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Kernel adaptive filtering (KAF) algorithms derived from the second moment of error criterion perform very well in nonlinear
system identification under assumption of the Gaussian observation noise; however, they inevitably suffer from severe per-
formance degradation in the presence of non-Gaussian impulsive noise and interference. To resolve this dilemma, we propose a
novel robust kernel least logarithmic absolute difference (KLLAD) algorithm based on logarithmic error cost function in
reproducing kernel Hilbert spaces, taking into account of the non-Gaussian impulsive noise. ,e KLLAD algorithm shows
considerable improvement over the existing KAF algorithms without restraining impulsive interference in terms of robustness
and convergence speed. Moreover, the convergence condition of KLLAD algorithm with Gaussian kernel and fixed dictionary is
presented in the mean sense. ,e superior performance of KLLAD algorithm is confirmed by the simulation results.

1. Introduction

Kernel adaptive filters as a tremendous breakthrough of the
conventional linear adaptive filters have been widely used in
many practical nonlinear applications including time series
prediction [1], acoustic echo cancellation [2], channel
equalization [3], abnormal event detection [4], etc. ,e
scheme of kernel adaptive filtering (KAF) is to map the
original input data into high or infinite dimensional feature
space via kernel function and then apply the framework of
typical linear adaptive filtering to the transformed data in the
reproducing kernel Hilbert spaces (RKHS) leading to var-
ious KAF algorithms [5–8]. ,e kernel least-mean-square
(KLMS) algorithm, as the benchmark among of KAF al-
gorithms, is developed from the cost function of second-
order statistic of the error between the desired signal and
instantaneous estimate under the assumption of Gaussian
noise for its mathematical simplicity and convenience [9].
,erefore, it can be ensured that the performances of KLMS-
type algorithms only for Gaussian disturbance noise severely
degrade, when the desired signals are corrupted by the
impulsive interferences. In practical applications, e.g., un-
derwater acoustic signal processing [10], wireless

communication environments [11], and radar cluster
elimination [12], the impulsive noises with the statistical
characteristics consisting of infrequency, short duration, and
high amplitude are more rational than the ideal Gaussian
noises.

For conventional linear robust adaptive filtering, the
signed adaptive filters and their theoretical analyses have
been extensively studied in [13–15]. ,e generalized maxi-
mum correntropy criterion (GMCC) algorithm with gen-
eralized Gaussian density function was proposed in [16], and
its stability and steady-state mean square performance were
also investigated. ,e authors of [17] proposed the least
logarithmic absolute difference (LLAD) with the corren-
tropy-induced metric (CIM) constraint in order to exploit
system sparsity and suppress the interferences. ,e mini-
mum kernel risk-sensitive loss (MKRSL) algorithm was
developed to achieve fast convergence speed by applying
risk-sensitive loss while yielding the robust performance to
outliers [18]. When the shape parameter is equal to 2 and the
risk-sensitive parameter gradually tends to trivial, both
GMCC and MKRSL algorithms reduce to the ordinary
maximum correntropy criterion (MCC) algorithm. ,e
constrained least mean logarithmic square (CLMLS) based
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on a relative logarithmic cost function and its variants were
proposed in [19], and they were used in the application of
sparse sensor array synthesis achieving the desired beam
pattern with much less senor elements. In [20], a robust least
mean logarithmic square (RLMLS) algorithm and its vari-
able step-size variant were presented to combat impulsive
noises, and its theoretical mean square performance was also
analyzed with the stationary white Gaussian inputs.

