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(e investigation considers numerical analysis and computational solution of unsteady, pressure-driven channel flow of a
generalized viscoelastic-fluid-based nanofluid (GVFBN) subject to exothermic reactions. Temperature-dependent fluid thermal
conductivity is considered, and the flow is subject to convective cooling at the walls. (e non-isothermal generalized Giesekus
constitutive model is employed for the GVFBN. A Carreau model is used to describe the shear-rate dependence of fluid viscosity,
and exothermic reactions are assumed to follow Arrhenius kinetics. An efficient semi-implicit numerical technique based on the
finite-difference method is applied to obtain computational solutions to the model equations. (e computational methodologies
are built into the MATLAB software. (e effects of various fluid and flow parameters, specifically the nanoparticle volume
fraction, are explored. (e results demonstrate that those parameters which only directly couple to the energy equation (but are
otherwise indirectly coupled to momentum and stress-constitutive equations, say via the temperature-dependent viscosities and
relaxation times) would only show prominent effects on fluid temperature but not on the fluid velocity or the polymer stresses.(e
results also demonstrate, as in the literature on exothermic flows, that the values of exothermic-reaction parameter must be
carefully controlled as large values would lead to thermal runway phenomena. (e illustrated results are consistent with the
existing literature and additionally add novel new contributions to non-isothermal and pressure-driven channel flow of GVFBN
under convective cooling conditions.

1. Introduction

A mixture of metallic (silver, copper, etc.) nanometre-sized
particles suspended in a conventional base fluid (water, oil,
etc.) is referred to as a nanofluid. For a comprehensive
description of nanofluids and their utility, say, in the heat-
transfer-rate (HTR) characteristics, the reader is referred to,
say, [1].

Optimal material conditions for fluid viscosity and
thermal conductivity may be enhanced by simultaneously
using several types of nanoparticles (say three different
types) of various shapes, sizes, density, etc. in the same
nanofluid mixture (see, for example, [2, 3]). (e present
research focuses on the effects of shear-dependent viscosity

and fluid elasticity and hence will use homogeneous
nanoparticles of one kind for illustrative purposes.

Similar investigations, as in [1], on thermodynamic
properties and effects of various types of nanofluids have
been conducted, say in [4–24]. (e importance of such
investigations cannot be overstated, especially considering
the novel applications of nanofluids to thermal conductivity
and HTR improvement, microfluidics, fuel-cell develop-
ment, chemotherapy, thermal storage, electronic cooling
and heating, etc.

A vast majority of the research on nanofluid flow has
been conducted with Newtonian base fluids. (e recent
developments in non-isothermal constitutive models for
viscoelastic fluid flow and their related applications (see, for
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example, [1, 25–30]) have made it possible for the extension
of the Newtonian-based fluid models to more general non-
Newtonian (and specifically viscoelastic)-fluid-based
nanofluids. (e current work represents such an extension
to viscoelastic nanofluidics, specifically using GVFBN.

(e extensions to more general non-Newtonian-fluid-
based nanofluids are not simply a theoretical and mathe-
matical nicety but are rather driven by the vast and con-
temporary relevance to industrial, technological, and
medical applications of non-Newtonian fluids in general and
viscoelastic fluids in particular (see [31]). (e work in [1]
focused on novel development and analysis of GVFBN in
shear-driven isobaric flows. (e current work extends this
analysis to non-isobaric (pressure-driven) channel flow of
GVFBN. Additionally, instead of the isothermal wall
boundary conditions employed in [1], the current work
explores symmetrical convective cooling on the channel
walls.

(e paper is organized in the following sequence. Section
2 summarizes the model and governing equations. Section 3
gives the numerical algorithms and computational meth-
odologies for the model problem as well as preliminary test
results on temporal and spatial convergence.(e exploration
and discussion of the effects of the various embedded pa-
rameters are detailed in Section 4. Concluding remarks are
given in Section 5.

