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Power terminal is an important part of the power grid, and fault detection of power terminals is essential for the safety of the power
grid. Existing fault detection of power terminals is usually based on arti�cial intelligent or deep learning models in the cloud or
edge servers to achieve high accuracy and low latency. However, these methods cannot protect the privacy of the terminals and
update the detection model incrementally. A terminal-edge-server collaborative fault detection model based on federated learning
is proposed in this study to improve the accuracy of fault detection, reduce the data transmission and protect the privacy of the
terminals.�e fault detection model is initially trained in the server using historical data and updated using the parameters of local
models from edge servers according to di�erent updating strategies, then the parameters will be sent to each edge server and
further to all terminals. Each edge server updates the local model via the compressed system log from terminals in its coverage
region, and each terminal uses the model to detect fault according to the system behavior in the log. Experiment results show that
this fault detection algorithm has high accuracy and low latency, and the accuracy increases with more model updating.

1. Introduction

With the development of the power grid and the applications
of information and communication technologies, the smart
grid has been widely deployed in most countries, and an
automated and distributed advanced energy delivery net-
work has also been constructed. Nowadays, the power
terminals, such as smart energy meter, concentrator, special
transformer, and energy controller, have become more and
more intelligent and important in the smart grid, and the
reliability, security, and stability of the power terminals have
been challenges for the smart grid. Once the power terminal
fails, it will lead to inaccurate power data, confused power
scheduling, and damage of power equipment and even part
of the power grid. Hence, the fault detection of power
terminals with high accuracy is needed to �nd the faults
quickly to avoid the damage to the power grid.

Fault detection is the foundation of the security of power
grid. At present, there are many fault detection methods for
power terminals, most of which use arti�cial intelligent or
deep learning models to improve the accuracy of fault

detection. In these methods, the detection operation is ex-
ecuted on the servers and the state data generated on the
terminal of collected by extra devices are transmitted to the
server. For example, drone and auto-tracking camera were
used to detect the defects in power lines in reference [1].
Bouazza et al. [2] proposed arti�cial intelligence-based
methods to detect faults of the power switches in the wind
energy conversion system. Shi et al. [3] proposed a fault
detection method based on the LSTM model to predict the
faults of DC-DC power supply. Nguyen [4] used a micro-
phone to detect the overload of large power transformer by
sound analysis. Hong et al. [5] detected the open conductor
fault in power distribution networks using multiple mea-
surement factors of feeder RTUs with DGs. Visible images,
infrared images, and ultraviolet images of power equipment
were fused to train a deep learning-based fault detection
model [6] in a power system. Improved random forest was
used to detect the power outage accident of the power
terminal in reference [7], and continuous wavelet transform
and convolution neural network were adopted to detect
faults for power electronic converters in reference [8].

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 9031701, 10 pages
https://doi.org/10.1155/2022/9031701

mailto:houshuai@epri.sgcc.com.cn
https://orcid.org/0000-0002-8602-7575
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9031701


'e above fault detection methods can achieve high
accuracy mainly by the complex model and massive data.
But the complex model will lead to high requirements of
computing and storage resource, and massive data may
result in congestion and delay of network transmission.
'erefore, the fault detection should be at the terminal and
the model training should be in the cloud to make full use of
the advantages of cloud computing resources and local data
to take the accuracy, efficiency, and privacy of fault detection
into consideration.

Edge computing is a new framework to provide service at
the edge of the network [9, 10]. It has been used in many
applications, especially for fault detection of IoT (Internet of
'ings) devices. An IoT fault detection based on edge
computing and blockchain was proposed in reference [11],
in which weighted random forest was adopted. Huong et al.
developed LocKedge [12] framework to detect low com-
plexity cyberattack in IoTedge computing. Mishra et al. [13]
proposed data anomalies detection method at the edge of
pervasive IoT systems. A device-edge split architecture for
intrusion detection for IoT devices was proposed in refer-
ence [14] to reduce the overhead of the IoT devices. 'e
architecture of the power grid is similar to the framework of
edge computing, hence researchers have attempted to apply
edge computing in the power grid for fault detection. Huo
et al. [15] proposed a fault detection based on edge com-
puting for distributed power distribution, and a method
based on edge computing architecture was proposed to
judge unsafe actions of electric power operations in time in
reference [16]. Yang et al. [17] proposed a semisupervised
cloud edge collaborative unsafe actions detection frame-
work, and Zhang et al. [18] combined cloud edge fusion
framework and deep learning techniques for abnormal
object detection in the power grid. 'ese studies overcome
the accuracy requirement of fault detection in the power grid
by splitting the fault detection to edge server or cloud to
reduce the overhead of the power terminals; however, the
data privacy of the terminals and the data transmission in the
network are not well considered.

