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Fractional-order convective transient flow of viscous and incompressible fluids transiting through two infinite hot parallel upright
plates is investigated analytically in the presence of chemical reaction, radiative heat flux, and mass diffusion at the boundary. A
physical model for transient incompressible unsteady flow is developed with a comparatively new fractional derivative, namely,
Atangana–Baleanu with nonsingular, nonlocal kernel. ,e developed fractional model is studied with means of an integral
transform, i.e., Laplace transform method. Results obtained for the concentration, velocity, and temperature are expressed in the
form of generalized M

p
q (y) function. ,e impact of various physical parameters like fractional and flow parametric quantities is

demonstrated diagrammatically. At last, we envisioned that for the fractional model, temperature and concentration could be
enhanced for smaller fractional parameter α values while velocity for larger values of α, respectively.,e proposed model gives the
better results in the presence of memory effect besides the Caputo and Caputo–Fabrizio model when compared with the
existing literature.

1. Introduction

Processes affecting coupled mass and heat conveyance occur
frequently in nature. ,is happens not only because of
temperature gradient but also due to the concentration
difference or a combination of these two differences men-
tioned earlier. Buoyancy forces stimulating the flow with the
aggregated effect of mass and thermal diffusion have been of
major concern for last three and a half decades. Nowadays,
these specified problems have gained the attention of many
researchers for numerous technological and engineering
applications, specified as mass and heat transfer assorted
with storage of nuclear fuel rubble, coal gasification below
the earth’s surface, hydrology of ground water, chemical
engineering, cooling of processors, and so on.

Free convective flow through vertical channels had been
studied extensively due to its important application in en-
gineering and applied sciences [1]. Harris et al. [2, 3] had
investigated the results of free convective transient flow
transiting by an upright erect plate engrafted in poriferous
media submitted to an abrupt transfer in heat flux and
superficial temperature. ,e heat yielded by viscid dissi-
pation gives an increment in temperature approaching the
wall resulted in viscousness reduction and a substantial
stratification in its profile, which bears upon H.T.R, i.e., heat
transfer rate [4, 5]. Gupta underwent the study of steady,
transient, free convection of an electrically transmitting
fluids passing by a perpendicular plate, bearing the magnetic
flux [6]. Toki applied the Laplace transform to solve transient
convective rate of flow inside an oscillating poriferous. ,e
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problem is solved by [7]. Sharma et al. had enquired the
oscillatory reactive hydromagnetics innate or free convective
boundary levels in poriferous media with hybrid rate of flow
impressions [8]. An analysis of the transient, buoyancy ef-
fectuated stream, and heat conveyance in a Darcian fluid
drenched in permeable medium adjoining to an abruptly
heated infinite plate was presented by Haq and Mulligan [9].
Ramanaiah and Kumaran had discussed free convection of
fluid passing through a passable cylinder and cone, with
radiation boundary condition [10].

Results of the transient free convective flow across a
propelling vertical or inclined plate and cylinder were in-
curred by Soundalgekar and Ganesan [11]. Takhar et al. had
talked about the upshot of thermo-corporeal measures on
free convective vaporous stream across an isothermic per-
pendicular cone in steady-state current, in which caloric
conduction, absolute viscousness, and specific heat at un-
varying pressure were developed as a power law magnetic
fluctuation with inviolable temperature. In their research
composition, they reasoned out the information of transfer
of heat step-ups with suction or drop-offs with injectant [12].

Transient convection contains fundamental concern in
several progressive and environmental situations as in air
conditioner systems, in human consolation in buildings, in
atmospherical flows, in thermal regulating processes, in
cooling down of electronic machines, in protection of energy
systems, and so on. It is pertinent to mention here about
transient flow. What it is about? Flow is said to be unsteady
or transient if velocity of fluid is just not function of space
variable or position in xy-plane but also depending on time.
A lot of work accounted in the literature dealt with fixed
velocity fields and temperature domains but merely a small
figure administer with time varying boundary checks, either
in natural, forced, or mixed convection [13–17].

Ganesan and Muthucumaraswamy had numerically
investigated incompressible, viscid, transient fluid’s flow
regime passing through a semi-infinite isothermal plate
satisfying natural convection [18]. Siddiqa et al. [19] had
investigated transient effects on free convection of heat
transfer by natural convection along a vertical wavy surface.
Singh [20] and Nanda and Sharma [21] had investigated the
suction effects of free convective, transient flow passing
through vertical porous plate. A numerical study to analyze
transient effects of natural heat and mass conveyance or free
convection in power law fluids passing through upright plate
embedded in poriferous medium was carried out by Nasser
[22].