2. Problem Formulation

(e schematic of the model problem is displayed in Figure 1.
An incompressible GVFBN is subjected to unsteady,

laminar, and pressure-driven flow in a channel formed by
two infinitely long parallel walls. (e GVFBN is assumed to
have both variable shear viscosity and variable thermal
conductivity and is susceptible to exothermic reactions
following Arrhenius theory. (e x∗-axis is considered
parallel to the flow direction and the y∗-axis is perpendicular
to it.

Following the model developments in [1], the appro-
priate dimensionless parameters of current interest are the
Reynolds number (Re), ambient-temperature parameter
(θa), Brinkman number (Br), Deborah number (De), ac-
tivation-energy parameter (α), Prandtl number (Pr), Peclet
number (Pe � Re · Pr), Frank-Kamenetskii parameter (δ1),
Biot number (Bi), and the ratio of the polymer-to-the-total
viscosity (β):
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(e nanofluid quantities (nf) are obtained from linear
combinations of the volume fractions (φ) of the base fluid
(f) and of the solid nanoparticles (s), e.g.,

ρnf � φρs +(1 − φ)ρf,
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(2)

(e appropriate dimensionless governing equations are
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Figure 1: Geometry of the model problem.
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(e dimensionless dissipation term for the single-mode
non-isothermal Giesekus model is
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where the polymeric-stress tensor (τ) and conformation
tensor (b) are related by

τ � 􏽢G(b − I). (6)

(e dimensionless temperature-dependent viscosities,
thermal conductivity, and relaxation times are
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with
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In equations (7) and (8), m≥ 1 is the shear-rate-viscosity
parameter, 0≤ n≤ 1 is the shear-thinning parameter, and ℵ
is the empirical shape factor (where ℵ � 3 for nanoparticles

of spherical shape) [1]. (e shear-rate viscosity parameter,
m, gives the ratio of zero shear rate to the infinite shear-rate
viscosities. (e value m � 1 indicates that the viscosity is
independent of shear rates. (is would be the case, say, for
Newtonian fluids/nanofluids and for ordinary viscoelastic
fluids/nanofluids. (e generalized Newtonian-fluid-based
nanofluid (GNFBN) model is obtained by taking
β � 0 (andm≠ 1) and De � 0. (e choice De � β � 0 and
m � 1 represents a Newtonian nanofluid (refer to [1, 25]).

2.1. Initial and Boundary Conditions. Given the symmetric
flow geometry for the pressure-driven flow, it is sufficient to
consider only the upper half channel y ∈ [0, 1] instead of the
full channel y ∈ [− 1, 1]. (e following initial and boundary
conditions therefore apply:

u(0, y) � 0, T(0, y) � 0, τ(0, y) � 0, for 0≤y≤ 1,

z

zy
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z
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z
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(9)

3. Numerical Solution

(e semi-implicit finite-difference numerical and compu-
tational methodologies are based on the ideas described in
[1, 25]. (e velocity equation is discretized as
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where G � (zp/zx) � 1 denotes the constant pressure gra-
dient in the flow direction. (e velocity updates in time via
the scheme
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(e resultant system of algebraic equations represents a
diagonally dominant tridiagonal linear system. (e semi-
implicit finite-difference method for temperature equation
follows similarly:
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Specifically, the temperature updates in time via the
scheme
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(e equations for the extra stress tensor, τ (3), are solved
analogously:
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4. Results

Unless otherwise indicated, the following list of values, for
the embedded variables and material parameters, will be
assumed:

α � 0.1, Br � 1, Re � 1, Pr � 1, De � 2, c � 0.5, β � 0.2, Δy � 0.01,

Δt � 0.1, t � 50, 􏽢G � 10− 3
, m � 1.2, δ1 � 0.1, λ � 0.01, n � 0.5, ζ � 1,

φ � 0.04, ε � 0, A2 � 0.2, Bi � 1, θa � 0.1, ℵ � 3.

(19)

(e above will constitute the default variable and pa-
rameter values in this study. In the subsequent graphical
results, it will be assumed and understood that, where
variable and parameter values are not explicitly stated, they
will be given by the default values.

