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­is paper proposes a modi�ed kernel weighted variance ratio statistic to sequentially detect change-point that shifts from a
stationary long memory process to a non-stationary long memory process. ­e limiting distribution of test statistic under the null
hypothesis and its consistency under the alternative hypothesis are proved. Simulations indicate that the new method has better
�nite sample performance than the available method in the literature. Finally, we illustrate the new method by a set of U.S.
in�ation rate data.

1. Introduction

It is broadly accepted that time series with longmemory, also
known as long range dependencies, appear in many con-
texts, for example, in �nancial economics, networks tra�c,
hydrology, remaining useful life of some machines [1–4],
and so on. A long memory time series Xt{ } can be written as
Xt ∼ I(d) with long memory parameter d≥ 0. For a prac-
titioner, it is of importance in terms of model building and
forecasting to know whether a given time series has a certain
kind of persistence, either stationary I(d) with 0≤ d< (1/2)
or non-stationary I(d) with d> (1/2), or whether the per-
sistent breaks from stationary to non-stationary persistence
or vice versa. ­e classical (I(0)/I(1)) framework has been
an issue of substantial empirical interest, especially con-
cerning in�ation rate series [5], foreign exchange rates [6],
government budget de�cits [7], and real output [8], and a
number of testing procedures have been suggested that aim
to distinguish such behavior. ­ese include, inter alia, ratio
tests [9], LBI tests [10], CUSUM of squares-based test [11],
moving ratio tests [12], and Wilcoxon rank test [13].

Although the classical (I(0)/I(1)) persistent change
problem has been well studied, long memory time series
cannot be covered by this framework. Sibbertsen and Kruse
[14] considered persistent change under the long memory
innovation case via the CUSUM of squares-based test of

Leybourne et al. [11] and found that this test undergoes
serious size distortions. In order to overcome this problem,
new critical values depending on the long memory pa-
rameter are necessary in the I(d) framework. Hassler and
Scheithauer [15] applied the ratio tests and the LBI tests to
detect change-point that shifts from short memory to long
memory process. Lavancier et al. [16] proposed a variance
ratio statistic to test long memory parameter change-point.
Iacone and Lazarová [5] studied the long memory parameter
change-point detection problem via a semiparametric
method.

While all above works are one shot tests, sequentially
detecting change-point in long memory time series has also
received some attention. Chen et al. [17] proposed a moving
ratio statistic (MRS) to monitor change in persistence in
long memory process. Chen et al. [6] proposed a two-stage
moving ratio statistic to monitor long memory parameter
change-point. Recently, Chen et al. [18] proposed the so-
called DF di§erence statistic to sequentially detect unit root
to long memory process change-point. It is well known that
the kernel weighted variance ratio statistic (KWVRS) pro-
posed by Steland [19] is a powerful method to sequentially
detect I(0) to I(1) persistent change-point. An interesting
question is whether the KWVRS still works for the more
general persistent change-point problem. In this paper, we
extend the KWVRS to sequentially test change-point that
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shifts from a stationary long memory process to a non-
stationary long memory process. However, the I(0) process
and the long memory process have different converging
rates, and this will lead the KWVRS divergence to infinity
under the long memory process null hypothesis. In order to
guarantee the convergence of KWVRS, we proposed a
modified KWVRS.We derive the limiting distribution of the
modified KWVRS under the stationary long memory pro-
cess null hypothesis and prove its consistency under the
alternative hypothesis. We also will evaluate the finite
sample performance of modified KWVRS and compare it
with MRS via simulation.

)e rest of the paper is organized as follows. Section 2
introduces the model, necessary assumptions, and the
proposed sequential test statistic. )e asymptotic distribu-
tion of test statistic and its consistency will be discussed in
Section 3. In Section 4, we evaluate the finite sample per-
formance of new proposed sequential test via simulation and
an empirical application example. We conclude the paper in
Section 5.

