neural
network and PSO [18], etc. Nonetheless, these approaches
either compromise stability and precision or require te-
dious craftsmanship and expert experience.

Reinforcement learning (RL) is a model-free meth-
odology that optimizes its action on large-scale, complex
problems through exploration and exploitation without
explicit models [19]. Recently, with the development of
deep learning, RL has been combined with deep neural
networks to solve many control problems [20–22]. Actor-
critic learning is one popular framework of RL. Compared
with classical Q-learning [23] and deep Q-learning [24],
the actor-critic (AC) framework works with continuous
states and action space [25]. )is is realized by using an
actor network to output continuous action and a critic
network to estimate the Q-value. )is characteristic
guarantees AC’s potential in combinatorial optimization
problems [26–28]. Deep deterministic policy gradient
(DDPG) is based on AC and was proposed in 2016 [29].
)e appearance of DDPG enables the direct estimation of
continuous action output in the RL realm. As its name
suggests, the DDPG outputs a deterministic policy to the
agent, with random noise added for exploration. )e
DDPG has been successfully implemented in many
control scenarios [30–32].

Based on the above discussion, the U-model framework
has the potential to bridge the gap between linear and
nonlinear systems, provided a robust dynamic inverter can
be designed. An SMC is a special nonlinear control scheme
that is highly regarded for its robustness. Although a com-
bination of the U-model and SMC has been implemented
and has yielded certain success, the chattering problem of
SMC still an urgent need to be solved.)erefore, figuring out
how to ease the chattering of SMC while maintaining its
deserved performance is still challenging. In this paper, we
propose a U-model-based adaptive SMC tuned by DDPG to
tackle this problem.)e parameter tuning problem of SMC is
modeled as a combinatorial optimization problem, which is
to be solved by DDPG. During the training phase, the DDPG
undertakes exploration and exploitation to learn optimal
action based on the current state automatically. )rough
penalizing the tracking error and DDPG output, the neuro
network tries to minimize the error with minimal cost. )us,
the proposed adaptive SMC can attenuate the chattering issue
without loss of stability or precision. Besides, this method

does not require an estimation of the upper bound of the
overall disturbance.

)e contribution of this paper can be summarized as
follows:

(1) An adaptive SMC with variable thickness of the
boundary layer, implemented as the dynamic in-
verter, based on DDPG, is proposed.

(2) An SMC optimized by the PSO algorithm is provided
as the baseline for comparison.

(3) A nonlinear single-pendulum environment revised
from Gym [33] is provided for simulation.

(4) )e simulation tests are conducted to illustrate the
advantages and rationality of the proposed method.

(5) Explainable artificial intelligence (XAI) methods are
implemented to explain the trained DDPG model.

)e rest of this paper is organised as follows. Section 2 gives
some preliminaries about the U-model framework and
DDPG. Section 3 articulates the details of controller cal-
culation step by step, including a conventional SMC, vari-
able thickness of the boundary layer, a DDPG network, and
an invariant controller. Section 4 presents the simulation
results and analysis of two different target trajectories. )e
analysis focuses on settling time, accuracy, and chattering
suppression. In addition, output visualization and the SHAP
method are implemented to better understand the trained
network. Section 5 gives a brief conclusion as well as future
work suggestions.

2. Preliminaries

2.1. U-Model

2.1.1. U-Model Control Framework. Considering a general
U-model control framework as shown in Figure 1. R is the
reference signal; Y is the output vector; E � R − Y is the
error vector. )e middle part of the pathway is composed of
the invariant controller GI, the dynamic inverter G− 1

p , and
the target plant Gp. )e prioritized task of the U-model
control is to design a robust dynamic inverter G− 1

p that
cancels the dynamics of Gp. In other words, if there exists
G− 1

p such that G− 1
p Gp � I, and I is a unit matrix, then the

overall system performance is only determined by the in-
variant controller. Assume the desired transfer function
Gideal, then the invariant controller can be derived as
GI � Gideal/1 − Gideal. )erefore, the implementation of the
U-model-based control framework enables the assignment
of system performance using linear system theory regardless
of the nonlinearity of the target plant [34].

R
E U

- GI Gp
–1 Gp Y

Figure 1: A general U-model control framework.
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2.1.2. General U-Model Expression. A SISO CT polynomial
dynamic system can be expressed as follows[35]:

y
(M)

(t) � 􏽘

J

j�0
λj YM− 1, UN− 1,Θ, t( 􏼁 u

(N)
(t)􏼐 􏼑

j
, M>N, (1)

where y(t) ∈ R is the output, u(t) ∈ R is the input, and t is
the time. y(M)(t) and u(N)(t) are the Mth and Nth orders of
derivative of y and u, respectively. λj(t) ∈ R is a variable that
concludes all YM− 1 � [y(M− 1)(t), . . . , y(t)] ∈ RM, UN− 1 �

[u(N− 1)(t), . . . , u(t)] ∈ RN and Θ. Θ contains all scalar
coefficients. )roughout the study, it is assumed that the
polynomial systems are strictly proper (M>N), which
guarantees the causality of the systems. Accordingly, for
linear polynomial systems, M>N indicates when (1) is
converted to its Laplace transform, the denominator Laplace
polynomial has higher order than the numerator in the
resultant transfer function.