In this modern era, the study of fractional calculus
becomes hot topic because of its huge applications in all
disciplines of science and engineering. Researchers have
keen interest to formulate the physical problems with
noninteger derivatives because fractional-order models
provide the much efficient description of model[23–28].
Sarwar et al. studied the non-Newtonian fractional brink-
man type fluid with AB derivative [29]. Aleem et al. had
investigated channel flow of MHD Jeffrey fluid between two
heated vertical parallel plates [30]. In another study, a

fractional heat and mass transferal model was developed and
observed that MWCT-based nanofluids are efficiently good
for heat transfer as compared with SWCTs-CMC-based
nanofluids [31]. For significance of time fractional operator
in heat transfer analysis, refer to [32–38]. Further literature
could be seen in [39–44].

In this paper, our major objective is to demonstrate free
convective, unsteady, flow of viscous, and incompressible
fluids passing through two infinite hot parallel vertical
plates. We have extended the classical derivative model to
noninteger order differential Atangana–Baleanu model of
order α. ,e method of Laplace transform is accustomed to
acquire the results. Equations of dimensionless temperature,
velocity, and concentration fields have been solved analyt-
ically, and results are compared. ,e graphical analysis is
made to envision the effect of fractional and tangible flow
parameters on velocity, concentration, and temperature by
MathCad and Mathematica softwares. Moreover, the impact
of fractional order and other parameters is presented
graphically. ,e obtained results are compared with the
existing literature for validation.

2. Problem Formulation

Let us undertake an incompressible, unsteady, free con-
vective liquid passing through two parallel upright plates
possessing the traits of temperature gradient and mass
diffusion. We have fixed the plates in xy− plane of the
Cartesian coordinate system. One of the plate is fixed along
x − axis as shown in figure while y-axis is normal to the
plate. ,e following assumptions have been made:

(1) At time t≤ 0, the plates and the fluent possess am-
bient concentration Cd and temperature Td

(2) At time t> 0, concentration and temperature of the
fluid at y � 0 are changed to Cw and Tw, respectively

(3) ,e change in temperature and concentration has
created free convection flows, presented in Figure 1.

ut � ]uyy + gβ T − Td(  + gβ∗ C − Cd( , (1)

ρCpTt � kTyy − qry, y, t> 0, (2)

Equations governing unsteady flow are obtained by
Boussinesq’s approximations [1].where qr is radiative heat
flux and by Rosseland approximation [45], the above
equation will get the form [46] as follows:

Tt �
k

ρCp

1 +
16σ∗T3

d

3kk
∗ Tyy, y, t> 0, (3)

where σ∗ is the Stefan–Boltzmann constant, ρ is the density,
k is the thermic conduction, k∗ represents the mean value of
heat absorption parameter, and Cp stands for the specific
heat with invariant pressure.

Ct � DCyy − K C − Cd . (4)
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K is chemical reaction parameter. Appropriate IBCs are

t � 0: u(t, y) � 0,

T(t, y) � Td,

C(t, y) � Cd,

0≤y≤ d,

(5)

0< t: u(t, y) � 0,

T(t, y) � Tw,

C(t, y) � Cw,

at y � 0,

(6)

0< t: u(t, y) � 0,

T(t, y) � Td,

C(t, y) � Cd,

at y � d.

(7)

In order to make problem dimensionless, the following
variables or parameters are used:

t
∗

�
]t

d
2,

y
∗

�
y

d
,

u
∗

�
]u

d
2
gβ Tw − Td( 

,

Gr �
gβ Tw − Td( d

3

]2
,

N �
Gm

Gr
,

θ �
T − Td

Tw − Td

,

Φ �
C − Cd

Cw − Cd

,

Gm �
gβ∗ Cw − Cd( d

3

]2
,

Sc �
]
D

,

Pr �
μCp

κ
,

Nr �
16σ∗T3

d

3kk
∗ ,

Preff �
Pr

(1 + Nr)
,

Kr �
Kd

2

]
.

(8)

Gm, Gr, Preff , Nr, and Kr are dimensionless mass and
thermal Grashof numbers, effective Prandtl number, and
conduction-radiation and chemical reaction parameters,
respectively.

Equations (1), (3), and (4) become

ut − θ + NC + uyy  � 0, (9)

Preffθt − θyy � 0, (10)

ScCt − Φyy + KrC � 0, (11)

with dimensionless IBCs (initial and boundary conditions)
given in equations (5)–(7).

t � 0: u(t, y) � 0,

θ(t, y) � 0,

C(t, y) � 0,

for 0≤y≤ 1,

(12)

0< t: u(t, y) � 0,

θ(t, y) � 1,

C(t, y) � 1,

at y � 0,

(13)

0< t: u(t, y) � 0,

θ(t, y) � 0,

C(t, y) � 0,

at y � 1.