2. Model Assumption and Test Statistic

Let y1, y2, . . . be an observed time series that can be
decomposed as

yt � μ + εt, (1 − L)
dεt � et, t � 1, 2, . . . , (1)

where μt � E(yt) is a deterministic component. For sim-
plicity, we restrict the analysis to constant components,
namely, μt � μ. An extension to polynomials in time would
be possible. )e random component εt is an integrated
process, in which L is the lag operator, and et is the in-
novation process with mean zero and finite variance. )e
long memory parameter d is restricted to 0≤ d< (3/2). Note
that the process yt is a stationary long memory process if
0< d< (1/2), the process yt is a non-stationary longmemory
process if (1/2)< d< (3/2), and yt becomes a stationary
short memory process if d � 0. To simplify the notation, we
denote yt ∼ I(d1) with 0≤d1 < (1/2) if yt is a stationary
short/long memory process and yt ∼ I(d2) with
(1/2)<d2 < (3/2) if yt is a non-stationary long memory
process.

Suppose we have observed samples y1, . . . , y[Tτ],

τ ∈ (0, 1), and call them as training samples. Here [x] de-
notes the largest integer smaller than x. We start from the
([Tτ] + 1)th newly observed sample sequentially to detect
I(d1) to I(d2) change-point until the time horizon T. )at
is, we want to test the following null and alternative
hypothesis.

H0: yt ∼ I d1( 􏼁with 0≤ d1 <
1
2

􏼒 􏼓, t

H1: yt ∼ I d1( 􏼁, t � [Tτ] + 1, . . . , Tτ∗􏼂 􏼃,

yt ∼ I d2( 􏼁with
1
2d2

􏼠 􏼡<
3
2

􏼒 􏼓, t � Tτ∗􏼂 􏼃 + 1, . . . , T.

(2)

Here T denotes the prespecified largest monitoring
sample size, [Tτ]∗, τ < τ∗ < 1, is the unknown change-point.
In order to study this hypothesis, we need the following
assumption for the training samples.

Assumption 1. Assume yt ∼ I(d1), with 0≤ d1 < (1/2),

t � 1, . . . , [Tτ], τ ∈ (0, 1).
Let [Ts, s ∈ (0, 1)], denote the current observed full

sample size and 􏽢μ0 and 􏽢μ(s) denote the OLS estimators of μ
in model (1) based on the training samples y1, . . . , y[Tτ] and
all observed samples y1, . . . , y[Ts], respectively. We define
the residuals 􏽢εj � yj − 􏽢μ(s), j � 1, . . . , y[Ts], and
􏽥εj � yj − 􏽢μ0, j � 1, . . . , y[Tτ]. We use the following modified
kernel weighted variance ratio statistic to test the null hy-
pothesis H0 against the alternative hypothesis H1.

UT(s) �
[Ts]

− 1− 2d1 􏽐
[Ts]
t�1 􏽐

t
i�1 􏽢εi( 􏼁

2
K(t − [Ts]/h)

􏽐
[Tτ]
j�1 􏽥ε2j

, (3)

where K(·) is a Lipschitz continuous density function with
mean 0 and finite variance and h � hT > 0 is a sequence of
bandwidth parameter that satisfies

T

hT

⟶ ζ ∈ [1,∞), asT⟶∞. (4)

A large value of UT(s) indicates that there occurs a
stationary long memory process to a non-stationary long
memory process change-point. At the α nominal level, the
stopping time is defined as

ST(n) � min [Tτ]< n≤T: UT

n

T
􏼒 􏼓> c􏼚 􏼛, (5)

where c denotes the critical value that satisfies

lim
T⟶∞

PH0
ST(n)<T( 􏼁 � α. (6)

3. Asymptotic Properties

In this section, we derive the asymptotic properties of above
modified KWVRSUT(s)when the time series yt is generated
by model (1).