Extend (1) to MIMO expression is given as follows:

Y
(M)

(t) � 􏽘

J

j�0
Λj(t) U

(N)
(t)􏼐 􏼑

j
, (2)

where Y(M) � [y
(m1)
1 (t), y

(m2)
2 (t), . . . , y

(ma)
a (t)]T is a vector

containing all outputs.
U(N) � [(u

(n1)
1 (t))j1 , (u

(n2)
2 (t))j2 , . . . , (u

(nb)

b (t))jb ]T is an
input vector with the power j of all inputs. m∗ is the order of
derivative of y∗ that is directly related to u, when u∗ has the
derivative order n∗. Λj(t) ∈ Ra×b is now a matrix, instead of
λj being a scalar. For simplicity and without loss of gen-
erality, we will omit the dependent variables.

Consider a generalised MIMO continuous-time state-
space model expression given as follows:

_X(t) � F(X(t), U(t)),

Y(t) � H(X(t)),

⎧⎨

⎩ (3)

where Y ∈ Ra is the output, U ∈ Rb is the input, and X ∈ Rn.
F is the dynamics of the system that updates the state
variables, and H calculates the system output. Extend it to
MIMO state-space expression [7].
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i�0
λ1if1i x2( 􏼁,
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i�0
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. . .
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n

i�0
λnifni u1, u2, . . . , ub( 􏼁

y1 � h1 x1, x2, . . . , xn( 􏼁,

y2 � h2 x1, x2, . . . , xn( 􏼁,

. . .

ya � ha x1, x2, . . . , xn( 􏼁,
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, (4)

where λmi and fmi, 0≤ i≤ n, 0≤m≤ n are time-varying pa-
rameters, and hl, 1≤ l≤ a is a smooth mapping from state
vector to a specific output. Take the following system as an
example:

_x1 � x1 + x1x2,

_x2 � − x1 + u1 + x1u2,

y1 � 2x1,

y2 � 3x2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

Convert it to a U-model expression based on the fol-
lowing absorbing rule:

_x1 � λ10 + λ11f11 x2( 􏼁,

_x2 � λ20 + λ21f21 u1, u2( 􏼁,

y1 � h1 x1, x2( 􏼁,

y2 � h2 x1, x2( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where λ10 � x1, λ11 � x1, λ20 � − x1, λ21 � 1, f11(x2) � x2,

f21(u) � u1 + x1u2, h1(x1, x2) � 2x1, h2(x1, x2) � 3x2.

2.1.3. U-Model Dynamic Inversion. Using the following
equation, the U-model dynamic inversion is calculated as
follows[36]:

G
− 1
p ⇔U ∈ Y

(M)
d (t) − 􏽘

J

j�0
Λj(t) U

(N)
(t)􏼐 􏼑

j
� O

a
, (7)

where Yd(t) is the desired output vector and Oa is a a × 1
null vector. )e prerequisites for the solution to exist are
external stability and the nonminimum phase of the system.
Reconsidering (4), apply derivative to the pth(0≤p≤ a)

output yp with respect to xi:

_yp � 􏽘
n

i�0
hp
′ xi( 􏼁 _xi. (8)

Replace _xi with a polynomial equation and we have

_yp � 􏽘
n

i�0
􏽘

n

j�0
hp
′ xi( 􏼁λijfij xj􏼐 􏼑. (9)

Repeating the above derivative and replacement pro-
cedures for mp times. Rearrange the equation and combine
similar terms as follows:

y
mp( 􏼁

p � 􏽘

n− 1

i�1
Pip(X, t) _xi + Pnp(X, t) _xn, (10)

where X is the vector of state variables, and P is a function of
X. Consequently, we need to solve an equation set of (10) to
retrieve the final control.

2.2. DDPG. Deep deterministic policy gradient (DDPG) is
an off-policy algorithm proposed in 2014 by Silver et al. [37].
DDPG is based on the actor-critic framework, which learns
an action network and a Q network simultaneously. For
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every step, given current states, the actor network outputs
the policy added with random noise. By executing the policy,
the model receives a reward from the environment, and the
policy network is updated using the temporal difference
(TD) algorithm accordingly.)eQ-value output by the critic
network in turn guides the update of the actor network using
the policy gradient algorithm [37]. To increase the stability of
learning, a target actor network and a target critic network
are added. )ey are updated through a soft update, namely a
weighted average of the actor or critic networks and
themselves. Besides, a replay buffer storing transition states
and actions is implemented to increase the efficiency of
sample utilization. Because of this double network config-
uration, DDPG can deal with situations when the action
space and state space are all continuous [29]. )e pseudo
code of DDPG is shown in Algorithm 1.