Meanwhile, the topic of nonlinear system identification
corrupted by the impulsive noise also attracted large
numbers of research interests [21]. It is thus important and
necessary to study the robust KAF algorithm in order to
resolve the divergence problem of performance caused by
non-Gaussian impulsive noise. In [22], the kernel maxi-
mum correntropy criterion (KMCC) algorithm was de-
veloped by introducing the framework of MCC into RKHS
in the presence of impulsive noises. By combining the
kernel method and the affine projection sign algorithm, the
kernel affine projection sign algorithm (KAPSA) was pro-
posed in [23] to combat the non-Gaussian impulse inter-
ference. An improved variable forgetting factor recursive
logarithmic least mean p th (IVFF-RLLMP) algorithm was
developed in [24] for the Volterra system identification
against the impulsive interference modeled by α-stable
distribution. As a counterpart of GMCC algorithm, the
generalized kernel maximum correntropy (GKMC) and the
quantized GKMC (QGKMC) algorithm were developed in
[25] for robust nonlinear adaptive filtering. In [26], the
quantized minimum kernel risk-sensitive loss (QMKRSL)
algorithm was proposed to achieve better and robust per-
formance of nonlinear filtering for outliers. Motivated by
the studies in [27, 28] on the Cauchy loss which has been
successfully used in various robust learning applications,
the multikernel minimum Cauchy kernel loss (MKMCKL)
algorithm was reported in [29] showing the improved
nonlinear filtering performance over counterpart single
algorithm in the presence of extreme outliers. Recently, the
kernel affine projection-like (KAPL) algorithm in RKHS
was proposed and investigated for nonlinear channel
equalization in scenarios of non-Gaussian noises [30]. ,e
kernel least mean p-power (KLMP) algorithmwas proposed
to alleviate the adverse impact of impulsive noise in [31, 32],
independently. More recently, Nyström kernel recursive
generalized maximum correntropy (NKRGMC) with
probability density rank-based quantization sampling al-
gorithm was proposed to improve the convergence per-
formance for impulsive noises [33]. ,e tracking analysis of
kernel signed error algorithm (KSEA) with Gaussian kernel
for time-variant nonlinear system was analyzed thoroughly
under the assumption of impulsive noise [34]. More re-
cently, the logarithmic hyperbolic cosine-based adaptive
filter (LHCAF) was proposed in [35] to address the issue of
instability of its prototype algorithm, and the transient and
steady-state analyses were also provided. Subsequently, the
authors of [36] proposed the multiple random Fourier
features Cauchy-loss conjugate gradient (MRFGCG) algo-
rithm which has better performance than the classical KAF
algorithms in terms of computational complexity and fil-
tering accuracy.

,erefore, the cost functions adopting the frameworks of
fractional order statistics of error or the distinct types of
error measures are able to provide effective ways to reveal the
robust performance against impulsive noises. Inspired by the
family of linear adaptive filtering algorithms based on the
logarithmic cost proposed in [37], our purpose is to extend
this scheme into RKHS to obtain the robustness of KAF
algorithm particularly within non-Gaussian impulsive noise
environment. In this paper, the kernel least logarithmic
absolute difference algorithm based on the logarithmic error
cost framework is proposed to achieve the nonlinear system
identification in the impulsive interference environments,
which are more frequently encountered in practical appli-
cations. Simulation results illustrate the proposed KLLAD
algorithm can consistently decrease the drastic perturbation
of recursive weight coefficients caused by the large amplitude
of instantaneous estimation error with low probability.

Notation: We use normal font small letters x for scalar
variables, boldface small letters x for column vectors, and
boldface capital letters X for matrices. ,e superscript (·)⊤

represents the transpose of a vector or a matrix. ,e ex-
pectation is denoted by E ·{ }, and matrix trace is denoted by
tr ·{ }. ,e Gaussian distribution with mean μ and variance σ2
is denoted byN(μ, σ2). ,e notation ‖ · ‖2 is the ℓ2-norm of
its matrix or vector argument; ‖x‖2A is the weighted square
value x⊤Ax. Notation sgn ·{ } is the signum function. ,e
operator eigmax X{ } denotes the maximum eigenvalue of
matrix X. Identity matrix of size N × N is denoted by IN.

2. Preliminaries of KAF Algorithms

LetH denote a Hilbert space of real-valued function ψ from
a compact subspace U ⊂ RL. Function κ: U × U⟶ R is a
reproducing kernel, and (H, 〈·, ·〉)H is the induced RKHS
with its inner product. ,e following unknown nonlinear
system is considered:

yn � f
⋆ xn( 􏼁 + zn. (1)

,e scalar yn and the vector xn ∈ RL denote the desired
output and the input signal, respectively. Here,f⋆ represents
the optimum functional to be identified, and zn stands for
the non-Gaussian impulsive noise modeled as the con-
taminated-Gaussian (CG) noise as follows [13, 38]:

zn � vn + bnϵn, (2)

where both vn and ϵn are statistically independent zero-mean
white Gaussian noises with the variances σ2v and σ2ϵ � Kσ2v ,
with parameter 1≪K. Moreover, the random sequence bn is
from a Bernoulli random process with the probability of
Pr(bn � 1) � pr and Pr(bn � 0) � 1 − pr. Notice that vn and
bnϵn represent the common Gaussian noise and particular
impulsive interference component, respectively. Subse-
quently, the probability density function (pdf) of the im-
pulsive CG noise zn is given by

pz � 1 − pr( 􏼁N 0, σ2v􏼐 􏼑 + prN 0, (K + 1)σ2v􏼐 􏼑. (3)

