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�e use of recommendation algorithms to recommend music MOOC resources is a method that is gradually gaining ground in
people’s lives along with the development of the Internet.�e often used ALS collaborative �ltering algorithm has an irreplaceable
role in personalised recommender systems via the Spark MLlib platform. In the study, it is investigated how Spark can be used to
implement e�cient music system recommendations. �e collaborative �ltering algorithm based on the ALS model in the Spark
architecture is currently the most widely used technique in recommendation algorithms, allowing for the analysis and opti-
misation of computational techniques. �e project-based collaborative �ltering algorithm used in the article enables the rec-
ommendation of music by avoiding personal information about the user. More accurate user recommendations are achieved by
predicting the user’s preferences and focusing on the top ranked and highly preferred music recommendations. �e method
improves the performance of the recommendation algorithm, which is optimised by Spark shu�e on top of resource optimisation,
and its performance improved by 54.8% after optimisation compared to when there is no optimisation.

1. Introduction

With the development of the music market, the number of
digital music is growing exponentially and online music
service platforms are emerging rapidly, allowing users to
listen to music more conveniently through the Internet [1].
It has become increasingly di�cult for users to choose their
favourite songs from the vast amount of songs available,
wasting a lot of time [2]. In order to provide information
quickly and accurately, recommendation systems are one of
the commonly used methods. Based on the interest
characteristics of di�erent users, the recommendation
system mines the vast amount of information for resources
that users may be interested in or need and makes
recommendations.

�e music recommender system (MRS) has become a
popular �eld, which analyses users’ listening habits and song
characteristics to recommend songs that meet their needs
and preferences [3]. �rough music recommendation, not
only can we actively provide suitable music for users to
choose but also improve the quality of online music services.

Wang Bingxiang explored users’ music preferences based on
tags and user features to achieve personalised song rec-
ommendations [4]. Bogdanov et al. proposed a content-
based and collaborative �ltering weighted fusion music
recommendation algorithm to address the shortcomings of
traditional music recommendation algorithms, which can
recommend music of interest to users more quickly than
traditional recommendation algorithms [5]. Based on the
improved Apriori algorithm, Lijuan Yu achieved person-
alised music recommendation by deep learning of user
information [6]. Considering the di�culty of obtaining
users’ personal information, a study proposed a music
recommendation method based on music metadata and
collaborative �ltering, which can recommend various music
items without using users’ personal information.

Since the 20th century, with the gradual development of
the Internet, people’s lives have gradually moved from the
era of information scarcity to the era of high-speed infor-
mation [7]. In this era, both information consumers and
information producers have encountered great challenges.
As information consumers, it is a very di�cult task to �nd
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information of interest to them from a large amount of
information. (e most crucial thing is that it is not easy for
information producers to get their information noticed by a
large number of users [8]. Recommender systems are an
important tool for solving this paradox [9]. (e task of a
recommendation system is to connect users and informa-
tion, on the one hand, helping them to discover information
that is valuable to them, and on the other hand, enabling
information to be presented to users who are interested in it,
thus achieving a win-win situation for both information
consumers and information generators. Recommendation
algorithms can recommend information or objects (e.g.,
movies, TV shows, music, books, news, images, and web
pages) to users that are likely to be preferred. Among rec-
ommendation algorithms, collaborative filtering is one of the
most used algorithms today [10]. (e original application of
“collaborative filtering” was proposed in 1992 by Goldberg,
Nicols, Oki, and Terry [11], applied to the problem of in-
formation overload at the Paloma Alto Research Centre of
Xerox, the original recommendation system tapestry only
dealt with internal company mail, and the amount of data is
small.

(e model-based ALS (alternating least squares) col-
laborative filtering algorithm provides a good method for
dimensionality reduction, and Spark, the latest generation of
big data processing engine, is very suitable for handling
complex iterative calculations of ALS to gradually replace
the Hadoop big data computing platform [12, 13].(is study
optimizes the music MOOC resources and shuffle based on
the underlying operation mechanism of Spark and the
characteristics of the ALS algorithm, and by reasonably
allocating the music MOOC resources and merging the
files generated by the shuffle process, it can reduce the
memory storage pressure and reduce the disk I/O, which
reduces the recommendation time, and the result is re-
duced recommendation time and improved recommen-
dation efficiency.