3. Controller Design

)is section describes the details of the conceptual frame-
work of the controller, which will be implemented in the
following simulation. )e combined controller is composed
of a U-model controller, a sliding mode controller with a
variable boundary layer, and a DDPG network.

3.1. Framework Overview. Figure 2 illustrates the workflow of
the proposed methodology. R ∈ RN represents the reference
signal, where N is the degree of freedom (DoF) of the system.
Y ∈ RN is the output vector, and E � R − Y represents the
errorvector.GI is the invariant controller, andGp is theoriginal
target dynamic plant. Between them is the dynamic inverter
performed by a sliding mode controller, and it outputs the
control vector U ∈ RN. )e parameters of the SMC are

DDPG
R

E

–

U

Actor Critic

GI
GSM

–1 Gp Y

Figure 2: Controller framework overview.

(1) Initialize policy network πϕ(s), critic network Qθ(s, a) and empty replay buffer D
(2) Set target policy network πϕ′′(s) and target critic network Qθ′′(s, a), with ϕ′←ϕ, θ′←θ
(3) repeat
(4) Observe state s and execute action a� clip (πϕ(s) + ε, alow, ahigh), where ε ∼ N

(5) Observe next state s’, reward r, and done signal d to indicate whether s’ is terminal
(6) Store (s, a, r, s’, d) in the replay buffer D
(7) If s’ is terminal, reset environment state
(8) if it is time to update then
(9) for the number of updates do
(10) Randomly sample a batch of transitions, B� (s, a, r, s’, d) from D

(11) Compute targets y(r, s′, d) � r + c(1 − d)Qθ′(s′, πϕ(s′))
(12) Update Q-function by one step of gradient descent using
▽ϕ1/|B|􏽐(s,a,r,s′,d)∈B(Qθ(s, a) − y(r, s′, d))2

(13) Update policy by one step of gradient ascent using ▽ϕ1/|B|􏽐s∈B(Qθ(s, πϕ(s)))

(14) Update target networks with θ′←ρθ′ + (1 − ρ)θϕ′←ρϕ′ + (1 − ρ)ϕ
(15) end for
(16) end if
(17) until convergence

ALGORITHM 1: Deep deterministic policy gradient.
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calculated by the DDPGmodule for every time step. Based on
the gist of the U-model, if the dynamic inverter G− 1

SM suc-
cessfullyperformsdynamic inversion regardlessofuncertainty,
then the nonlinearity of the plant is cancelled, which means
G− 1

SMGp � IN. In this case, the system is equivalent to a unit
negative feedback loop,ofwhich theperformance is assignedby
the transfer function ofGI. In the following part of this section,
the details of SMC, DDPG, and GI will be introduced.

3.2. Sliding Mode Control with Variable Boundary Layer.
In this section, we consider a general second-order dynamic
system expression, based on which the SMC with variable
boundary layer is designed using backstepping and the
Lyapunov stability theorem.

3.2.1. Conventional Sliding Mode Control with Backstepping.
For simplicity and without loss of generality, consider the
following single-input-single-output (SISO) dynamic
model:

_x1(t) � x2(t),

_x2(t) � f x1, x2, t( 􏼁 + h x1, x2, t( 􏼁u(t) + d(t),
􏼨 (11)

where x1, x2 are state variables, u(t) is the control input
vector, and d(t) is the overall disturbance vector. f(x1, x2, t)

and h(x1, x2, t) are time-varying functions dependent on the
state variables. For simplicity, the expression afterwards will
ignore all dependent variables.

Assumption 1. )e overall disturbance d(t) is bounded and
satisfies |d(t)| <D, in which D is a positively finite scalar.

Remark 1. In practice, the disturbance is often closely re-
lated to the state variables of the system. For example,
viscous friction is a function of velocity. In practice, the state
variables usually have bounds, so the total disturbance is
usually bounded. Similar assumptions have been made in
many control theory scenarios [38, 39].

)e following is the construct virtual control variables:

z1 � x1 − zd,

z2 � x2 + c1z1 − _zd,
􏼨 (12)

where zd, _zd forms the reference signal. c1 is a constant
positive value, and z1, z2 are virtual control variables.
Construct the first partial Lyapunov function is given as
follows:

V1 �
1
2
z
2
1. (13)

Take the derivative of (13) and integrate with (12), we
have

_V1 � z1 _z1 � − c1z
2
1 + z1z2. (14)

According to the Lyapunov stability theorem, since
V1 ≥ 0, if z2 � 0, then _V1 < � 0, and that z1 can converge to
the equilibrium asymptotically. Regarding subsystem of

(x1, z2), design a second partial Lyapunov function as
follows:

V2 � V1 +
1
2
z
2
2. (15)

Take the derivative of (15) and integrate with (11)–(14),
we have

_V2 � − c1z
2
1 + z1z2 + z2 hu + f + c1 _z1 − €zd + d( 􏼁. (16)

Select z2 as the sliding mode variable and design control
input as

u �
1
h

− ηsgn z2( 􏼁 − f − c1 _z1 + €zd − c2z2 − z1( 􏼁, (17)

where sgn is the sign function. η>D is a positive scalar, and
is called the switching gain.