When pr � 0, the impulsive CG noise zn deteriorates to a
common white Gaussian noise with zero-mean and variance
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σ2v, namely, impulsive interference free. Correspondingly,
the variance of impulsive noise zn is given by

σ2z � E z
2
n􏽮 􏽯 � 1 − pr( 􏼁σ2v + pr(K + 1)σ2v. (4)

Hence, zn is statistically independent of any other sig-
nals. ,e reason why we adopt the CGmodel is that it makes
the analysis of mean stability of KLLAD algorithm math-
ematically tractable.

Given a sample set of pairs of input vectors and desired
output scalars, i.e., xn, yn􏼈 􏼉

N
n�1, we aim at estimating a

nonlinear regression function ψ that relates input data xn

and output data yn corrupted by impulsive noise zn. Let H
be a RKHS with kernel κ. By virtue of the representer
theorem [39], the function ψ in H that minimizes the
regularized least-squares problem:

min
ψ∈H

􏽘

N

n�1
yn − ψ xn( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ ε‖ψ‖
2
H, (5)

with ε a nonnegative regularization constant, can be written
as the kernel expansion in terms of available training data in
form of

ψ � 􏽘

N

n�1
wnκ ·, xn( 􏼁. (6)

When ε � 0, it will not affect the derivation of algorithm.
It can be seen from (5) and (6) that the functional repre-
sentation is formulated as the parametric vector form.
However, solution (6) is infeasible to be performed in an
online manner, because the algorithm can not cope with the
linear increase of the size N of the model as the latest input
data available. A commonly used strategy is to adopt a finite-
order model of the form [5]

ψ � 􏽘

Mn

m�1
wmκ ·, xω,m􏼐 􏼑. (7)

,e set of selected input data Dn � xω,m􏽮 􏽯
Mn

m�1 is so-
called online dictionary with the length Mn and is gen-
erated by the informative criteria from input vectors xn in
an online manner, e.g., coherence criterion [1], surprise
criterion [5], and approximate linear dependency [40].
Note that (6) seems to be the same as (7) in form, whereas
the length Mn determined by the online sparsification
criterion is analogue to the order of transversal filter.
Without loss of generality, we chose the coherence cri-
terion which allows the candidate xn to be inserted into the
dictionary if its maximum coherence remains below the
given threshold δκ, namely,

max
m�1,2,...,Mn

κ xn, xω,m􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ δκ, (8)

where 0< δκ ≤ 1 determines both the level of sparsity and the
coherence of the dictionary. Based on the stochastic gradient
of cost functions J(en) with respect to w, using the para-
metric finite-order model (7), we can then obtain the cor-
responding recursive update equation of the KAF
algorithms:

wn+1 � wn + η
zJ en( 􏼁

zw
κω,n. (9)

With the positive step-size η and the weight coefficients
vector wn � [wn(1), wn(2), . . . , wn(Mn)]⊤, the instanta-
neous estimation error en is given by

en � yn − w⊤n κω,n. (10)

Moreover, the kernelized input vector κω,n is defined by

κω,n � κ xn, xω,1􏼐 􏼑, κ xn, xω,2􏼐 􏼑, . . . , κ xn, xω,Mn
􏼐 􏼑􏽨 􏽩

⊤
. (11)

Adopting the mean-squared error (MSE) criterion for
(9) leads to the scheme of KLMS algorithm described as
follows:

wn+1 � wn + ηenκω,n, (12)

where the complete KLMS algorithm with online sparsifi-
cation criterion is not present for clarity.

It can be easily observed from (12) that the KLMS-type
algorithms suffer from sever performance degradation and
even divergence caused by the instantaneous estimation
error given in (10), which is contaminated by the non-
Gaussian impulsive noise defined in (2). It is thus critical for
the design of robust KAF algorithm to effectively suppress
the adverse effects of impulsive interference noise.

3. KLLAD Algorithm

In this section, we shall derive the KLLAD algorithm based
on the logarithmic cost function.