(14)

Equations (9)–(11) are nonhomogenous PDE’s of second
order. ,e fractional model is obtained by changing time
derivative with fractional derivative given as follows:

x

d

g

0 y

At y=0
u (y,t)=0
T (y,t)=Tw
C (y,t)=Cw

At y=d
u (y,t)=0
T (y,t)=Td
C (y,t)=Cd

Figure 1: Problem orientation.
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ABC
D

α
t u(t, y) − θ(y, t) + NC(t, y) + uyy(t, y)  � 0, (15)

ABC
D

α
t θ(t, y) −

1
Preff

θyy(t, y) � 0, (16)

Cyy − ScABC
D

α
t C(t, y) + KrC(t, y) � 0. (17)

In 2016, Atangana and Baleanu introduced a new
fractional-order operator of differentiation in Rie-
mann–Liouville and Caputo sense, which is called Atan-
gana–Baleanu (AB) derivatives. ,is new AB derivative is
nonsingular and has nonlocal kernel and possesses the long
memory due to the existence ofMittag-Lefler kernel which is
the generalization of the exponential kernel. ,is new AB
fractional derivative in Caputo sense of order α> 0 is defined
as follows [47, 48]:

ABC
D

α
a,tf(t) �

M(α)

1 − α


t

a
Eα

− α(t − τ)
α

1 − α
 f′(τ)dτ , t> a,

(18)

where Eα(x) � 
∞
k�1 xk/(Γ(αk + 1)) is Mittag-Leffler func-

tion and M(α) is normalization function satisfying the
conditions M(0) � M(1) � 0.

,e Laplace transformation of ABC fractional derivative
is

L
ABC

D
α
t f(t, y)  �

s
α
L f(t, y)  − s

α− 1
f(y, 0)

s
α
(1 − α) + α

. (19)

3. Fractional-Order IBV Problem of Fluid

In this section, we develop the fractional model of equations
(15)–(17) by using relation given in equation (19), and we get
partial differential equations with associated initial and
boundary conditions:

s
αξ

s
α

+ ξα
u(y, s) �

z
2
u(y, s)

zy
2 + θ(y, s) + NC(y, s), (20)

Preff
s
αξ

s
α

+ ξα
θ(y, s) �

z
2θ(y, s)

zy
2 , (21)

Sc
s
αξ

s
α

+ ξα
C(y, s) �

z
2
C(y, s)

zy
2 − KrC(y, s), (22)

associated with initial and boundary conditions:

u(y, 0) � 0,

T(y, 0) � 0,

C(y, 0) � 0,

(23)

u(0, s) � 0,

T(0, s) �
1
s
,

C(0, s) �
1
s
,

(24)

u(1, s) � 0,

T(1, s) � 0,

C(1, s) � 0,

(25)

where ξ � 1/1 − α.

4. Analytical Solution of Fractional-Order IBV
Problem of Fluid

Equations (21) and (22) are solved separately, and then their
results are substituted in equation (20), i.e., momentum
equation.

4.1. Results of Fractional Temperature Field. Utilizing the
Laplace transform to equation (21), we obtain

z
2

zy
2 − Preff

s
αξ

s
α

+ ξα
 θ(y, s) � 0,

θ(y, s) � c3 exp − y

����������

Preff

s
αξ

s
α

+ ξα



⎛⎝ ⎞⎠

+ c4 exp y

����������

Preff
s
αξ

s
α

+ ξα



⎛⎝ ⎞⎠.

(26)

Using conditions from equations (24) and (25) in
equation (26), we have

θ(y, s) �
1
s

sinh (1 − y)
���������������
Preff s

αξ/sα + ξα( 


 

sinh
���������������
Preff s

αξ/sα + ξα( 


 

,

θ(y, s) �
1
s



∞

m�0
e

− (2m+y)
����������
Preff sαξ/sα+ξα( )

√

− e
− (2m+2− y)

���������
Preff sαξ/sα+ξα

√

 .

(27)

Equation (27) can be written in suitable form as
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θ(y, s) �
1
s

+ 

∞

m�0


∞

m1�1


∞

m2�0

(− (2m + y))
m1 Preffξ( 

m1/2(− ξα)
m2

m1!m2!s
1+αm2

Γ m1 + m2( 

Γ m1( 

− 
∞

m�0


∞

m3�1


∞

m4�0

(y − 2m − 2)
m3 Preffξ 

m3/2
(− ξα)

m4

m3!m4!s
1+αm4

Γ m3 + m4( 

Γ m3( 
.

(28)

Now, by applying inverse Laplace transform to equation
(28),

θ(t, y) � 1 + 
∞

m�0


∞

m1�1


∞

m2�0

(− (2m + y))
m1 Preffξ 

m1/2
(− ξα)

m2

m1!m2!

t
αm2Γ m1 + m2( 

Γ m1( Γ 1 + αm2( 

− 
∞

m�0


∞

m3�1


∞

m4�0

(y − 2m − 2)
m3 Preffξ 

m3/2
(− ξα)

m4

m3!m4!

t
αm4Γ m3 + m4( 

Γ m3( Γ 1 + αm4( 
.