3.2.2. Stability Analysis

Theorem 1. For a general second-order dynamic system as
described in (11) and implementing a controller in (17), the
system has asymptotic stability in the Lyapunov sense.

Proof. Integrating (17) into (16), we have

_V2 � − c1z
2
1 − c2z

2
2 − η z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + z2d. (18)

According to Assumption 1, z2d< η|z2|, so _V2 < 0 and
V2 ≥ 0. Based on the Lyapunov asymptotic stability theorem
[40], z1 and z2 will converge to equilibrium asymptotically.
)erefore, it means that state variables x1 and x2 will follow
the desired trajectory. □

3.2.3. Adding Variable Boundary Layer. )e switching gain
η plays a critical role in determining the performance of the
SMC. If η is large, the system will converge quickly, but the
chattering problem is also exacerbated because of the dis-
continuity of the sign function. To alleviate the chattering
issue, the sign function is replaced with a saturation function
as follows [10]:

sat(s, δ) �

1, s> δ,

1
δ
, |s|< δ,

− 1 s< − δ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where s is the sliding mode variable and δ is the thickness of
the boundary layer. )us, (17) becomes

u �
1
h

− ηsat z2, δ( 􏼁 − f − c1 _z1 + €zd − c2z2 − z1( 􏼁. (20)

)e introduction of the boundary layer constructs a
space where the controller outputs a continuous torque so
that the system trajectory can be smoother. However, the
alleviation of chattering comes at the cost of lowered control
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accuracy. Figuring out how to select the optimal pair of
(η, δ) largely relies on the human experience.

3.3.DDPGNetworkModule. )e purpose of introducing the
DDPG module is to adaptively select the optimal pair of
(η, δ) for the sliding mode controller so that, when the error
is large, the system will converge quickly; whereas when the
system is near equilibrium, the chattering can be alleviated
while ensuring the same level of accuracy. )e DDPG be-
longs to the actor-critic framework of RL and, therefore, can
deal with situations when state and action are all continuous
values. In this paper, instead of directly outputting [η, δ]T, it
outputs [1/η � tan(q), δ]T, where q ∈ [0, π/2] is the incli-
nation of the saturation function, as shown in Figure 19.

)e actor and the critic network are constructed as fully
connected neural networks. )e details of the network
structure are shown in Figure 4 and 5. )e state is a 4 × 1
vector [x, _x, e x, e _x]T, where x, _x are state variables and
e x, e _x are corresponding errors. )e output of the actor
network is a 2 × 1 vector [u1, u2]

T � [1/η, δ]T. )e action
ranges of those two outputs are set to [0, 20]. )e actor
network takes the state vector as the input, and then it goes
through three fully connected hidden layers with 64 units of
nodes. )e activation functions of the first two layers are the
Rectified Linear Unit (ReLu) function, and the last layer uses
the Sigmoid function to map every dimension of the output
to [0, 1]. )e critic network takes the concatenation of state
and action as the input. It also uses several fully connected
layers to process the information, and then outputs a scalar,
which is also called a state-action value Q(state, action).)is
is an estimate of how well the action is given the current
state.

3.4. Invariant Controller. An invariant controller is utilized
in the U-model to assign system performance using linear
system techniques. It can also be viewd as the imple-
mentation of a smooth transition process. Ideally, we hope
the system can converge to equilibrium without oscillation
or overshoot. Luckily, a critically-damped second-order
differential equation meets our requirements and is designed
as the invariant controller. )e ideal closed-loop system
transfer function can be written as follows:

G(s) �
ω2

n

s
2

+ 2ξωns + ω2
n

, (21)

where ξ is the damping ratio and ωn is the natural frequency.
)ey will be designed according to the required stability
error and settling time. Also, the invariant controller can be
calculated as follow:

GI(s) �
G(s)

1 − G(s)
�

ω2
n

s
2

+ 2ξωns
. (22)

4. Simulation

4.1. Dynamic Model Establishment. )e simulation is
implemented on a single pendulum. )e structure graph is
shown in Figure 6.

θ is the angle of the pendulum, l is the length, m is the
weight, and g is the gravity coefficient. For simplicity and
without loss of generality, we assume the mass of the
pendulum is concentrated at the end of the link, and
therefore, the dynamic equation can be derived as follows:

θ
..

�
1

ml
2 (τ − bθ

.