4.1. Convergence in Time and Space. It is important to val-
idate the utility of a numerical and computational algorithm
before deploying it to solving physical problems. Figures 2–5
show, as required, that the computational algorithms are
independent of both time step and mesh size—specifically,
the algorithms give the same results for a large range of time
steps and mesh sizes.

4.2. Transient Development of Solutions to Steady State.
Given the focus on unsteady flow, it is equally important (in
addition to the demonstration of time step and mesh size
convergence) to demonstrate that the algorithms are capable
of capturing the transient (time) development of steady so-
lutions, including the capabilities to also illustrate the final
steady-state solutions. Figures 6 and 7 show, as required, the
development of solutions in time until steady states are
reached.

4.3. Parameter Dependence of Solutions. Figure 8 gives an
illustration of the variation of flow quantities with φ, the
volume fraction of the embedded nanoparticles. (e results
show an increase in the flow quantities with increasing φ.
(e increase in fluid temperature with increasing φ is ob-
vious, given that the increased volume of heat conducting
nanoparticles would directly also increase fluid thermal
conductivity (see Figure 9).

(e increase in fluid temperature naturally also decreases
the fluid viscosity and hence also diminishes the viscous drag
effects, hence the increase in fluid velocity with increasing φ
as observed in Figure 8.

Viscous effects are inversely proportional to the Rey-
nolds number, Re. Alternatively, high speed flows are
synonymous with high Reynolds numbers. Figure 10
therefore demonstrates, as expected, an increase in veloc-
ity with increasing Re. Figure 11 shows the dependence of
flow quantities with Brinkman number, Br. Since Br is di-
rectly connected to the strength of the heat sources, the fluid
temperature (and hence also the fluid velocity) is expected to

increase with increasing Br as illustrated in Figure 11. (e
polymeric-stress component τ11, on the other hand, de-
creases with increasing Br.

Given their opposing influence to heat sources in the
energy equation, the fluid temperature behaves oppositely
with increasing Prandtl number Pr (see Figure 12), as it
would with Br.

(e Prandtl number indirectly enters the momentum
and polymeric-stress equations via the temperature de-
pendence of the viscosity. For these reasons, small variations
in Pr have no discernible influence on the fluid velocity and
polymeric-stress components (Figure 12). (e activation-
energy parameter, α, has similar effects to those of Br (see
Figure 13). (e increase of fluid temperature with increasing
α as illustrated in Figure 13 can be directly linked to the
increase of nanofluid thermal conductivity, κnf, with in-
creasing α (see Figure 14).

Figure 15 illustrates the required increase in fluid ve-
locity with increased pressure driving force.

(e behaviour of fluid temperature with variations in the
exothermic-reaction parameter δ1 is similar to that with
respect to Br given the linkages of these parameters to the
heat sources (see Figure 16). (e major difference is that the
fluid temperature increases linearly with increasing Br,
whereas the fluid temperature increases exponentially with
increasing δ1 (see [25]). (e possibility of thermal runway
phenomena therefore looms large with regard to increases in
δ1 due to exponential temperature growth. Indeed, for large
values of the exothermic-reaction parameter δ1, the steady-
state solutions would not be attainable—the solutions would
blow up in finite time (see Figure 17).

(e respective behaviour of flow quantities with varia-
tions in the viscoelastic parameters, c and De, is illustrated in
Figures 18 and 19, respectively.

As expected, the polymeric (viscoelastic) stresses in-
crease with increasing De. It is also noticed, as expected, that
the fluid temperature increases with increasing c given the
dominance of entropic heat dissipation (over energetic heat
storage) for larger values of c.