2. Introduction to the Algorithm

2.1. ALS Recommendation Algorithm. (e key problem with
the implicit semantic model [14] based recommendation
algorithm used here is how to decompose the high-di-
mensional matrix obtained from the data, essentially the
matrix of relationships between numerous users and
products reduced in dimensionality. In this study, the
recommendation algorithm based on the ALS (alternating
least squares) model is optimised. (is matrix is often sparse
because not every user has rated every item [15]. (e core of
ALS is the decomposition of the user-product rating matrix,
which yields two low-rank matrices. During the decom-
position of the matrices, the missing ratings are added, and
based on these additional ratings, the user can be recom-
mended a product. (e missing ratings are added during the
matrix decomposition process [16].

For matrix Rm×n, ALS aims to find two low-rankmatrices
X(m × k) and matrix Y(k × n) to approximate Rm×n, i.e.,

Rm×n ≈ X
T
m×kYk×n, (1)

where Rm×n represents the user’s tasting matrix for the good,
X(m × k) represents the user’s preference matrix for the
implied features, and Y(k × n) represents the matrix of
implied features contained in the good, where
k≪ min(m, n); in order to make the product of matrices X
and Y approximate R as closely as possible, the minimization
squared error loss function is used.
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where rui denotes the rating of item i by the uth user, xu
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where xu and yi are coupled together and are not well solved,
so ALS is invoked by first fixing Y and taking the partial
derivative of the loss function L(X, Y) with respect to xu, i.e.,

zL(X, Y)

zxu

� −2Yk×nru + 2Yk×nY
T
k×nxu + 2λxu. (4)

So, there are

zL(X, Y)

zxu

� 0,

xu � Yk×nY
T
k×n + λE 

− 1
Yk×nru.

(5)

Fixing X in the same way, the symmetry gives

yi � Xm×kX
T
m×k + λE 

− 1
Xm×kri. (6)

(e above two steps are repeated, and the root mean
square error (RMSE) is introduced as a conditional pa-
rameter for the termination of the iteration.
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When the value of the root mean square error (RMSE)
varies very little and is less than a preset value, the result is
considered to have converged and the iteration is stopped or
the number of iterations can be preset and the iteration is
stopped when the preset number of iterations is reached
[17].

2.2. Project-Based Collaborative Filtering. Collaborative fil-
tering [7] (CF) is a very important algorithm in recom-
mender systems for content that cannot be described simply
and adequately in terms of metadata. Collaborative filtering
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techniques work by building a rating database (user-item
matrix) that contains the user’s preferences for items.
Recommendations are then made by matching users with
relevant interests and preferences by calculating similarities
between users based on their historical behavioural data.�e
recommendation method A recommendation is made by
creating a neighbourhood for the user and using the
neighbourhood to get items that user i has not rated but have
been rated by other users in the group. A prediction is
usually a value Rij, which represents user i’s prediction score
for item j. A recommendation is usually a list of the top N
items that the user likes best, as shown in Figure 1.

Collaborative �ltering techniques can be divided into
two categories [18, 19]: user-based CF and item-based CF.
User-based collaborative �ltering calculates the similarity
between users by comparing their ratings of the same item
and then calculates the predicted rating of an item by the
active user as a weighted average of the ratings of that item
by users similar to the active user, where the weight is the
similarity of those users to the target item. Collaborative
project-based �ltering uses similarity between projects
rather than similarity between users to calculate predictions.
By retrieving all items rated by active users from the user-
item matrix, an item similarity model is built to determine
how similar the retrieved items are to the target items, and
then, the k most similar items are selected and their cor-
responding similarity is determined [20]. Predictions are
made by a weighted average of active users’ ratings of similar
items k. Typically, two popular similarity measures are used
to calculate the similarity between users and items, namely,
relevance-based similarity (Pearson’s correlation coe�cient)
and cosine-based similarity.