(29)

Further, the solution can be expressed in more general
M-function [49] form as

θ(t, y) � 1 + 
∞

m�0


∞

m1�1

(− (2m + y))
m1 Preffξ( 

m1/2

m1!
M

1
2 (− ξα)t

α
|

m1 ,1( )
m1 ,0( ),(1,α)

 

− 
∞

m�0


∞

m3�1

(y − 2m − 2)
m3 Preffξ( 

m3/2

m3!
M

1
2 (− ξα)t

α
|

m3 ,1( )
m3 ,0( ),(1,α)

 .

(30)

In case of ordinary temperature, when α⟶ 1 and
Nr � 0, our solution is reduced to the known results ob-
tained in [1], and for the validation, Figure 2 is presented.

4.2. Results of Fractional Concentration Field. Solving
equation (22) by using conditions from (24) and (25) in a
similar pattern as presented for temperature field, solution
for concentration field is

C(t, y) � 1 + 
∞

l�0


∞

l1�1


∞

l2�0

(− (2l + y))
l1 Kr( 

l1/2( )− l2(Scξ)
l2

l1!l2!
M

1
2 (− ξα)t

α
|

l2 ,1( )
l2 ,0( ),(1,α)

 −

− 
∞

l�0


∞

l4�1


∞

l5�0

(y − 2l − 2)
l4 Kr( 

l4/2( )− l5(Scξ)
l5

l4!l5!
M

1
2 (− ξα)t

α
|

l5 ,1( )
l5 ,0( ),(1,α)

 .

(31)

In case of ordinary concentration when α⟶ 1 and
Kr � 0, our solution is reduced to the known results ob-
tained in [1], and for validation, Figure 3 is presented.

4.3.Results of FractionalVelocityField. Solving equation (20)
after substituting equations (27) and (31), we get

z
2

zy
2 −

s
αξ

s
α

+ ξα
 u(y, s) � −

1
s



∞

m�0
e

− (2m+y)
����������
Preff sαξ/sα+ξα( )

√

− e
− (2m+2− y)

���������
Preff sαξ/sα+ξα

√

 

−
N

s


∞

l�0
e

− (2l+y)
�����������
Sc sαξ/sα+ξα( )+Kr

√

− e
− (2l+2− y)

�����������
Sc sαξ/sα+ξα( )+Kr

√

 .

(32)
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Solving equation (32) subject to conditions (24) and (25),

u(y, s) �
N

s


∞

l�0


∞

n�0

e
− (2l+y)

�����������
Sc sαξ/sα+ξα( )+Kr

√

− e
− (2l+2− y)

�����������
Sc sαξ/sα+ξα( )+Kr

√

Kr +(Sc − 1) s
αξ/sα + ξα( 

⎡⎢⎢⎣ ⎤⎥⎥⎦

· e
− (2n+y)

�������
sαξ/sα+ξα( )

√
( 

− e
(y− 2n− 2)

�������
sαξ/sα+ξα( )

√

 

+
1
s



∞

m�0


∞

n�0

e
− (2m+y)

����������
Preff sαξ/sα+ξα( )

√

− e
− (2m+2− y)

����������
Preff sαξ/sα+ξα( )

√

Preff − 1(  s
αξ/sα + ξα( 

⎡⎢⎢⎣ ⎤⎥⎥⎦

1
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Our results when α → 1
N.Marneni [1]

Figure 2: Comparison for θ(t, y).
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Figure 3: Comparison for C(t, y).

6 Mathematical Problems in Engineering



· e
− (2n+y)

�������
sαξ/sα+ξα( )

√
( 

− e
(y− 2n− 2)

�������
sαξ/sα+ξα( )

√

 

−
N

s


∞

l�0

e
− (2l+y)

�����������
Sc sαξ/sα+ξα( )+Kr

√

− e
− (2l+2− y)

�����������
Sc sαξ/sα+ξα( )+Kr

√

Kr +(Sc − 1) s
αξ/sα + ξα( 

⎡⎢⎢⎣ ⎤⎥⎥⎦

−
1
s



∞

m�0

e
− (2m+y)

����������
Preff sαξ/sα+ξα( )

√

− e
− (2m+2− y)

����������
Preff sαξ/sα+ξα( )

√

Preff − 1(  s
αξ/sα + ξα( 

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(33)