− mgl sin θ) + d, (23)

where θ
..

is the angular acceleration, θ
.

is the angular velocity,
τ is the control torque, d is the disturbance, and b is the
damping coefficient. Comparing (23) with (11), we have

f � −
1

ml
2 (bθ

.

+ mgl sin θ),

h �
1

ml
2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

Integrating (24) with (20), we have the sliding mode
controller equation for a single-pendulum dynamics as
follows:

τ � ml
2

− ηsat z2, δ( 􏼁 − c1 _z1 + €zd − c2z2 − z1( 􏼁

− (bθ
.

+ mgl sin θ).
(25)

4.2. DDPG Training Procedure. )e training of DDPG fol-
lows the procedure of Algorithm 1, and the training-related
parameters are shown in Table 1. )e network is trained for
5000 episodes, with 200-time steps for each episode. Due to
the limited computational resources, the sampling time
during training is set to 0.05s. )e initial position of the
pendulum is randomly set to be between [− π, π]T rad, and
the initial velocity is between [− 10, 10]T rad/s. )e target
position, velocity, and acceleration of training are all set to 0.
We later verify that, although the target of training is
simplistic, the model can learn an effective policy that

1
q

-1

Figure 3: Diagram of saturation function.
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generalizes to time-varying trajectories (e.g., a sine wave).
)e state transition reward is designed as follows:

r � − r1 + r2 + r3( 􏼁,

r1 � (2 ×|e θ| + 0.1 ×|e θ
.

|)
2
,

r2 � 0.06 × arctan u1( 􏼁,

r3 � 0.06 × u2.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(26)

)e reward is composed of three parts. r1 takes a similar
format as the sliding mode variable. An absolute operation is
implemented on the angular error and velocity error, which
implies a stricter punishment than the sliding mode variable
because it requires both of them to converge to 0 simul-
taneously. Furthermore, there are slight adjustments to the
weighting of the two terms. Since the priority goal is to track
the desired position, we hope the reward can guide the
model to pay more attention to angular error than velocity
error. r2 calculates the inclination of the saturation function.
r2 and r3 penalizes the interference of DDPG with the SMC
controller. )e final constant coefficients are determined

through experiments. Intuitively, the model is instructed not
to output unnecessarily large parameters to the SMC con-
troller, and so that prevents the chattering issues. Figure 7
illustrates the episode reward during training. We can see
that with training, the network gradually finds a nearly
optimal policy and optimizes the episode reward.

4.3. PSO Tuning Procedure. PSO is a meta-heuristic global
optimization method. It treats the model as a black box and
tries to find optimal solutions through inputs and outputs.
)e update rule of PSO borrows ideas from swarm intel-
ligence. )rough interacting with each other, all particles
strike a balance between exploration and exploitation. PSO
has been proven to be simple in rationale but effective in
practice. In this paper, we use PSO to find the optimal
parameters for conventional SMC given certain reference
signals, which will then be used as the baseline for com-
parison. )e objective of PSO is to find a set of X that
produces the minimum value of a so-called cost function
f(X). In this paper, the cost function for PSO to optimize is
set as follows:

state ×
action_range

action
2 × 1

Dense

activation = relu
units = 64

ReLU

Dense

activation = relu
units = 64

ReLU

Dense

activation = sigmoid
units = 2

Sigmoid

4 × 1

Figure 4: Structure of an actor network.

Dense

Kernel 6×64
bias

ReLU

Dense

ReLU
action
2 × 1

state
4 × 1

Q-value
1 × 1

Dense
Concatenate

64
Kernel 6×64
bias 64 Kernel 64×1

bias 1

Figure 5: Structure of a critic network.

l

m

θ

g

Figure 6: Structural graph of a single-pendulum.

Table 1: Parameter of controllers.

Controller Parameters
SMC controller c1 � 2, c2 � 2
DDPG lra � 1e − 6, lrc � 2e − 6, ρ � 0.01, c � 0.9
U-model ξ � 1,ωn � 5
PSO a1 � 0.5, a2 � 0.5, N � 40,ω � 0.8

–100

–150

–200

–250

–300

–350

0 1000 2000 3000 4000 5000

Figure 7: Training reward of DDPG.
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fcos t � 􏽘 z2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dt � 􏽘 x2 − _zd( 􏼁 + c1z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dt, (27)

which is the sum of the absolute sliding mode variable along
one episode.)e SMC parameter output by PSO is 0≤ η≤ 20
in (17). For a general PSO framework with N particles of the
swarm, the position of all particles at kth timestep can be
represented as X � [xk

1, xk
2, . . . , xk

n]. )e position update
function can be written as follows:

v
k+1
i � ω × v

k
i + a1 × rand(0, 1) × pbest

k
i − x

k
i􏼐 􏼑

+ a2 × rand(0, 1) × gbest
k

− x
k
i􏼐 􏼑,

x
k+1
i � x

k
i + v

k+1
i .