2.3. Spark Shu�e Analysis and Optimization. Due to the
multiple iterations of the ALS algorithm, the performance of
the Spark job is mainly consumed in the shu�e phase, which
also contains a large number of disk I/O, serialization,
network transmission, and other operations, so the per-
formance of the ALS recommendation algorithm should be
improved by optimizing the shu�e process.�eMapReduce
process requires the same type of data from each node to be
brought together at a node for computation [21], and the
process of bringing these data distributed in di�erent nodes
together according to certain rules is called shu�e.

After running Shu�eMapTask in parallel, each Shuf-
©eMapTask creates 4 BK caches and the corresponding SBF
disk �les. After Shu�eMapTask [22] �nishes executing,
Shu�eMapTask does not recreate new output �les when
running in parallel, but reuses the output �les created by the
previous Shu�eMapTask, the output �le created by Shuf-
©eMapTask, and write the data to Shu�eMapTask’ output
�le [23]. When the ResultTask pulls data, it only pulls a small
amount of data, and each output �le may contain multiple
output �les given to itself by Shu�eMapTask, so that the
number of output �les is reduced by a factor of two. In a real
application, suppose there are 100 nodes, one executor per
node, and each executor is allocated 2 CPU cores with 1000
Shu�eMapTask and ResultTask, respectively, which will

generate 1 million output �les and put a lot of pressure on
the disk for I/O [24]. After optimizing ConsolidateFiles, each
executor executes 10 Shu�eMapTasks, so the number of
output �les per node is 2000, and the total number of output
�les for 100 nodes is reduced to 200,000, reducing the disk I/
O pressure by a factor of 5.

3. Methodology of This Paper

�emusic recommendation method in this study consists of
four stages, namely, extraction of music data, normalisation
of listening frequency data, similarity measure between
music based on the data, and user preference prediction and
music recommendation. �e music recommendation al-
gorithm uses an item-based collaborative �ltering algorithm.

3.1. Music MOOC Resource Extraction. �e music MOOC
resources used in this article are mainly information con-
tained in audio �les, which are used to identify and present
audio content, in order to extract music metadata tomeasure
the similarity between music. Music metadata includes
mainly identifying information about the music (track
number, song title, release date, and genre) and audio
analysis information (tempo and loudness).

3.2. Regularisation of the Frequency of Listening. Users listen
to each of their favourite songs at di�erent frequencies, so it
is necessary to normalise the frequency data of users lis-
tening to music by transforming the raw data in a certain
proportion so that it falls into a small speci�c interval [25]. In
this study, the normalised listening frequency data are
mapped to [1, 10] using a minimum-maximum normal-
isation method. �e normalised preference Pu,i of user u for
song i is calculated as follows.

Pu,i �
Lu,i −min Lu( )

max Lu( ) −min Lu( )
Smax − Smin( ) + Smin, (8)

where Lu,i is the frequency of listening to song i by user u,
min(Lu) is the minimum frequency of listening by user u,
max(Lu) is the maximum frequency of listening by user u,
Smax is the maximum value of the data mapping range, and
Smin is the minimum value of the data mapping range.

3.3. Using Data to Measure Similarity between Music.
First, the topM songs were selected in the order of the most
frequently listened songs, and the top N users who had
listened to more than 25 songs were also selected; second, an
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Figure 1: Collaborative �ltering algorithm.
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M×N song-user matrix was created, and the matrix was
populated with the minimum-maximum normalised user
music preference data; third, the target user was identified,
and the music that the user had listened to was distinguished
from the music that the user had not listened to, and the
preference values of the top N users for each song were
vectorized, and the cosine similarity was calculated using
equation (8). Finally, the extracted song metadata are also
vectorized and the cosine similarity is calculated, and the two
similarity values are added together as the final similarity
value [21].