Equation (33) can be written as

u(y, s) � 
∞

l�0


∞

n�0


∞

l1�0


∞

l2�0


∞

l3�0


∞

l7�0


∞

l8�0
N 
∞

n1�0


∞

n2�0
Φ1 − N 

∞

n3�0


n4�0
Φ2⎡⎢⎢⎣ ⎤⎥⎥⎦

− 
∞

l�0


∞

n�0


∞

l4�0


∞

l5�0


∞

l6�0


∞

l7�0


∞

l8�0
N 
∞

n1�0


∞

n2�0
Φ3 − N 

∞

n3�0


∞

n4�0
Φ4⎡⎢⎢⎣ ⎤⎥⎥⎦

+ 
∞

m�0


∞

n�0


∞

m1�0


∞

m2�0


∞

m5�0


∞

n1�0


∞

n2�0
Φ5 − 

∞

n3�0


∞

n4�0
Φ6⎡⎢⎢⎣ ⎤⎥⎥⎦

− 
∞

m�0


∞

n�0


∞

m3�0


∞

m4�0


∞

m5�0


∞

n1�0


∞

n2�0
Φ7 + 

∞

n3�0


∞

n4�0
Φ8⎡⎢⎢⎣ ⎤⎥⎥⎦

− N 
∞

l�0


∞

l1�1


∞

l2�0


∞

l3�0


∞

l7�0


∞

l8�0

(− (2l + y))
l1(Scξ)

l2(ξ(1 − Sc))
l7(− ξα)

l3+l8

l1!l2!l3!l8! Kr( 
1− l1/2( )+l2+l7s

1+αl3+αl8

Γ l2 + l3( Γ l7 + l8( 

Γ l2( Γ l7( 
⎡⎢⎢⎣ ⎤⎥⎥⎦

+ N 
∞

l�0


∞

l4�1


∞

l5�0


∞

l6�0


∞

l7�0


∞

l8�0

(y − 2l − 2)
l4(Scξ)

l5(ξ(1 − Sc))
l7(− ξα)

l6+l8

l4!l5!l6!l8! Kr( 
1− l4/2( )+l5+l7s

1+αl6+αl8

Γ l5 + l6( Γ l7 + l8( 

Γ l5( Γ l7( 
⎡⎢⎢⎣ ⎤⎥⎥⎦

− 
∞

m�0


∞

m1�1


∞

m2�0


∞

m5�0

(− (2m + y))
m1 Preffξ( 

m1/2(− ξα)
m2+m5

m1!m2! Preff − 1( s
1+αm2+αm5

Γ m1 + m2( 

Γ m1( 
 

+ 

∞

m�0


∞

m3�1


∞

m4�0


∞

m5�0

(y − 2m − 2)
m3 Preffξ( 

m3/2(− ξα)
m4+m5

m3!m4!s
1+αm4+αm5

Γ m3 + m4( 

Γ m3( 
 ,

(34)

where

Φ1 �
(− (2l + y))

l1(Scξ)
l2(− ξα)

l3+l8+n2

l1!l2!l3!l8!n1!n2! Kr( 
1− l1/2( )+l2+l7

(ξ(1 − Sc))
l7(− (2n + y))

n1(ξ)
n1/2Γ l2 + l3( Γ l7 + l8( Γ n1/2(  + n2( 

s
1+αl3+αl8+αn2Γ l2( Γ l7( Γ n1/2( 

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Φ2 �
(− (2l + y))

l1(Scξ)
l2(− ξα)

l3+l8+n4

l1!l2!l3!l8!n3!n4! Kr( 
1− l1/2( )+l2+l7

(ξ(1 − Sc))
l7(y − 2n − 2)

n3(ξ)
n3/2Γ l2 + l3( Γ l7 + l8( Γ n3/2(  + n4( 

s
1+αl3+αl8+αn4Γ l2( Γ l7( Γ n3/2( 

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Φ3 �
(y − 2l − 2)

l4(Scξ)
l5(− ξα)

l6+l8+n2

l4!l5!l6!l8!n1!n2! Kr( 
1− l4/2( )+l5+l7

(ξ(1 − Sc))l7(− (2n + y))
n1(ξ)

n1/2Γ l5 + l6( Γ l7 + l8( Γ n1/2(  + n2( 

s
1+αl6+αl8+αn2Γ l5( Γ l7( Γ n1/2( 

⎡⎢⎢⎣ ⎤⎥⎥⎦,
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Φ4 �
(y − 2l − 2)

l4(Scξ)
l5(− ξα)

l6+l8+n4

l4!l5!l6!l8!n3!n4! Kr( 
1− l4/2( )+l5+l7

(ξ(1 − Sc))
l7(y − 2n − 2)

n3(ξ)
n3/2Γ l5 + l6( Γ l7 + l8( Γ n1/2(  + n2( 

s
1+αl6+αl8+αn4Γ l5( Γ l7( Γ n1/2( 

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Φ5 �
(− (2m + y))

m1 Preffξ( 
m1/2(− ξα)