Federated learning [19], which is first proposed in 2016,
is a machine learning method that takes into account model
accuracy and data privacy. It has been used in the power grid
to protect the privacy of the data of consumers or terminals.
A privacy-preserving federated learning framework Fed-
Detect [20] is developed for energy theft detection in smart
grid, and a federated learning-based method was proposed
for privacy-preserving household characteristic identifica-
tion in reference [21]. Su et al. [22] proposed a secure and
efficient federated-learning-enabled AIoTscheme for private
energy data sharing in smart grids with edge-cloud col-
laboration. Wang et al. [23] developed a distributed elec-
tricity consumer characteristics identification method based
on federated learning to preserve the privacy of retailers. Liu
et al. [24] used an asynchronous decentralized federated
learning model for collaborative fault diagnosis of PV sta-
tions. 'ese methods protect the privacy of the power
terminals but cannot be applied to fault detection because of
requirements of the high accuracy, low latency, data privacy,
and incremental updating.

To overcome the above problems, we propose a three-
tier fault detection model based on federal learning for
power terminals and three different model updating strat-
egies in this study. 'e fault detection model training,
updating, and testing are split into edge servers, cloud, and
terminals respectively in the power grid. 'e cloud is re-
sponsible for the construction of the initial fault detection
model and subsequent model updating to improve the ac-
curacy of fault detection; the edge server is responsible for
training the local model to ensure the data privacy of the
terminal, and the terminal that only uses the trained model
for fault detection to improve the efficiency of fault detection
can compress the raw system log to reduce the data
transmission. In the data interaction between terminal, edge
server, and cloud, the amount of data transmission and
system delay is reduced by means of log compression and
parameter transmission. 'e experimental results show that
our algorithm can reduce the amount of data transmission
and achieve higher accuracy than traditional fault detection
methods.

2. Edge-Cloud Collaboration Fault
Detection Framework

2.1. Data Model of Power Terminal. 'e functions and
manufacturers of power terminals are different in the power
grid, and the configurations of hardware resources are also
different. 'e configuration of some typical power terminals
is listed in Table 1.'e complex fault detectionmodel cannot
be trained on power terminals, but fault detection using the
trained model can be performed on most terminals.

'e faults of the power terminals involve various
functional modules of the embedded operating system,
such as hardware driver, system security, file system,
system application, and memory management. When a
system fault occurs, the system log will record the fault-
related information, including the fault occurrence time
and system abnormal behaviors. 'erefore, the fault de-
tection can be realized through the analysis of the op-
erating system log. 'ough log formats and the
description of system behaviors of different embedded
operations are different, the system log usually includes
system time, system components, and behavior descrip-
tion. Figure 1 shows the log format of an embedded
operating system designed independently, and the record
of the system log is in the form of time, device, and detail,
where time and device represent the system time and the
system component of this system behavior respectively,
and detail is the operation description of the system
behavior. As shown in the first line in Figure 1, “3.567604”
is the relative time after system startup, “USB usb3” is the
system component, and “Manufacture: Linux 3.10.108
ohci_hcd” is the system description.

'e system fault detection of power terminal needs to
find the fault and judge the type of fault as soon as possible
after it happens, so that the users can quickly deal with the
fault to avoid serious accidents, such as terminal hardware
damage, data loss, and network intrusion. When the system
fails, the device and detail attributes of the system log record
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the abnormal behavior or operations of the system devices.
Some common system faults can be found through the
keywords in the detail attribute of the system log, and the
system log usually contains some fault-sensitive words such
as failed, error, and warning, as listed in Table 2. However,
some system faults caused by hidden bugs or premeditated
external attacks may not contain these fault-sensitive words,
and the speci�c type of the system fault is di¢cult to de-
termine by keywords.�erefore, it is necessary to analyze the
system log using natural language processing methods to
accurately identify and classify the faults.