Logarithmic cost as one type of relative cost measures is
capable of providing relatively legitimate amplification for
the ordinary error fluctuation and significant attenuation for
very large error value induced by impulsive interferences. It
has been illustrated in [37] that the logarithmic cost function
can proportionally adjust the weight coefficients for small
and large error values depending on the combination
weights varying with time. ,erefore, we introduce the
differentiable combined logarithmic error cost function as
follows:

J en( 􏼁 � F en( 􏼁 −
1
λ
ln 1 + λF en( 􏼁( 􏼁, (13)

where λ is a design parameter, and F(en) is the conventional
cost function of instantaneous estimation error. Note that
the universal adaptive filtering algorithm obtained from (13)
is able to update the coefficients by small error and suppress
the drastic perturbation of error simultaneously.

Taking the derivative of (13) with respective to weight
vector w, we obtain

∇wJ en( 􏼁 � ∇wF en( 􏼁
λF en( 􏼁

1 + λF en( 􏼁
. (14)

Since the impulsive CG noise exists, the kernel adaptive
filters based on quadratic cost function have to face the
severe performance degradation. Nevertheless, the signed
adaptive filtering algorithms based on the ℓ1-norm of
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estimation error are robust to the impulsive noise because of
its recursive update equation only utilizing the sign of in-
stantaneous estimation error. In order to mitigate the ad-
verse impact of impulsive noise on KAF, let the conventional
cost function of error F(en) be E |en|􏼈 􏼉 using (10), namely,

F en( 􏼁 � E yn − w⊤n κω,n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯. (15)

It should be pointed out that cost function (13) using (15)
can perform less attenuation for the small estimation errors
and more attenuation for relatively large estimation errors
simultaneously. Substituting (15) into (14) leads to

zJ en( 􏼁

zw
�

zF en( 􏼁

zw
λF en( 􏼁

1 + λF en( 􏼁
. (16)

Applying the steepest-decent method to minimize the
logarithmic cost function (13), thus the weights vector of
KLLAD algorithm can be solved iteratively by

wn+1 � wn + η −
zJ en( 􏼁

zw
􏼢 􏼣. (17)

By (16), the recursive update equation of KLLAD al-
gorithm can be reformulated as

wn+1 � wn − η
zF en( 􏼁

zw
λF en( 􏼁

1 + λF en( 􏼁
, (18)

where the subgradient in the second term on the right hand
side of (18) is calculated as

zF en( 􏼁

zw
≈ sgn en( 􏼁. (19)

Note that the above approximation notation implies that
the subgradient of conventional cost function F(en) is
replaced by its instantaneous estimate. Substituting (15) and
(19) into (18) and then removing the expectations, the
stochastic update equation of KLLAD algorithm can be
rewritten as

wn+1 � wn + η
λ en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 + λ en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
sgn en( 􏼁κω,n

� wn + η
λen

1 + λ en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
κω,n,

(20)

where κω,n denotes the Mn × 1 dimensional kernelized input
vector as in (11). For universal nonlinear filtering perfor-
mance, we only focus on using the Gaussian kernel function
κ(x, x′) � exp(− ‖x − x′‖22/2ξ

2
), with ξ > 0 the kernel band-

width in this paper. Moreover, the Gaussian kernel function
has been successfully used in the theoretical analysis of KAF
algorithms due to its mathematical convenience and trac-
tability in the derivation [34, 41]. Based on (20), the recursive
update equations of KLLAD algorithm based on the finite-
order model using the coherence criterion are presented in
the following.

At each time instant n, the input xn will be decided into
the case of rejection or reception according to the coherence
criterion (8) for online dictionary Dn as follows:

(i) Rejection: if maxm�1,2,...,Mn
|κ(xn, xω,m)|> δκ

Dn+1 � Dn, Mn+1 � Mn,

wn+1 � wn + η
λen

1 + λ|en|
κω,n.

(21)

Note that the dimensions of kernelized input vector
κω,n and weight vector wn remain still in this case.

(ii) Reception: if maxm�1,2,...,Mn
|κ(xn, xω,m)|≤ δκ

Dn+1 � Dn ∪ xn􏼈 􏼉, Mn+1 � Mn + 1,

wn+1 �

wn

0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + η

λen

1 + λ|en|
κω,n.

(22)

Note that the dimensions of kernelized input vector
κω,n and weight vectorwn are augmented to make the
update equation of weight vector valid.