3.4. Preference Prediction and Music Recommendation.
Using the predicted preference values, the top N songs can
be recommended to the user from the final generated list of
song recommendations. (e predicted preference values are
calculated as follows.

Pu,i �
all similar items,N si,N ∗Ru,N 

all similar items,N si,N


 

, (9)

where Pu,i is the predicted preference value for song i that
target user u has not listened to, si,N is the similarity to song
N among the top n songs judged to bemost similar to music i
among the songs that user u has listened to, and Ru,N is the
preference value of the songsN that user u has listened to. To
obtain the predicted preference value Pu,i, the top n songs
with the highest similarity are calculated. (e final number
of songs recommended in order of high predicted preference
is changed from 5 to 30, and a list of song recommendations
is generated.

4. Experimental Analysis

To verify the feasibility of the music recommendation sys-
tem, the public music dataset, Million Song Dataset [26] was
used for the experimental data. (is dataset contains the
features, metadata, music IDs, user IDs, and listening fre-
quencies of millions of songs and is provided by (e Echo
Nest [27]. (e music metadata are mainly taken from the
song summary data and genre attribute data in the Million
Song Dataset. (e summary data consist of basic infor-
mation such as song title, producer and release date, and
audio analysis information; the genre attribute data consist
of identifiers and music genres. In the experiments, only
music data for which both summary data and genre attribute
data were present were extracted, and the extracted music
listening frequency data were normalised using minimum-
maximum normalisation to map the data to [1, 10].

To make the recommendations, the top 100 songs were
selected in order of the most frequently listened songs and
10,272 data from the top 500 users who had listened to more
than 25 songs were filtered. In the experiment, 70% of the
data was used as the training dataset and 30% of the data was
used as the test dataset. (e training set was used to calculate
the similarity and expected preference between music and to
generate a list of recommended music for the target users.
(e generated expected preferences and recommended

music lists were compared with the test set to verify the
performance of the recommendation method. It was found
that the performance of the recommendation system was
optimal when the number of similar songs was specified as
10 when predicting music preferences. In the experiments,
the number of similar songs was fixed at 10 and the top N of
the music with the highest predicted preference was changed
from 5 to 30 (change step of 5) to compare the performance
of the recommendation method proposed in this paper with
that of the traditional collaborative item filtering recom-
mendation method.

(e experimental results are measured using precision,
recall and F1. Precision indicates the proportion of items
recommended by the recommendation system that are ac-
tually preferred by the user, while recall indicates the pro-
portion of items preferred by the user that are actually
recommended. (e precision and recall can be measured by
the following equation:

Precision �
TP

TP + FP
, (10)

Recall �
TP

TP + FN
. (11)

TP+FP indicates the total number of music items
recommended by the system, FN indicates the number of
items preferred by the user but not recommended by the
system, TP+ FN indicates the total number of music items
listened to by the user, and TP+ FP indicates the total
number of music listened to by the user.

(e formula for calculating the F1 value is as follows:

F1 �
2 × precision × recall
precision + recall

. (12)

(e results of the experiments are given in Table 1.
A visual comparison between the traditional method and

the method proposed in this study in three areas is shown in
Figure 2.

Table 1 provides the precision, recall, and F1 values
according to the variation of top N in the number of rec-
ommended songs. When the top N is close to 30, the dif-
ference in performance between the traditional
recommendation method and the proposed recommenda-
tion method is small, but when top N is 5–15, the proposed
method showed excellent performance.

(emost popular 50 music tracks were selected from the
dataset, and 10 of these 50 tracks were randomly selected and

Table 1: Precision, recall, and F1 value for top N variation of the
number of recommended songs.