Theorem 1. Suppose Assumption 1 holds; then, under the
null hypothesis H0, if T⟶∞, we have

UT(s)⇒τ− 1
s

− 1− 2d1 􏽚
s

0
Wd1

(u) − us
− 1

Wd1
(s)􏼐 􏼑

2
K(ζ(u − s))du,

(7)

where Wd1
(u) denotes the type I fractional Brownian motion

with long memory parameter d1.

Proof. Since εt ∼ I(d1), 0≤d1 < 0.5, according to [20], we
have that if T⟶∞,

T
− (1/2)− d1 􏽘

[Tr]

t�1
εt⇒ωWd1

(r), 0< r≤ 1, (8)
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where ω2 denotes the long-run variance of long memory
process εt. )e notation⇒ denotes the weak convergence.
Note that W0(r) � W(r) denotes the standard Wiener
process.

Let t � [Tu], and since 􏽢εi � εi − [Ts]− 1 􏽐
[Ts]
j�1 εj, then

T
− (1/2)− d1 􏽘

t

i�1
εi � T

− (1/2)− d1 􏽘

[Tu]

i�1
εi −

[Tu]T
− (1/2)− d1

[Ts]
􏽘

[Ts]

j�1
εi

⇒ω Wd1
(u) − us

− 1
Wd1

(s)􏼐 􏼑.

(9)

Recall that K(·) is Lipschitz continuous and (T/h)⟶ ζ
as T⟶∞; therefore,

K
t − [Ts]

h
􏼠 􏼡 � K

T

h

t

T
−

[Ts]

T
􏼠 􏼡􏼠 􏼡⟶ K(ζ(u − s)). (10)

Hence,

[Ts]
− 2− 2d1 􏽘

[Ts]

t�1
􏽘

t

i�1
􏽢εi

⎛⎝ ⎞⎠

2

K
t − [Ts]

h
􏼠 􏼡

�
T
2+2d1

[Ts]
2+2d1

T
− 1

􏽘

[Ts]

t�1
T

− 1/2− d1 􏽘

t

i�1
􏽢εi

⎛⎝ ⎞⎠

2

K
t − [Ts]

h
􏼠 􏼡

⇒s
− 2− 2d1ω2

􏽚
s

0
Wd1

(u) − us
− 1

Wd1
(s)􏼐 􏼑

2
K(ζ(u − s))du.

(11)

On the other hand, since εt is a stationary process, er-
godic theory of stationary process gives that

[Ts]
− 1

􏽘

[Tτ]

j�1
􏽥ε2j � [Ts]

− 1
􏽘

[Tτ]

j�1
ε2j −

2
[Tτ]

εj 􏽘

[Tτ]

i�1
εi +

1
[Tτ]

2 􏽘

[Tτ]

i�1
εi

⎛⎝ ⎞⎠

2

⎛⎝ ⎞⎠

�
[Tτ]

[Ts]
[Tτ]

− 1
􏽘

[Tτ]

j�1
ε2j −

1
[Tτ]

􏽘

[Tτ]

i�1
εi

⎛⎝ ⎞⎠

2

⎛⎝ ⎞⎠

⟶
p

τs
− 1ω2

.

(12)

Combining (4)–(6) and using the continuous mapping
theorem, we obtain the null distribution of statistic
UT(s). □

Theorem 2. Suppose Assumption 1 holds; then, under the
alternative hypothesis H1, we have

UT(s) � Op T
2 d2− d1( )􏼒 􏼓, s ∈ τ∗, 1( 􏼃. (13)

Proof. We continue using the notations in the proof of
)eorem 1. If [Ts]> [Tτ∗], then as T⟶∞, we have

􏽘

[Ts]

t�1
􏽘

t

i�1
􏽢εi

⎛⎝ ⎞⎠

2

K
t − [Ts]

h
􏼠 􏼡

� 􏽘

Tτ∗[ ]

t�1
􏽘

t

i�1
εi −

[Tu]

[Ts]
􏽘

Tτ∗[ ]

i�1
εi −

[Tu]