�ough the system log records the system behaviors and
operations when the system failure occurs, the content of the
system log is generally simpli�ed in the embedded operating
system. �erefore, it is necessary to take the language

characteristics of the system log into consideration when
using natural language processing methods:

(1) Short Sentence: Each record of the system log has less
content, the fault location is usually a speci�c word
or number of the system component, and the fault
description is usually a short sentence, which con-
tains only a few words. �e syntax structure of the
sentence is simple.

(2) Less Vocabulary. �ere are less vocabularies in the
whole system log. �e frequencies of most words in
the system log are high, while some words with lower
frequency are usually related to the identi�cation of
the terminal and have nothing to do with the type of
the fault, such as speci�c IP addresses.

Table 1: Con�gurations of typical power terminals.
Smart meter Special transformer Fusion terminal Energy controller

Frequency ≥120MHz ≥300MHz ≥1GHz ≥1.2GHz
RAM ≥512KB ≥512MB ≥2G B ≥2GB
Flash (code) ≥512KB ≥128MB ≥8GB ≥4GBFlash (storage) ≥8MB
Memory
protection

MPU (memory
protection unit)

MMU (memory
management unit)

MMU (memory
management unit)

MMU (memory
management unit)

Architecture Arm Cortex-M4 ARM 920T™ ARM Cortex™-A7 ARM Cortex™-A7

[3.609211] usbcore: registered new interface driver ums-datafab

[3.595695] usbcore: registered new interface driver ums-alauda
[3.588858] usbcore: registered new interface driver usb-storage

[3.579445] hub 3-0:1.0: USB hub found
[3.573805] usb usb3: SerialNumber: sunxi-ohci
[3.567604] usb usb3: Manufacturer: Linux 3.10.108 ohci_hcd

[3.583635] hub 3-0:1.0: 1 port detected

[3.602414] usbcore: registered new interface driver ums-cypress

Figure 1: Example of system log of power terminals.
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Figure 2: �ree-tier fault detection architecture.
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(3) High Redundancy. 'e system log generated by each
terminal contains a large number of repeated rec-
ords, and the system logs generated by similar ter-
minals also have a large amount of redundancy. 'e
redundant records are typically representing normal
operations.

'erefore, in order to improve the efficiency of fault
detection by natural language processing, the redundant
records in the system log should be removed to reduce the
number of records to be processed. In the process of rec-
ognition, the characteristics of short sentences and less
vocabulary should be taken into consideration to reduce the
complexity of the detection model.

2.2. Fault Detection Framework. Considering the data
model and hardware configuration of power terminals,
the requirements of fault detection accuracy and delay, as
well as the network architecture of power grid, a three-tier
fault detection architecture, namely, end-edge-cloud, for
power terminals is proposed in this study, as shown in
Figure 2. 'e fault detection model is trained initially and
updated in the cloud, and the terminals detect the fault
using the detection model. Each edge server is used to
train the local model using data from the terminals in its
coverage region to protect the privacy of the terminals and
generate the parameters of the updated model for the
cloud.

(1) Power Terminals. 'ey are deployed to perform
measuring, monitoring, controlling, and other
functions in the power grid, such as energy con-
trollers, fusion terminals, intelligent meters, and
special transformer terminals. 'e power terminals
are designed, manufactured, and used by different
companies or end users, and they typically have low
hardware configuration, and perform different tasks
by running different application software. 'e faults
of the power terminal and the abnormal behaviors
resulted by the faults are recorded in the system log,
hence the fault detection should be performed on the
power terminal to detect the fault as soon as possible.
Power terminals are the main participants of fault
detection and are responsible for the collection and
preprocessing detect system log and the detection of
the faults.

(2) Edge Servers. 'ey can be either the dedicated servers
or powerful terminals, which have a large number of
computing and storage resources and can perform

the collection and processing of large datasets. Each
edge server is responsible for the collection of system
logs and the training of local fault detection model
for multiple terminals in a distinct region. 'e edge
server acts as the role of connector of the terminals
and the cloud in the fault detection architecture, and
they interact with the cloud for the parameters of
fault detection model, terminals for the updated
parameters of the fault model, and the compressed
system logs.