(28)

Among them, v is the velocity vector, which integrates
the local best pbestk

i (the best position that the ith particle
ever traversed) and global best gbestk (the best position that
all particles ever traversed). a1, a2 > 0 are cognitive and social
learning coefficients, which are related with local optimum
and global optimum, respectively. ω≥ 0 is called inertia
weight that adjusts the importance of the previous velocity.
)e pseudo code of PSO is shown in Algorithm 2.

4.4. Parameters Initialization. )e parameters of single-
pendulum dynamics are shown in Table 2. )e parameters
related to DDPG and sliding mode controller are shown in
Table 1.

During testing, two target trajectories are assigned. One
is a constant value target [zd, _zd, €zd]T � [0, 0, 0]T, and the
other is a time-varying sine wave target [zd, _zd, €zd]T

� [2 sin(t), 2cos(t), − 2 sin(t)]T. )e sampling time is
△T � 0.005s, and one episode takes 4000 steps. )e dis-
turbance d is a random value between [− 0.1, 0.1]rad/s2. For

(1) Initialization.
(2) for each one of the N particles do
(3) Initialize the position xi and velocity vi

(4) Set particles’ best position as current pbesti � xi

(5) Calculate the fitness of each particle and set the optimum as the gbest

(6) end for
(7) Update.
(8) while stopping Criterion not met do
(9) Update particles’ velocity using vk+1

i � ωvk
i + c1R1(pbestk

i − xk
i ) + c2R2(gbestk − xk

i )

(10) Update particles’ position using xk+1
i � xk

i + vk+1
i

(11) Evaluate the fitness of all particles f(xk+1
i )

(12) If f(xk+1
i )<pbest, update individual best pbestk+1

i � f(xk+1
i )

(13) If f(xk+1
i )<gbest, update global best gbestk+1 � f(xk+1

i )

(14) end while
(15) Output best results

ALGORITHM 2: Particle swarm optimization for a minimization problem.

Table 2: Parameter of the single-pendulum.

Parameters Mass (kg) Length (m) Damping Gravity (Nm2)
Value m � 1 l � 1 b � 0.1 g � 9.8
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Figure 8: Sliding mode variable profile.

2.00

0 2 4 6
time (s)

Angle Output

8 10 12

1.75

1.50

1.25

1.00ra
d

0.75

0.50

0.25

0.00

USMC
USMC-RL
reference

Figure 9: Angular profile.

8 Mathematical Problems in Engineering



0.0

Velocity Error

0 2 4 6
time (s)

8 10 12

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

–3.5

ra
d 

(s
)

USMC
USMC-RL

Figure 10: Velocity error profile.

USMC
USMC-RL

0 2 4 6
time (s)

Torque

20

10

–10

–20

N
 * 

m

0

8 10 12

Figure 11: Torque profile.

20.0

0 2 4 6

time (s)

Model Output

8 10 12

17.5

15.0

12.5

10.0

7.5

5.0

2.5

1st output
2nd output

Figure 12: Actor network output.
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comparison, the initial state of the system is fixed to
[θ, θ

.

, θ
..

]T � [2, 1, 0]T.

4.5. Results and Evaluation. In this section, the testing is
implemented using a constant value target and a sine wave
target, respectively. )e results, including the torque profile,
angle profile, model outputs, a sliding mode variable, and
velocity error, are presented, with analysis and discussion.
)e baseline is the conventional sliding mode control op-
timized by the PSO algorithm, and the optimization function
is the sum of absolute sliding mode variables at all time steps,
namely func opt � 􏽐 |s|. For label inside figures, we use
“USMC” to represent a U-model-based SMC, and “USMC-
RL” to represent a U-model-based adaptive SMC using
DDPG. )rough testing, the forward calculation time of our
deep learning model is only about 600 μs, which satisfies
real-time requirements.

4.5.1. Constant Value Target. Figures 8–19 show the sim-
ulation result on the tracking control of the constant value
target [zd, _zd, €zd]T � [0, 0, 0]T. )e optimal η � 7.60 for
conventional SMC is given by PSO. )e sampling time is
0.005 s and the simulation lasts for 2400 steps.

For the sliding mode variable in Figure 8, we can see that
USMC-RL renders a shorter settling time than USMC, and
that the chattering issue is greatly alleviated in the vicinity of
equilibrium. While the chattering amplitude of the USMC is
about 0.07, the output of the USMC-RL remains smooth.
Figure 9 shows the angle output and shows that USMC-RL
converges quicker than USMC. Figure 10 is the profile of
velocity error. We can see that, at the beginning, the velocity
error of the USMC-RL is greater than that of the USMC.)is
is because the faster response of adaptive SMC produces a
faster speed to converge to equilibrium.)is can also be seen
in the torque profile in Figure 11 where the USMC-RL
performs severe chattering upon arriving at equilibrium.
Besides, it is obvious that the USMC renders a much higher
chattering amplitude (around 20Nm) near equilibrium. )e
output of the model in Figure 19 illustrates that when the
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error is considerable at the beginning, the outputs of the
model are near the upper bound 20; however, when the
system is near equilibrium, the outputs are small (about only
2.5). )is means that the model successfully learns to speed
up the convergence while alleviating chattering according to
the current situation. Also, we can explain the chattering
upon arriving at the equilibrium of USMC-RL. )is is be-
cause of the continuity of the model—it cannot jump from a
very high output (20) to a very small output (2.5). )erefore,
when it should produce a small output, it is still on its way
down.