[Ts]
􏽘

[Ts]

i� Tτ∗[ ]+1
εi

⎛⎝ ⎞⎠

2

K
t − [Ts]

h
􏼠 􏼡

+ 􏽘

[Ts]

t� Tτ∗[ ]+1
􏽘

Tτ∗[ ]

i�1
εi + 􏽘

[Tu]

i� Tτ∗[ ]+1
εi −

[Tu]

[Ts]
􏽘

[Ts]

i�1
εi

⎛⎝ ⎞⎠

2

K
t − [Ts]

h
􏼠 􏼡

:� I1 + I2.

(14)

According to the proof of (10) and (11) and d2 >d1, we
have

[Ts]
− 2− 2d2I1

� [Ts]
− 2− 2d2 􏽘

Tτ∗[ ]

t�1
􏽘

t

i�1
εi −

[Tu]

[Ts]
􏽘

Tτ∗[ ]

i�1
εi −

[Tu]

[Ts]
􏽘

[Ts]

i� Tτ∗[ ]+1
εi

⎛⎝ ⎞⎠

2

K
t − [Ts]

h
􏼠 􏼡

� [Ts]
− 2− 2d2

[Tu]
2

Tτ∗􏼂 􏼃

[Ts]
2 􏽘

[Ts]

i� Tτ∗[ ]+1
εi

⎛⎝ ⎞⎠

2

K
t − [Ts]

h
􏼠 􏼡 + op(1)

⇒u
2τ∗s− 4ω2

􏽚
s

τ∗
Wd2− 1(r)dr􏼒 􏼓

2
K(ζ(u − s)),

[Ts]
− 2− 2d2I2

� [Ts]
− 2− 2d2 􏽘

[Ts]

t� Tτ∗[ ]+1
􏽘

Tτ∗[ ]

i�1
εi + 􏽘

[Tu]

i� Tτ∗[ ]+1
εi −

[Tu]

[Ts]
􏽘

[Ts]

i�1
εi

⎛⎝ ⎞⎠

2

K
t − [Ts]

h
􏼠 􏼡

� [Ts]
− 2− 2d2 􏽘

[Ts]

t� Tτ∗[ ]+1
􏽘

[Tu]

i� Tτ∗[ ]+1
εi −

[Tu]

[Ts]
􏽘

[Ts]

i� Tτ∗[ ]+1
εi

⎛⎝ ⎞⎠

2

K
t − [Ts]

h
􏼠 􏼡 + op(1)

⇒s
− 2− 2d2ω2

􏽚
s

τ ∗
􏽚

u

τ∗
Wd2− 1(r)dr − us

− 1
􏽚

s

τ∗
Wd2− 1(r)dr􏼒 􏼓

2

K(ζ(u − s))du.

(15)

)is indicates that the numerator of statistic UT(s) is
Op(T1+2(d2− d1)). On the other hand, (6) gives that the de-
nominator of statistic UT(s) is Op(T). )us,

UT(s) � Op T
2 d2− d1( )􏼒 􏼓. (16)

So far, we assume that the value of long memory pa-
rameter d1 is known. Because d1 is unknown in practice, we
estimate it via the local Whittle estimation based on the
training samples y1, . . . , y[Tτ]. Obviously, the above
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asymptotic properties still hold if we replace d1 by its local
whittle estimation for it is a consistent estimator. □

4. Simulation and Empirical Application

4.1. Simulation. In this section, we investigate the finite
sample performance of our proposed modified KWVRS
UT(s) and compare it with theMRS ΓT(s) of Chen et al. [17].
We use the following data-generating process to generate the
simulation data.