(3) Cloud. With powerful computing power and storage
resources, it is deployed and maintained by the
power grid company and is responsible for the
initialization and update of the global fault detection
model. In practice, one or several large data centers
are constructed as the cloud of the power grid, and
they are the control and decision centers of the
power grid.

'e end-edge-cloud three-tier architecture is the common
architecture of the practical power grid, hence the three-tier
fault detection model can be easily deployed and completed
without extra hardware support. Due to the limited network
transmission capacity of the terminals, the bandwidth con-
straints of the edge server, the long transmission distance
between the edge server and the cloud, and the data size and
delay of data transmission between the cloud, edge server, and
terminals greatly affect the training and detection performance
of the fault detection model. 'erefore, the amount of data
transmission between terminals, edge server, and the cloud
should be minimized to improve fault detection performance.

From the perspective of model training, the cloud
performs the training of the initial fault detection model and
the updating of model. 'e edge server is responsible for
collecting the compressed system log of the terminals and
training the local fault detection model. 'e terminal uses
the trained model to detect the system fault. 'e powerful
computing resource of the cloud can quickly complete the
model training and updating. 'e local model training can
also be quickly accomplished with the small dataset on the
edge server. 'e fault detection on the terminals only has a
little demand for computing resources.

From the perspective of data transmission, the system log
generated by the terminal will be compressed and transmitted
to the adjacent edge server, which greatly reduces the amount
of data and occupies less network bandwidth. 'e edge server
transmits the parameters of the local model to the cloud and
the parameters of updated model to terminals. Although the
distance between the edge server and cloud is long, the
transmission delay is very small because the parameters of the
model is far less than the raw system logs.

3. Federated Learning-Based Fault
Detection Algorithm

'e spirit of federated learning is used in the three-tier fault
detection framework to reduce the data transmission be-
tween the cloud and edge servers and protect the privacy of
power terminals. 'e fault detection algorithm consists of

Table 2: Examples of sensitive words.
ID Detail of the system log
1 Warning: get ephy clock is failed
2 Warning: mountpoint for pids not found
3 Console-setup.service: failed with result “exit-code”
4 Failed to start: set console font and keymap
5 Sunxi-ahci: Probe of sata failed with error −1
6 Error while tracing: no such file or directory
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three steps: pretraining, local training, and model updating.
'e pretraining step is processed in the cloud, the local
training is completed on the edge server, and the model
updating is finished in the cloud.

3.1. Pretraining. 'e cloud uses historical system logs to train
the initial fault detection model, and the system logs are
marked and provided by the manufacturers and managers.
Each record in the system log is in the form of device, time,
detail, and result, where device is the type of the terminal;
time, device, and detail are the system time, system com-
ponent, and system behavior of the fault respectively; result is
a nonnegative integer and represents the type of the fault. 'e
natural language processing method is adopted to recognize
the fault from the system behavior in the system log. 'e
description of the system behavior is recorded in the system
log in the form of detail� (w1, w2, w3, . . . , wm), where m is
the number of words and wi is the ith word, 1≤ i≤m.

'e LSTM (long short-term memory) network model is
used in our fault detection model to improve the accuracy of
fault detection. LSTM is an improvement of RNN (recurrent
neural network), and it uses an input gate, forget gate, and
output gate to selectively retain part of the previous cell state
and transfer it to the next cell to overcome the problem of
long-term dependence in RNN. Each cell state in LSTM is
consisted of one forget gate, one input gate, and one output
gate, and each gate is composed of a sigmoid neural network
layer and a pointwise operation, as shown in Figure 3.

'e forget gate is used to forget part of the information of the
previous cell state Ct−1, and only ft ∗Ct−1 is remained in the
current cell state, where ft is the output coefficient of a sigmoid
layer:

ft � sigmoid wf ht−1, xt  + bf . (1)

'e input gate is used to determine which new infor-
mation will be keep in the current cell state, and the new
information is defined as it ∗ Ct, where it is the output of
sigmoid layer and Ct is the output of a tanh layer:

it � sigmoid wi ht−1, xt  + bi( ,

Ct � tanh wc ht−1, xt  + bc( .
(2)

'e current cell state Ct can be obtained after the forget
gate and input gate:

Ct � ft ∗Ct−1 + it ∗ Ct. (3)

'e output gate is used to generate the output ht of
current cell state Ct. 'e output coefficient ot and tanh will
be computed to get the output ht:

ot � sigmoid w0 ht−1, xt  + b0( ,

ht � ottanh Ct( .
(4)

3.2. Local Training. After completing the LSTM model
training, the cloud sends the parameters of the fault detection
model to each edge server, which then sends the parameters to

all terminals in its corresponding region. During the execution
of the terminal, the system log will be preprocessed and input
into the fault detection model to obtain the fault detection
results, and finally, the terminal carries out corresponding
response, such as restart, shutdown, and alarm. Because only
fault detection is performed on the terminal, and the model
training and updating are performed on the edge server and
cloud, the terminal can quickly detect and respond the fault.