(e heat exchange between the ambient environment,
the channels walls, and the nanofluid is related to the Biot
number Bi (see (10)). Enhanced convective cooling at the
channel walls is directly related to higher Bi.(e cooled walls
in turn lead to lower nanofluid temperatures in the bulk
flow. Figure 20 therefore illustrates, as expected, the decrease
in (bulk) nanofluid temperature with increasing Bi.
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(e nanofluid viscosity (at constant shear rates) increases
with increasing shear-thinning parameter, m. An increase in
m therefore increases resistance to flow (due to the higher

viscosity) and hence leads to a decrease in fluid velocity as
shown in Figure 21. A decrease in both the fluid temperature
and the polymeric stresses with increasing m is also noticed.
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Figure 10: Response of flow quantities to variations in Re.
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Figure 11: Response of flow quantities to variations in Br.
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0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

u
0.17 0.18 0.19 0.2 0.21 0.22
0

0.2

0.4

0.6

0.8

1

T

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

−0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05
0

0.2

0.4

0.6

0.8

1

τ12τ11

y

yy

y

α=0.5
α=1.0

α=1.5
α=2.0

α=0.5
α=1.0

α=1.5
α=2.0

α=0.5
α=1.0

α=1.5
α=2.0

α=0.5
α=1.0

α=1.5
α=2.0

Figure 13: Response of flow quantities to variations in α, where δ1 � 0.001.

Mathematical Problems in Engineering 11



1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Knf

y

α=0.5
α=1.0

α=1.5
α=2.0

Figure 14: Response of nanofluid thermal conductivity, κnf, to variations in α.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

u

G=0.7
G=1.0

G=1.3
G=1.6

Figure 15: Effects of variations in pressure driving force on fluid velocity.

12 Mathematical Problems in Engineering



0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

u
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

T

−0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

τ11 τ12

−0.4 −0.3 −0.2 −0.1 0 0.1
0

0.2

0.4

0.6

0.8

1

y

y

y

y

δ1=0.0
δ1=0.1

δ1=0.2
δ1=0.23

δ1=0.0
δ1=0.1

δ1=0.2
δ1=0.23

δ1=0.0
δ1=0.1

δ1=0.2
δ1=0.23

δ1=0.0
δ1=0.1

δ1=0.2
δ1=0.23

Figure 16: Response of flow quantities to variations in δ1.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

δ1

T m
ax

Figure 17: Finite time blow-up of fluid temperature for large value of δ1.

Mathematical Problems in Engineering 13



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

u
0.1 0.15 0.2 0.25

0

0.2

0.4

0.6

0.8

1

T

−0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

τ11 τ12

−0.4 −0.3 −0.2 −0.1 0 0.1
0

0.2

0.4

0.6

0.8

1

yy

yy

γ=0.0
γ=0.4

γ=0.8
γ=1.0

γ=0.0
γ=0.4

γ=0.8
γ=1.0

γ=0.0
γ=0.4

γ=0.8
γ=1.0

γ=0.0
γ=0.4

γ=0.8
γ=1.0

Figure 18: Response of flow quantities to variations in c.
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Figure 19: Response of flow quantities to variations in De.
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Figure 20: Response of flow quantities to variations in Bi.
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Figure 21: Response of flow quantities to variations in m.
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5. Concluding Remarks

(e investigation employed efficient and convergent semi-
implicit numerical and computational algorithms based on
the finite-difference methods to analyze the non-isothermal,
pressure-driven, channel flow of a generalized viscoelastic-
fluid-based nanofluid (GVFBN) subject to convective cooling
at the channel boundaries. (e assumed mathematical model
is based on a single-phase (constant concentration) nanofluid
mixture in which the nanoparticles are homogeneously mixed
with the generalized viscoelastic-fluid base. (e research
results are explored in qualitative (graphical) detail illustrating
the effects of the variations of the fundamental embedded
parameters on the flow quantities, specifically, the fluid ve-
locity, fluid temperature, and polymer stresses. (e results
demonstrate that those parameters which only directly couple
to the energy equation (but are otherwise indirectly coupled
to the momentum and stress-constitutive equations, say via
the viscosities and relaxation times) would only show
prominent effects on nanofluid temperature but not on the
fluid velocity or the polymer stresses. (e results also dem-
onstrate, as in the literature on exothermic flows, that the
values of exothermic-reaction parameter must be carefully
controlled as large values would lead to thermal runway
phenomena. (e present results are consistent with the
existing literature and additionally add novel new contribu-
tions to non-isothermal and pressure-driven channel flow of
GVFBN under convective cooling conditions.
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