yt �
1 + ε1t, t � 1, . . . , Tτ∗􏼂 􏼃,

1 + ε1 Tτ∗[ ] + ε2t, t � Tτ∗􏼂 􏼃 + 1, . . . , T,

⎧⎨

⎩ (17)

where ε1t follows a FARIMA(0, d1, 0) model with d1 varying
among 0, 0.1, 0.2, 0.4{ } and ε2t follows a FARIMA(0, d2, 0)

model with d2 varying among 0.6, 0.8, 1, 1.2{ }. We use the R
package “fracdiff” to generate the FARIMA process. We
assume that the change-point location τ∗ � 1 under the null
hypothesis and τ∗ varies among 0.3, 0.5{ } under the alter-
native hypothesis. We set the largest monitoring sample size
T varying among 200, 500{ } and the training sample size
[Tτ] � [0.25T]. In order to compute the critical values of
monitoring statistics, we use the sieve bootstrap method
proposed by Chen et al. [6]. )e sieve bootstrap frequency
was set to be B � 300, and all simulations are obtained by
1000 replications at α � 5% nominal level. A lot of exper-
imental tests indicate that h � 0.7∗ [Tτ] gives more

satisfactory test results compared to other choice, so we set
the bandwidth h � 0.7∗ [Tτ] throughout this section.

Table 1 reports the empirical sizes of two monitoring
statistics. We can see that both statistics have some size
distortions when the largest monitoring sample size T � 200,
and all these size distortions become light whenT � 500.)e
influence of long memory parameter d1 on the modified
KWVRS UT(s) is greater than the MRS ΓT(s). It is mainly
because the statistic UT(s) contains this parameter and
estimating d1 based on the training sample is not very stable.
A more robust way is estimating d1 based on all available
samples but not the training samples. However, for each
newly observed sample, this method requires not only a
reestimation of the long memory parameter d1 but also a
recalculation of the critical value. )is, obviously, is com-
putationally expensive. So, we still recommend using the
previous approach. In addition, we also tried to calculate the
critical value of statistic UT(s) via the bootstrap method
proposed by Chen et al. [17]. We found that although the
bootstrap method of Chen et al. [17] could control the
empirical size better, it would lose more empirical power.
)is is the reason why we recommend using the sieve
bootstrap method proposed by Chen et al. [6].

Tables 2 and 3 report the empirical powers and ARLs of
two statistics, respectively. )ree conclusions can be drawn
from these two tables. First, the modified KWVRS UT(s) has
higher empirical power and shorter ARL than the MRS ΓT(s)

in most cases. )is indicates that the newly proposed and

Table 2: Empirical powers of modified KWVRS UT(s) and MRS ΓT(s) at 5% nominal level.

UT(s) ΓT(s)

T k∗ d1\d2 0.6 0.8 1 1.2 0.6 0.8 1 1.2

200

0.3

0 0.982 0.996 1 1 0.892 0.981 1 1
0.1 0.952 0.990 1 1 0.766 0.945 0.995 1
0.2 0.782 0.895 0.996 0.999 0.597 0.864 0.971 0.998
0.4 0.559 0.754 0.895 0.997 0.251 0.554 0.850 0.967

0.5

0 0.949 0.991 0.998 1 0.846 0.942 0.996 1
0.1 0.849 0.947 0.993 0.999 0.713 0.917 0.983 1
0.2 0.717 0.834 0.980 0.998 0.563 0.815 0.944 0.994
0.4 0.470 0.684 0.904 0.987 0.228 0.483 0.788 0.943

500

0.3

0 1 1 1 1 0.992 1 1 1
0.1 1 1 1 1 0.940 1 1 1
0.2 0.985 1 1 1 0.805 0.986 1 1
0.4 0.762 0.977 1 1 0.358 0.729 0.987 1

0.5

0 0.997 1 1 1 0.981 0.998 1 1
0.1 0.993 1 1 1 0.941 1 1 1
0.2 0.968 0.998 1 1 0.742 0.857 0.997 1
0.4 0.640 0.913 0.995 1 0.362 0.686 0.956 0.989

Table 1: Empirical sizes of modified KWVRS UT(s) and MRS ΓT(s) at 5% nominal level.