Due to the high reliability and security requirements of
power grid, the failure probability of each terminal is very
low, most records in the system log are normal operations,
and only a few records are abnormal system behavior in a
long time. Hence, the system log on each terminal contains a
lot of redundant information, and it should be compressed
before being transmitted to the edge server to reduce the
amount of data transmission. Log compression is mainly
divided into three steps:

① Variable Replacement. Some variables in the system
log represent the identification of the device or
network and do not contain the semantics of the
fault.'ese variables are usually long words or strings
and can be replaced with the category of these var-
iables, such as IP address and web page address, and
device name can be replaced with IP, URL, and local,
so as to reduce the differences between records in the
system log and reduce the data transmission between
the terminal and edge server.

② Similarity Computing. Each record of the system log
contains the system component and the system be-
havior of the fault, and the records with high similarity
will be compressed into one record to reduce the data
transmission. Hence, the similarity of two records
consists of the similarity of the system component
Sdevice and that of the system behavior Sdetail. 'e
similarity of two system components depends on the
locations of the components in the fault tree:

Sdevice device1, device2( 

�

1, device1 � device2

1
max length

device1 ≠ device2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

,

maxlength � max P Root, device1( , P Root, device2(  ,

(5)

where Root is the nearest common ancestor node of
device1 and device2 in the fault tree; p(Root, device1)
and p(Root, device2) are the number of nodes on the
path from Root to device1 and device2, respectively.
If the detail of the record in the system log contains
one or more of words in the set of sensitive words
Keywords, then the record is marked as a sensitive
record, and the similarity of this record will not be
computed because any sensitive record cannot be
compressed to ensure the accuracy of the fault
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detection. For the nonsensitive records, the similarity
of the system behavior is related to the words in
detail. Given details1(w1, w2, . . . , wm) and
details2(w1′, w2′, . . . , wn′), the similarity of details1 and
device2 can be obtained:

Sdetail detail1, detail2( ) �
detail1 ∩ detail2
∣∣∣∣

∣∣∣∣
detail1 ∪ detail2
∣∣∣∣

∣∣∣∣
, (6)

wherem and n are the number of words in detail1 and
detail2 respectively, details1 ∩ details2 is the number
of words in the intersection of detail1 and detail2, and
details1 ∪ details2 are the number of words in the
union of detail1 and detail2.
�e similarity of two records
r1 � (time1, device1, details1) and
r2 � (time2, device2, details2) in the system log
S(r1, r2) is the weighted sum of the similarity of Sdevice
and Sdetails:

S r1, r2( ) � α · Sdevice device1, device2( )
+ β · Sdetail detail1, detail2( ),

(7)

where α and β are the coe¢cients of Sdevice and Sdetails
respectively and can be set by the domain experts,
such as system designers, maintainers, and testers.

③ Redundancy Filtering. Log records with high simi-
larity generated in a short time are called redundant
records. �e redundant logs should be discarded on
the terminal, and only the remaining log records will
be transmitted to the edge server to reduce the data
transmission. �e �ltering process is as follows: �rst,
all the sensitive log records should be retained, that is,
the record ri � (timei, devicei, detailsi)with detailsi �
(w1, w2, . . . , wm) will be transmitted to the edge

server ifwj ∈ detailj andwj ∈ Keywordsj. If rj is not a
sensitive record, then its similarity with any non-
sensitive record rj, S(ri, rj), is calculated in the
subsequent short time interval.�e log record rj with
S(ri, rj)≥ Sth will be marked as redundant record and
discarded on the terminal, where Sth is the similarity
threshold set by the systemmanager or other experts.