Top N Traditional method (e proposed method
Precision Recall F1 Precision Recall F1

5 0.09 0.06 0.07 0.12 0.09 0.10
10 0.09 0.13 0.11 0.11 0.16 0.13
15 0.09 0.20 0.13 0.10 0.22 0.14
20 0.09 0.27 0.14 0.10 0.28 0.15
25 0.09 0.33 0.14 0.10 0.34 0.15
30 0.09 0.40 0.15 0.10 0.41 0.15
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Figure 2: Comparison between the (a) traditional method and the (b) proposed method.
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Figure 3: Comparison of four metrics on runtime. (a) RMSE. (b) Iteration. (c) Rank. (d) Assessment.
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scored by new users, and a feature vector of users was
generated based on their scores. �ree sets of experiments
were conducted to observe the relationship between the four
metrics (RMSE, root mean square error; iteration, number of
iterations; rank, matrix dimension; assessment, recom-
mendation baseline) and the running time, namely, no
optimisation, resource optimisation, and shu�e
optimisation.

Figure 3(a) shows the change in RMSE versus runtime
for the three sets of experiments. Figure 3(b) shows the
optimal number of iterations versus runtime for the three
sets of experiments. Figure 3(c) shows the optimal matrix
dimension versus runtime for the three sets of experiments,
and in Figure 3(d), assessment is the percentage above the
recommended benchmark evaluation line. Assessment re-
mains the same, the recommendation time is reduced from
21 minutes to 14 minutes by improving the resource allo-
cation, improving e�ciency by 33.3%, and the total e�-
ciency is reduced from 14 minutes to 9.5 minutes by

optimizing the �le merge on the map side of shu�e, im-
proving e�ciency by 54.8%.

�e ALS algorithm used in the previous study cannot
solve the problem of cold start of users. �e K-means al-
gorithm is a common algorithm in the clustering algorithm,
which needs to solve two problems, one is the selection of the
number of clusters K and the other is the initial clustering
centre. A diagram of the clustering results is shown in
Figure 4.

In this study, the clustering algorithm mainly deals with
the cold start problem, only responds to the recommen-
dation problem of new users, and thenmixes with ALS after
the algorithm model is trained to achieve the clustered ALS
recommendation algorithm. WCSS becomes the intra-
cluster variance sum, which is also the objective function of
K-means clustering. �e article selects the optimal pa-
rameters by �xing the maximum number of iterations and
the value of K. �e plotted WCSS trend is shown in
Figure 5.
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Figure 4: Schematic diagram of K-means clustering results for new users.
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Figure 5: E�ect of K value (a) and maximum number of iterations (b) on WCSS.
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After clustering all new users, experiments were next
conducted on the classi�ed population. �e experiments
were conducted 10 times, the training and test sets were

randomly assigned, and the average of the accuracy and
recall calculated for each experiment was �nally used as the
�nal evaluation result. �e speci�c evaluation results are
given in Table 2.

A comparison of accuracy and recall for di�erent
numbers of recalls is shown in Figure 6.

As can be seen from the data in the table, the accuracy
and recall rates have improved dramatically compared to the
initial algorithm, and the ability to mine music preferences
has improved exponentially; a more detailed accuracy
comparison is shown in Figure 7.

As shown in Figure 7, the performance of the optimised
music resource recommendation algorithm shows a sig-
ni�cant improvement in accuracy compared to the initial
algorithm.

5. Conclusion

In order to reduce the di�culty for users to select their
favourite music, this study proposes a method to recommend
music based on listening frequency data andmusic data based
on Spark architecture. �e proposed method has better
recommendation performance compared to traditional item-
based collaborative �ltering recommendations. �e proposed
shu�e process of merging the �le outputs on the map side is
an important but easily overlooked problem in real pro-
duction. In order to be applied in practical music recom-
mendation, it is necessary to be able to quickly calculate the
similarity betweenmusic and generate a recommendation list.
Properly sampled data, then, are expected to contribute to
improving the performance of practical music recommen-
dations. Since no optimal weight values were found between
the type attributes of the music data used in the article, it is
di�cult to make further improvements in the e�ciency of the
recommendations.�e next judgement is made regarding the
weight relationships of the individual attributes, and then, the
recommendations made will be more in line with the needs of
the user.
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