m2+m5+n2

m1!m2!n1!n2! Preff − 1( 

(− (2n + y))
n1(ξ)

n1/2Γ m1 + m2( Γ n1/2(  + n2( 

s
1+αm2+αm5+αn2Γ m1( Γ n1/2( 

 ,

Φ6 �
(− (2m + y))

m1 Preffξ( 
m1/2(− ξα)

m2+m5+n4

m1!m2!n3!n4! Preff − 1( 

(y − 2n − 2)
n3(ξ)

n3/2Γ m1 + m2( Γ n3/2(  + n4( 

s
1+αm2+αm5+αn4Γ m1( Γ n3/2( 

 ,

Φ7 �
(y − 2m − 2)

m3 Preffξ( 
m3/2(− ξα)

m4+m5+n2

m3!m4!n1!n2! Preff − 1( 

(− (2n + y))
n1(ξ)

n1/2Γ m3 + m4( Γ n1/2(  + n2( 

s
1+αm4+αm5+αn2Γ m3( Γ n1/2( 

 ,

Φ8 �
(y − 2m − 2)

m3 Preffξ( 
m3/2(− ξα)

m4+m5+n4

m3!m4!n3!n4! Preff − 1( 

(y − 2n − 2)
n3(ξ)

n3/2Γ m3 + m4( Γ n3/2(  + n4( 

s
1+αm4+αm5+αn4Γ m3( Γ n3/2( 

 .

(35)

Taking Laplace inverse, we have

u(y, t) � 
∞

l�0


∞

n�0


∞

l1�0


∞

l2�0


∞

l3�0


∞

l7�0


∞

l8�0
N 
∞

n1�0


∞

n2�0
Φ1 − N 

∞

n3�0


n4�0
Φ2⎡⎢⎢⎣ ⎤⎥⎥⎦

− 
∞

l�0


∞

n�0


∞

l4�0


∞

l5�0


∞

l6�0


∞

l7�0


∞

l8�0
N 
∞

n1�0


∞

n2�0
Φ3 − N 

∞

n3�0


∞

n4�0
Φ4⎡⎢⎢⎣ ⎤⎥⎥⎦

+ 
∞

m�0


∞

n�0


∞

m1�0


∞

m2�0


∞

m5�0


∞

n1�0


∞

n2�0
Φ5 − 

∞

n3�0


∞

n4�0
Φ6⎡⎢⎢⎣ ⎤⎥⎥⎦

− 

∞

m�0


∞

n�0


∞

m3�0


∞

m4�0


∞

m5�0


∞

n1�0


∞

n2�0
Φ7 + 

∞

n3�0


∞

n4�0
Φ8⎡⎢⎢⎣ ⎤⎥⎥⎦

− N 
∞

l�0


∞

l1�1


∞

l2�0


∞

l3�0


∞

l7�0


∞

l8�0

(− (2l + y))
l1(Scξ)

l2(ξ(1 − Sc))
l7(− ξα)

l3+l8t
αl3+αl8

l1!l2!l3!l8! Kr( 
1− l1/2( )+l2+l7

⎡⎢⎢⎣

×
Γ l2 + l3( Γ l7 + l8( 

Γ 1 + αl3 + αl8( Γ l2( Γ l7( 


+ N 
∞

l�0


∞

l4�1


∞

l5�0


∞

l6�0


∞

l7�0


∞

l8�0

(y − 2l − 2)
l4(Scξ)

l5(ξ(1 − Sc))
l7(− ξα)

l6+l8t
αl6+αl8

l4!l5!l6!l8! Kr( 
1− l4/2( )+l5+l7

⎡⎢⎢⎣

×
Γ l5 + l6( Γ l7 + l8( 

Γ 1 + αl6 + αl8( Γ l5( Γ l7( 


− 

∞

m�0


∞

m1�1


∞

m2�0


∞

m5�0

(− (2m + y))
m1 Preffξ( 

m1/2(− ξα)
m2+m5

m1!m2! Preff − 1( 

t
αm2+αm5Γ m1 + m2( 

Γ 1 + αm2 + αm5( Γ m1( 
 

+ 
∞

m�0


∞

m3�1


∞

m4�0


∞

m5�0

(y − 2m − 2)
m3 Preffξ( 

m3/2(− ξα)
m4+m5

m3!m4!