After receiving the compressed system logs from termi-
nals in its region, the edge server performs the local training of
the fault detection model using the data received. �en, the
parameters of the updated local model are transmitted to the
cloud to update the global fault detection model. Due to the
low probability of system failure of each terminal, the local
training should not be performed frequently. For example, a
manufacturer of power terminal found that the system failure
of each terminal occurs once every twomonths during on-site
use, according to a pilot testing of energy controller since
April 2021. If the fault detection model is trained frequently
using the dataset without fault records, then it may lead to
over�tting of the fault detection model. In order to ensure the
detection accuracy of fault detection model, three strategies of
local training are proposed in this study.

① Periodic Update (PUpdate). Each edge server trains its
local model within a speci�ed period. �e parameter
period is set according to the reliability of the ter-
minals in the coverage region of the edge server, and
it is set to be the average failure time of the terminals
by default. Given the edge server serveri and the set of
terminals in its coverage region Pi � (pi,1,
p1,2, . . .pi,k), the failure time of the terminal pi,j is
ftj, and we can obtain the update period of edge
server serveri as follows:

periodi �
1
k
∑
k

j�1
fti, (8)

X +

X
X

tanh σσσ

tanh

ht-1 ht

ht

CtCt-1

xt

Forget
gate

Input gate

Output
gate

ft
it

~ 
Ct ot

Figure 3: Structure of cell state in LSTM.
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where k is the number of terminals. 'e update
period of different edge servers may also be different
and can be adjusted when the terminals in the region
are removed or newly deployed.

② Incremental Update (AUpdate). Each edge server
starts the local training when the number of ab-
normal log records is no less than the threshold. Since
training the local model using normal records may
lead to over fitting, the training dataset should
contain some abnormal records. Suppose is the
training dataset on edge server serveri, Dth is the
threshold of the abnormal records, the serveri will
perform local training if |ADataseti|≥Dt h, where
NDataseti is the set of normal records in Dataseti,
and ADataseti is the set of abnormal records in
Dataseti. 'e threshold Dt h � 1 is generally set as a
linear function of the number of terminals in the
coverage region of the edge server, and the threshold
on each edge server may be different.

③ Triggered Update (TUpdate). 'e edge server per-
forms the local training when receiving abnormal log
records from any terminal in its coverage region. 'e
local fault detection model may be updated as soon as
possible in this strategy, and the updated parameters
will be sent to the cloud. It may lead to a large amount
of data transmission between the edge servers and the
cloud when there are many terminals in the power
grid. 'is strategy can be seen as a special case of
AUpdate with threshold Dt h � 1.

'e above three strategies should be used in different
situations; PUpdate and AUpdate can reduce the data
transmission between edge servers and the cloud, while
TUpdate can quickly update the fault detection model. We
can choose different strategies according to the practical
applications, and the strategies can be adopted on different
edge servers simultaneously.'emain difference of the three
updating strategies is the updating frequency of the fault
detection model; TUpdate may lead to high and unpre-
dictable updating frequency, while the updating frequency of
PUpdate and AUpdate can be controlled by changing pa-
rameters period and Dt h.

3.3.Model Updating. After receiving the parameters of local
models from edge servers, the cloud will aggregate the
parameters to update the global detection model and then
send the updated parameters to all edge servers. Each edge
server will further send the updated parameters to all ter-
minals in its coverage region. Suppose the parameters of
local models from k edge servers are the set
V � v1, v2, . . . , vk , and the parameters of each local model
are a vector Vi � 〈vi

1, vi
2, . . . , vi

p〉, where 1≤ i≤ k and p is the
number of parameters of the fault detection model. 'e set
of parameters V is aggregated in the cloud, and we can get
the new parameter vector Vu � 〈vu

1 , vu
2 , . . . , vu

p〉, in which
each parameter is updated according to the following rules:

v
u
i � η.v

′u
i +(1 − η) 

k

j�1
v

j
i , (9)

where v′ui is the original value of the ith global parameter,
and ηis the weighted coefficient and can be obtained by the
cloud in the step of pretraining.

'e accuracy of the fault detection model on the ter-
minals depends on the frequency of model updating in the
cloud, if the architecture of the grid power and themethod to
process the system log are given. 'e parameters of local
models from the edge servers will be less when the cloud
updates the global model frequently, which will increase the
data transmission to send the updated parameters to all the
edge servers and terminals. If the frequency of model
updating is low, then some edge servers, on which the
frequency of local training is high, will send their local pa-
rameters several times to the cloud, and only the latest version
of the local parameters will be aggregated to update the global
model, so that the influences of some faults will be ignored
and the accuracy of the fault detection model will be affected.