4.5.2. Sine Wave Target. Figures 13–18 show the simulation
result of the tracking control of a sine wave target
[zd, _zd, €zd]T � [2 sin(t), 2cos(t), − 2 sin(t)]T. )e optimal
η � 6.05052635 for conventional SMC is given by PSO. )e
sampling time is 0.005 s and the simulation lasts for 2400
steps.

)e results analysis of the sine wave target is similar to
that of the constant value target. For the sliding mode
variables in Figure 13, we can see that the USMC-RL renders
a shorter settling time than the USMC and that the chat-
tering issue is greatly alleviated in the vicinity of equilibrium.
While the chattering amplitude of the USMC is about 0.03,
the output of the USMC-RL remains smooth. Figure 14
shows the angle output. We can see that the outputs of both
controllers follow the reference signal with some slight
lagging. )is lagging is caused by the invariant controller of
the U-model. Similar lagging is also witnessed in Figure 15.
)e same overshoot is also shown in Figure 15, which is
induced by the chattering of USMC-RL, as shown in Fig-
ures 16 and 18, illustrates a periodic pattern of the model
outputs. )e outputs are elevated when the absolute refer-
ence acceleration reaches the peaks.

4.6. DDPG Output Visualization and Interpretation.
Visualization is a simple but direct technique to interpret the
deep learning model [41]. To justify the effectiveness of the
learned policy, part of the output of the actor network is
visualized. Figures 18 and 19 illustrate the 1st and 2nd output
of DDPGwhen the state of the pendulum is [θ, θ

.

]T � [0, 0]T.
)e x axis is the angular error, ranging from − 2 rad to 2 rad,
and the y axis is the velocity error, ranging from − 2 rad/s to
2 rad/s. It is clear that both outputs present a similar shape of
a valley. When the errors are small, the outputs are small;
when the errors grow larger, the outputs are becoming
larger. )is fits the intuition because larger outputs mean
larger control gains, and subsequently, quicker responses
and higher accuracy. We think this indicates the correctness
of the learned policy. However, we can also see that the
outputs following the line y � x are smaller than y � − x,
which is counterintuitive. If the angular error and velocity
error have the same sign, then the error will keep increasing,
and it is better to output larger values. We believe this is
because, when y � − x, the velocity will force the absolute
angular error to decrease, which renders a fake stimulation
to the model, spurring the model to output larger values

when y � − x. We believe this is caused by inadequate
exploration.

4.7. DDPG Interpretation Using SHAP. While [42] visuali-
zation renders us a holistic picture of the model output, the
information it can provide is only qualitative. To understand
the model behaviour in a quantitative manner, we imple-
mented the SHAP method for a model explanation, in terms
of both global explanation and local explanation. First, an
introduction of SHAP is given, and then, the global and local
explanations are presented.

SHAP (SHapley Additive exPlanations) is a model-ag-
nostic, post-hoc explainable artificial intelligence (XAI)
method. It explains the final output as the addition of at-
tributions from all inputs. In this way, it can explain the
influence of each input on the output, in a positive or
negative direction. It borrows ideas from SHapley values
[43] to calculate the marginal contribution of each input. To
calculate SHapley values, we have to retrieve “background
data” through sampling. Similar to the monte-carlo method,
the more data points we sample, the more accurate the
estimation is. In this paper, the sampling ranges of four input
features are set as follows:

− 2≤ θ≤ 2,

− 2≤ θ
.

≤ 2,

− 2≤ e θ≤ 2,

− 4≤ e θ
.

≤ 4.

(29)

We took a uniform sample of 5,000 points from this
domain, combined them with the respective model outputs,
and formed our background data. Figure 20 illustrates the
distribution of our background data using a box plot. )e
mean values of four input features are [− 0.01758551,

− 0.01059006, 0.02874098, 0.05264564], and the corre-
sponding standard deviations are [1.14712378, 1.15875792,

1.15254858, 2.32362302].
(Global explanation). )e global explanation focuses on

gauging how much influence each input feature has on each
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Figure 20: Distribution of background data.
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of the model outputs. )is is carried out by calculating the
expectation of the absolute SHapley value of each input
feature with respect to the outputs. By using the background
data, we have Figure 21, which shows the estimated SHapley
value of each input feature with respect to the two model
outputs (u1, u2).)e feature names are listed and depicted in
a descending order from top to bottom, according to the
SHapley value. In other words, velocity error influences the
outputs most, compared with other features. )is fits with

the intuition because the velocity range is larger than the
angle range, and the velocity error accounts for the dynamic
process. )e second most influential feature is the angular
error, and the last two features are angle and velocity. We
can see that the first two features are related to the error
information, which determines the robustness term of the
SMC controller. )e last two features are more related to the
nominal control term. )is result coincides with the ra-
tionale of the proposed method because the model outputs
account for the robustness term of SMC, and it should take
more consideration of the errors.