UT(s) ΓT(s)

T\d1 0 0.1 0.2 0.4 0 0.1 0.2 0.4

200 0.067 0.076 0.071 0.065 0.065 0.070 0.057 0.058
500 0.054 0.057 0.055 0.053 0.046 0.048 0.043 0.051
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modified KWVRS has a significant advantage when it comes
to sequential test stationary to non-stationary long memory
process change-point. Second, the empirical power increases
as T or change size increases. )is verifies the consistency of
modified KWVRS UT(s). )ird, the later the change-point
occurs, the lower the empirical power is. )is is a general
conclusion in most sequential change-point test problems.

4.2. Empirical Application. In this section, we illustrate the
modified KWVRS UT(s) and MRS ΓT(s) using a set of U.S.
inflation rate monthly data which were observed from
January 1959 to December 1975. )e data were downloaded
from the U.S. Federal Reserve Bank official website. Figure 1
shows the raw dataset of a total of 204 observations. Under
the same parametric assumptions as in the simulation
section, we find that themodified KWVRS UT(s) stops at the
80th observation, and the MRS ΓT(s) stops at the 83th
observation. )is indicates that there occurs a persistent

change-point that shifts from a stationary long memory
process to a non-stationary long memory process before the
80th observation. Chen et al. [12] also studied this dataset
and found that there exists an I(0) to I(1) persistent change-
point. In fact, through the estimator proposed in [14], we can
estimate this change-point at the 65th observation (see the
vertical in line in Figure 1). )e estimated long memory
parameters before and after this change-point are 0.49 and
1.41, respectively. Obviously, compared to this change-point
as an I(0) to I(1) persistent change-point, this is more like a
stationary long memory process to a non-stationary long
memory process persistent change-point.

5. Conclusion

In this paper, we have proposed a modified KWVRS to
sequentially detect persistent change-point that shifts from a
stationary long memory process to a non-stationary long
memory process. We derived its limiting distribution under

1960 1965 1970 1975

12

10

8

6

4

2

Figure 1: U.S. inflation rate monthly data from January 1959 to December 1975.

Table 3: ARLs of modified KWVRS UT(s) and MRS ΓT(s) at 5% nominal level.

UT(s) ΓT(s)

T k∗ d1\d2 0.6 0.8 1 1.2 0.6 0.8 1 1.2

200

0.3

0 19.3 15.2 12.2 9.52 31.1 25.2 18.6 13.5
0.1 25.22 18.8 14.6 11.1 36.6 32.0 23.3 16.6
0.2 28.1 24.2 18.6 13.5 41.8 39.0 28.9 20.4
0.4 40.2 38.4 28.3 19.3 46.2 39.8 33.2 31.4

0.5

0 19.5 17.8 14.0 10.1 26.2 23.0 17.9 12.9
0.1 20.4 19.0 14.9 10.6 29.3 28.2 22.3 16.3
0.2 21.1 20.5 16.9 11.8 32.5 30.3 26.7 19.4
0.4 28.1 24.8 23.0 16.3 39.7 37.2 35.8 28.0

500

0.3

0 26.7 20.4 16.1 12.0 51.6 33.9 24.3 17.7
0.1 37.2 27.2 20.3 14.7 75.5 50.9 34.9 22.8
0.2 55.2 36.2 25.5 18.4 93.3 70.0 42.4 28.1
0.4 96.1 72.8 44.7 28.9 116 96.8 85.4 51.7

0.5

0 26.2 18.8 14.2 10.6 47.0 32.4 23.2 16.3
0.1 38.7 26.7 18.5 13.4 67.7 48.3 30.6 19.8
0.2 55.3 37.8 25.5 17.0 74.8 63.0 41.7 26.5
0.4 74.3 72.7 49.8 30.2 90.1 86.6 68.4 47.8
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the null hypothesis and proved its consistency under the
alternative hypothesis. Simulations indicate that the new
proposed sequential test procedure has satisfactory finite
sample performances.
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