t
αm4+αm5Γ m3 + m4( 

Γ 1 + αm4 + αm5( Γ m3( 
 ,

(36)

where
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Φ1 �
(− (2l + y))

l1(Scξ)
l2(− ξα)

l3+l8+n2

l1!l2!l3!l8!n1!n2! Kr( 
1− l1/2( )+l2+l7

⎡⎢⎢⎣

×
(ξ(1 − Sc))

l7(− (2n + y))
n1(ξ)

n1/2t
αl3+αl8+αn2Γ l2 + l3( Γ l7 + l8( Γ n1/2(  + n2( 

Γ 1 + αl3 + αl8 + αn2( Γ l2( Γ l7( Γ n1/2( 
,

Φ2 �
(− (2l + y))

l1(Scξ)
l2(− ξα)

l3+l8+n4

l1!l2!l3!l8!n3!n4! Kr( 
1− l1/2( )+l2+l7

⎡⎢⎢⎣ ⎤⎥⎥⎦

×
(ξ(1 − Sc))

l7(y − 2n − 2)
n3(ξ)

n3/2t
αl3+αl8+αn4Γ l2 + l3( Γ l7 + l8( Γ n3/2 + n4( 

Γ 1 + αl3 + αl8 + αn4( Γ l2( Γ l7( Γ n3/2( 
 ,

Φ3 �
(y − 2l − 2)

l4(Scξ)
l5(− ξα)

l6+l8+n2

l4!l5!l6!l8!n1!n2! Kr( 
1− l4/2( )+l5+l7

⎡⎢⎢⎣ ⎤⎥⎥⎦

×
(ξ(1 − Sc))

l7(− (2n + y))
n1(ξ)

n1/2t
αl6+αl8+αn2Γ l5 + l6( Γ l7 + l8( Γ n1/2(  + n2( 

Γ 1 + αl6 + αl8 + αn2( Γ l5( Γ l7( Γ n1/2( 
 ,

Φ4 �
(y − 2l − 2)

l4(Scξ)
l5(− ξα)

l6+l8+n4

l4!l5!l6!l8!n3!n4! Kr( 
1− l4/2( )+l5+l7

⎡⎢⎢⎣ ⎤⎥⎥⎦

×
(ξ(1 − Sc))

l7(y − 2n − 2)
n3(ξ)

n3/2t
αl6+αl8+αn4Γ l5 + l6( Γ l7 + l8( Γ n1/2(  + n2( 

Γ 1 + αl6 + αl8 + αn4( Γ l5( Γ l7( Γ n1/2( 
 ,

Φ5 �
(− (2m + y))

m1 Preffξ( 
m1/2(− ξα)

m2+m5+n2

m1!m2!n1!n2! Preff − 1( 
 

×
(− (2n + y))

n1(ξ)
n1/2t

αm2+αm5+αn2Γ m1 + m2( Γ n1/2(  + n2( 

Γ 1 + αm2 + αm5 + αn2( Γ m1( Γ n1/2( 
 ,

Φ6 �
(− (2m + y))

m1 Preffξ( 
m1/2(− ξα)

m2+m5+n4

m1!m2!n3!n4! Preff − 1( 
 

×
(y − 2n − 2)

n3(ξ)
n3/2t

αm2+αm5+αn4Γ m1 + m2( Γ n3/2(  + n4( 

Γ 1 + αm2 + αm5 + αn4( Γ m1( Γ n3/2( 
 ,

Φ7 �
(y − 2m − 2)

m3 Preffξ( 
m3/2(− ξα)

m4+m5+n2

m3!m4!n1!n2! Preff − 1( 
 

×
(− (2n + y))

n1(ξ)
n1/2t

αm4+αm5+αn2Γ m3 + m4( Γ n1/2(  + n2( 

Γ 1 + αm4 + αm5 + αn2( Γ m3( Γ n1/2( 
 ,

Φ8 �
(y − 2m − 2)

m3 Preffξ( 
m3/2(− ξα)

m4+m5+n4

m3!m4!n3!n4!(Pr − 1)
 

×
(y − 2n − 2)

n3(ξ)
n3/2t

αm4+αm5+αn4Γ m3 + m4( Γ n3/2(  + n4( 

Γ 1 + αm4 + αm5 + αn4( Γ m3( Γ n3/2( 
 .

(37)
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In case of ordinary velocity when α⟶ 1, Nr � 0, and
Kr � 0, our solution is reduced to the known results ob-
tained in [1], and for validation, Figure 4 is presented.

5. Graphical Results and Discussion

Transient, viscid, incompressible, free convective flow be-
tween upright parallel plates of infinite length bearing the
traits of mass dissemination and invariant temperature has
been studied in this manuscript. ,e obtained model is
solved analytically by Laplace transform technique executing
all boundary and initial conditions. ,e results for tem-
perature, concentration, and velocity expressions are envi-
sioned graphically.

Figure 5 visualises the effect of fractional parameter α on
fluid’s concentration regime. By fixing other parameters as
constant and increasing the value of α, concentration field
the associated boundary layer thickness is increased. Fig-
ure 6 shows the effect of Sc on concentration domain. It is
observed, with the increase in Sc, the denseness of fluent
decreases which affects the rate of molecular diffusion and it
tends to minimise thickness of boundary layer. Figure 7 is
presented to envision the impact of chemical reaction pa-
rameter Kr. It can be seen clearly that as Kr increases, fluent
concentration decreases. Figure 8 shows the consequences of
time fractional-order concentration and observes that fluid
concentration increases with time.