'erefore, in order to improve the accuracy of the fault
detection model, the cloud can adopt different strategies to
update the model, such as PUpdate, AUpdate, and TUp-
date. 'ese update strategies in the cloud for model
updating are similar to that on the edge server for local
training, and the only difference is the measurement of the
thresholds in each strategy. 'e update period of PUpdate
in the cloud is typically set as the shortest time of local
training on all edge servers. 'e threshold of AUpdate in
the cloud will be set according to the number of edge
servers, which have been finished the local training, that is,
the number of parameter vectors received by the cloud.'e
cloud will update the model when receiving parameters of
local model from any edge server when TUpdate is used in
the cloud.'e update strategy in the cloud is determined by
the experts according to the requirements and configura-
tions of the power grid and the strategies adopted on the
edge servers.

3.4. Fault Detection Algorithm. Suppose there are one cloud
Cloud and k edge servers Server1, Server2, . . . , Serverk  in
the power grid, and the terminals in the coverage region of
edge server Serveri are de vi1

, de vi2
, . . . , de vin

 , then the
fault detection process is as follows:

Step 1. 'e historical system logs Records are used to
pretrain the initial fault detection model using LSTM in
Cloud. 'en, Cloud sends the parameter vector Vinit to
all edge servers Server1, Server2, . . . , Serverk , and each
edge server Serveri further sends Vinit to the h terminals
de vi1

, de vi2
, . . . , de vin

  in its coverage region.
Step 2. When a log record ri is generated on a terminal
de vij

, it should be firstly preprocessed by variable re-
placement and input into the fault detection model to
check whether a fault occurs and determine the type of the
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fault on devij. �en, the log records within a time period
will be compressed and sent to the edge server Serveri.
Step 3. Each edge server Serveri collects the compressed
system logs Ri � Ri1, Ri2, . . . , Rih{ } from terminals
de vi1, de vi2, . . . , de vin{ } in its coverage region and
trains the local LSTMmodel using dataset Ri according
to the updating strategy, such as PUpdate, AUpdate, or
TUpdate. Once completing the local training, Serveri
transmits the parameters Vi of local model to Cloud.
Step 4. After receiving the parameters
V � V1, V2, . . . , Vk{ } from edge servers
Server1, Server2, . . . , Serverk{ }, Cloud aggregates V to
generate the new parameters Vupdate � 〈vu1 , vu2 , . . . , vup〉
using PUpdate, AUpdate, or TUpdate strategy. �en,
Vupdate will be transmitted to each edge server Serveri,
and �nally to all terminals de vi1, de vi2, . . . , de vin{ },
and steps 2–4 will continue until the fault detection is
interrupted.

In the above algorithm, each terminal continuously
generates a large amount of system log, and each record in
the system log is input into the fault detection model to �nd
as many faults as possible.�e system log will be compressed
before transmitting to the edge server, and only the pa-
rameters of local model are sent to the cloud to reduce the
transmission delay. Meanwhile, the fault detection on the
terminal, the local model training on edge server, and the
model updating in the cloud can fully utilize the computing
resources of di�erent hardware. �erefore, high accuracy,
low latency, less data transmission, and privacy protection
are taken into consideration in this federated learning-based
fault detection algorithm.

4. Performance Evaluation

�e fault detection algorithm proposed in this study is
evaluated in a simulated power grid with a cloud, 10 edge
servers, and a number of terminals. �e terminal is con-
�gured as a brand of energy controller, the system log is
collected in practical application, and the summary of the
system log is listed in Table 3. �e time of model updating,
the amount of data transmission of each terminal, and the
fault detection accuracy are tested to evaluate our fault
detection algorithm. �e weights in the similarity of records
are set as α� β� 0.5.