(Local explanation). )e local explanation interprets
quantitatively, figuring out why the model outputs certain
values compared with the base value (the base value refers to
the mean outputs among all the background data). Here, we
take two extreme examples to show how our DDPG model
can ease the chattering without compromising the settling
time and accuracy. Figure 22 and Figure 23 show the force
plots of two DDPG outputs with the input features being
[θ, θ

.

, e θ, e θ
.

] � [0, 0, 0, 0]. We say this input is “under low
error” because the errors are 0 and the system is in self-
equilibrium. We can see from the figures that all four fea-
tures are dragging the outputs from base values (13.87 and
14.13) to very low values (2.28 and 2.07). )is behaviour fits
with common sense since the system is now stable, so DDPG
only needs small outputs to reject disturbance. In this way,
the chattering issue is eased.

Another extreme is when the errors are large. Consider
the initial condition of our simulations, which is
[θ, θ

.

, e θ, e θ
.

] � [2, 0, 2, 0]. Figures 24 and 25 show the force
plots under this situation. We can see that the velocity and
velocity error drag the outputs to lower values, while the
angle and angular error are dragging it higher. )e reasons
are twofold. Firstly, the low value of velocity and velocity
error suggests that no large values are required. Secondly,
both the high value of angle and the high value of angular
error require larger outputs to stabilize. In this case, the
system can converge quickly.

velocity error

angular error

angle

velocity

0
mean (| SHAP value |)

u2

u1

(average impact on model output magnitude)
1 2 3 4 5

Figure 21: Global explanation of the model.
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In summary, the analysis results of the SHAP method
show that our DDPG model can make rational decisions;
when the errors are large, output large values to converge
quickly; when the errors are small, output small values to
reduce chattering.

5. Conclusion

An adaptive sliding mode controller based on a deep de-
terministic policy gradient (DDPG) is proposed and com-
bined with U-model control in this paper, for the tracking
control of uncertain nonlinear systems. )e proposed
methodology successfully integrates the simplicity of the
U-model and the robustness of SMC. Besides, the online
tuning of DDPG results in lower chattering without com-
promising settling time or accuracy compared with a con-
ventional sliding mode controller. Simulation on the single-
pendulum proves its superiority. We think the combination
of RL and SMC complements each other. First, from the
controller’s point of view, the implementation of RL is an
alternative method to transform original controllers into
adaptive controllers. Compared with typical adaptive con-
troller design methods, RL can reduce manual efforts and
find optimum settings automatically. Second, combining
with SMC enables the reservation of some explainability and
robustness for RL. On the one hand, while we cannot un-
derstand the DDPG output directly, we can have an intuitive
understanding by combining it with the formula of SMC. On
the other hand, the RL algorithm tends to overfit, and the
robustness of SMC can help overcome this drawback. Even
when the real environment and dynamics are not completely
the same as in training (due to wear, tear, hysteresis, etc.),
SMC maintains a certain range of stability, which prevents
the RL from failing.

However, compared with the other adaptive methods,
there are some challenges existing for the RL-based SMC.
First, while decreasing human craftsmanship, the RL algo-
rithm requires a large amount of data for training, which
may wear and tear the machines in practice. Many methods
can be implemented to increase the efficiency of the data and
accelerate convergence, e.g., model-based reinforcement
learning and imitation learning to warm up. Second, is the
generalization problem. )e RL algorithms tend to overfit
specific scenarios. How to bridge the gap between simulation
and reality, as well as how to transfer the model to another
scenario, are open questions.

For future work, researchers may implement maximum
entropy reinforcement learning to fully explore the poten-
tially larger action space and avoid converging to a local
optimum. Finally, to accommodate real-life problems, this
methodology can be extended to multi-input-multi-output
(MIMO) systems using multi-agent reinforcement learning
(MARL). Last but not least, the implementation of DDPG in
this paper is only a simple version. More delicate consid-
erations need to be implemented in order to maximize the
potential of reinforcement learning in future research. Also,

the DDPG-based method should be compared with other
typical adaptive SMC controllers.

Data Availability

)e simulation data are generated using Python, specifically
sine wave function and random values. )e source code can
be accessed through https://github.com/AndyRay1998/RL-
SMC-U.
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