In Figure 9, we vary α and fix other parameters on
temperature domain. As α increases, liquid temperature
decreases and the boundary level heaviness increases. Fig-
ure 10 shows varied effective Prandtl number Preff against y

by limiting t � 0.01 and α � 0.65. Graphically, it is to the
point that as Prandtl number Preff heightens, liquid tem-
perature minimises. As anticipated, raising Preff , abbreviates
the thermic conduction because the high viscosity reduces
the thickness of the caloric boundary stratum. Figure 11 is
drawn by fixing Preff � 1.5 and α � 0.65, and effect of
fractional time is observed on θ(t, y).

Figure 12 is drawn for different values of alpha by
keeping other parameters fixed. It is a well-known fact that
the integer order differential operator is a local operator
whereas the fractional-order differential operator (ABC
derivative) is nonlocal in the sense that the next stage of the
system depends not only upon its current stage but also
upon all of its proceeding stages. It describes the behaviour
of the function in better way because it holds Mittag-Leffler
kernel which stores memory factor and therefore better in
describing fluid’s flow fields. It is rather visible from the
graphical record that velocity increases as α value upshots,
and when fractional parameter approaches to one, its ve-
locity will be closer to the classical values. ,e effects on
velocity by Preff are shown in Figure 13. One can see that by
increasing Preff , the fluid velocity decreases, and likely the
stratum boundary thickness shrinks because Preff increases
the viscousness and decreases thermic stratum boundary in
slower movement. Figure 14 is given for respective measures
of the buoyancy ratio parametric quantity N which inter-
prets the ratio between thermic and aggregative buoyancy
drives. For N � 0, there is no mass transference, and
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Figure 4: Comparison for u(t, y).
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Figure 17: Comparison for θ(t, y).
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buoyancy effect is primarily attributable to caloric diffusion
rate. ,erefore, for dissimilar N values, the thickness of
boundary stratum and velocity get enhanced.

Figure 15 shows the effect of Sc number on fluid speed
by fixing the parameters. It is observed that increase in Sc
decreases the velocity. Figure 16 is given to experience the
temperature of time on velocity when Sc � 0.22, Preff � 7,
N � 0.015, and α � 0.65. As time t increments the fluent
velocity, likewise the boundary stratum thickness dimin-
ishes as seen from graph. Figures 14–16 are drawn to as-
certain the validness of obtained for concentration,
velocity, and temperature disciplines compared with [1] in
the absence of radiative heat flux and chemical reaction
parameter. ,e overlapping arcs distinctly signal the in-
tegration of found results. Another comparison is drawn to
validate our obtained results. Results are compared with

[26], in the absence of MHD, radiative heat flux, and
chemical reaction. Heat and mass transfer model with three
fractional approaches such as (i) Caputo, (ii) Capu-
to–Fabrizio, and (iii) Atangana–Baleanu is compared
graphically and presented in Figures 17–22. How fractional
parameter controls fluid flow can be seen in this com-
parison? From these displays, we concluded that the
Caputo–Fabrizio model exhibits similar behaviour as the
classical model and Atangana–Baleanu model is well suited
in stimulating the history function due to Mittag-Leffler
kernel which can describe full memory effect for a given
system. By increasing the value of fractional parameter, all
three profiles display decreasing behaviour. ,e over-
lapping curves depicts the integrity of three models when
fractional parameter⟶1.
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Figure 18: Comparison for θ(t, y).
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Figure 19: Comparison for C(t, y).
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6. Conclusion

Free convective transient flow of viscous and incompressible
fluids transiting through two infinite hot parallel upright
plates is investigated analytically in the presence of chemical
reaction, radiative heat flux, and mass diffusion at the
boundary. A fractional model is developed with compara-
tively new (ABC) derivative. ,e following observations are
made:

(i) In this model, the fractional-order parameter α
observes the concentration thickness of thermal and
momentum boundary layers.

(ii) ,e fluid temperature is enhanced for smaller values
of α and larger values of time t while decreases for
greater Preff .

(iii) Concentration grows by decreasing the values of
fractional parameter α and for larger values of time

t. Additionally, concentration abbreviates by raising
Sc and Kr likewise the boundary layer thickness.

(iv) Velocity increases by raising the parametric values
of N, α, Nr, and time t whereas it decreases by
raising Pr, Kr, and Sc values, respectively. ,e
proposedmodel with ABC derivative gives results as
compared with Caputo and Caputo–Fabrizio model
because of memory effect.
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