�e average update time of the model using di�erent
update strategies when the number of terminals in the
coverage region of the edge server changes is shown in
Figure 4. It can be seen that the update time of PUpdate
strategy keeps stable if the update period is �xed, while the
update time of AUpdate and TUpdate strategies decreases
with the increase of terminals. �e reason is that the increase
terminals lead to high frequency of the edge server receiving
abnormal log records, and the local update will be performed
more frequently if the other conditions is �xed. Since the
threshold Dth in AUpdate is set to be 10, and the TUpdate
can be seen as a special case of AUpdate with Dth� 1, the
average update time of TUpdate is signi�cantly lower than
that of AUpdate strategy for the same number of terminals.

�e average data transmission of each terminal for the
local training on edge server with di�erent update strategies
is shown in Figure 5. �e legends “X” and “X-C” represent
the two cases when the terminal transmits raw system log
and compressed system log to edge server with update
strategy X respectively. It can be seen from Figure 5 that log
compression can signi�cantly reduce the data transmission
in all update strategies, and PUpdate generates the largest
data transmission, followed by AUpdate, and data trans-
mission in TUpdate is the smallest. �e main reason is that
PUpdate takes the longest period for each local training,
while the average time of local training in TUpdate is the

Table 3: Summary of system log generated by an energy controller
within an hour.
No. Information Value
1 Number of log records 1019
2 Average number of words per record 9.25
3 Maximum frequency of the words 880
4 Minimum frequency of the words 1
5 Size of raw system log 70KB
6 Size of compressed system log 18KB
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Figure 4: Average update time of the fault detection model.
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shortest. Meanwhile, when the number of terminal devices
increases, the model update time of AUpdate and TUpdate
gradually approaches. In the case of log compression, the
data transmission of AUpdate and TUpdate approximates to
be equal.

From the above results, it can be seen that the PUpdate
strategy has the longest update period and the largest
amount of data transmission for each local training. �e
TUpdate has the shortest update period and the least data
transmission for each local training. �e update period and
data transmission in AUpdate are less than that of PUdate
and more than that of TUpdate. In practical applications,
TUpdate is suitable for newly deployed terminals and ter-
minals with high security requirements, so as to quickly
collect the abnormal system records of the terminal and train
a more accurate fault detection model. Terminals with
limited network bandwidth can also avoid network con-
gestion and packet loss caused by a large amount of data
transmission using TUpdate strategy. PUpdate is applicable
to terminals with stable operation, less strict security re-
quirements, and large network bandwidth, and the update
period can be set according to the actual application and is
usually initialized as the average failure time of the terminal.
Strategy AUpdate has the maximum ®exibility, the update
period can be changed easily by modify the threshold Dth,
and the update period grows as Dth become larger.

�e accuracy of fault detection using di�erent fault
detection methods is shown in Figure 6. �e legends
“KeyWords” is the keyword matching-based method,
“Global” is the global LSTM model, that is, the fault de-
tection model is trained in the cloud and cannot be updated,
and “EdgeCloud” is our LSTM model with edge and cloud
cooperation.�e results show that the accuracy of Keywords
method is very low since the abnormal behavior of some
faults does not contain the keywords. �e accuracy of both
Global and EdgeCloud methods is obviously higher than
KeyWords because the faults are recognized by the natural
language processing method LSTM. With the accumulation
of the system log, the Global method does not update the
fault detection model, which leads to decreasing of the
accuracy of fault detection. �e new system log is used to

train the local model and further update the global fault
detection model to increase the accuracy of the fault de-
tection model. With the increase of the number of model
updates in the cloud in EdgeCloud, its accuracy becomes
higher than that of Global method.

5. Conclusions

In this study, we analyze the characteristics of power ter-
minal fault detection in the power grid and propose a three-
tier fault detection model based on federated learning. �e
accuracy of fault identi�cation and the privacy protection of
terminal are both taken into consideration in this model,
then the model training, model updating, and fault detection
are performed at di�erent levels. Log compression and
transmission of parameters of the model are used to reduce
data transmission and protect the privacy, the LSTM model
is used to improve fault detection accuracy, and three dif-
ferent model update strategies are used to further improve
the accuracy of fault detection. �e experimental results
show that the log compression method can e�ectively reduce
the amount of data transmission. �e three model strategies
are suitable for di�erent application scenarios and terminals,
and the detection accuracy of our proposed fault detection
model is higher than that of the traditional keyword-based
models and the global models based on historical data. In the
future work, it is planned to integrate our proposed fault
detection model into various embedded operating systems
and deploy it on di�erent devices.
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