It should be pointed that the threshold δκ is selected by
grid search over the interval [0, 1) to determine the sparsity
of online dictionary Dn as in [1, 5–7].

,e KLLAD algorithm described by (21) and (22)
combines the advantages of KLMS and KSEA algorithms
leading to the improved convergence performance taking
into account Gaussian noise and non-Gaussian impulsive
noise existing simultaneously. When the design parameter λ
is set to large value, the KLLAD algorithm can achieve the
robust convergence performance against the impulsive
noise. In addition, the KLLAD algorithm has faster con-
vergence rate than the KSEA algorithm especially for highly
correlated input signals. ,e scheme of KLLAD algorithm is
summarized as Algorithm 1.

By (9), the recursive update equation of KAF algorithms
can be expressed in a general form of

wn+1 � wn + ηf en( 􏼁enκω,n, (23)

where f(en) is defined as the nonlinear error function which
performs like the generalized variable step-size against non-
Gaussian impulsive noise. According to (23), various
nonlinear KAF algorithms can be readily obtained by solving
distinct cost functions in the RKHS. Hence, the error
functions of some KAF algorithmsmentioned previously are
listed in Table 1.

It should be pointed out that the error function of
MKRSL algorithm reduces to that of KMCC algorithm as the
risk-sensitive parameter λf⟶ 0+ or that of KLMS algo-
rithm as the kernel bandwidth ξf⟶∞ [18]. ,is means
that the KMCC algorithm is a particular case of MKRSL
algorithm in fact. ,us, we are only concerned with the
KMCC algorithm with the characteristic of robustness for
impulsive noises in the following. Correspondingly, the
curves of error functions listed in Table 1 with different
parameters are plotted in Figure 1. First of all, it can be
observed from Figure 1(a) that the value of error function of
KLMS algorithm is constant one without any ability of
suppressing the impulsive noise due to its quadratic cost
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function for Gaussian noise. We can then see from
Figures 1(b)–1(d) that the output values of nonlinear error
functions of KMCC, KLMP, and KLLAD algorithms are
effectively attenuated even for the very large instantaneous
estimation errors caused by impulsive interferences. Spe-
cifically, the attenuation rate of error function of KMCC
with small kernel bandwidth ξf is very fast, whereas its
maximum output values corresponding to the relatively
small error inputs particularly near zero are always less than
1. Consequently, the KMCC algorithm has to take much
larger step-size η than the KLMP and KLLAD algorithms.
Although both error functions have similar shape of output
values for KLMP algorithm with small p and KLLAD al-
gorithm with large λ, the error function of KLLAD con-
sistently gives much smaller outputs for larger error inputs
than that of KLMP.

4. Convergence Condition on Mean Stability of
the KLLAD Algorithm

In this section, we shall investigate the sufficient convergence
condition of KLLAD algorithm via Gaussian kernel function
with the fixed dictionary in the mean sense.

For mathematical tractability of theoretical analysis, the
CG modeled impulsive noise zn given in (1), instead of the
standard symmetric α-stable distribution, has been suc-
cessfully used in the theoretical analysis of robust adaptive
filters [13, 14, 34].

One the one hand, the coherence criterion guarantees
the length Mn is infinite [1]. On the other hand, it is true that
the length Mn of online dictionary Dn gradually tends to be
invariant in the steady-state phase. ,erefore, we only need
to consider the recursive update equation (21) of KLLAD
algorithm with the steady fixed dictionary D with constant
length M in the context of the derivation of convergence
condition on mean stability.

We start with introducing the weight error vector de-
fined by

vn � wn − w⋆, (24)

where w⋆ � [w⋆1 , w⋆2 , . . . , w⋆M]⊤ represents the optimal
weight vector of vector-valued form of nonlinear system. It
should be emphasized that w⋆ corresponds to the functional
f⋆ based on the specific dictionary elements. From (1) and
(24), the instantaneous estimation error (10) can be re-
written as

en � zn − v⊤n 􏽥κω,n. (25)

With the kernelized input vector with fixed dictionaryD

􏽥κω,n � κ xn, xω,1􏼐 􏼑, κ xn, xω,2􏼐 􏼑, . . . , κ xn, xω,M􏼐 􏼑􏽨 􏽩
⊤

. (26)

Subtracting w⋆ from both sides of (21), and using (25),
we obtain

vn+1 � vn + ηλ
zn − v⊤n 􏽥κω,n

1 + λ|en|
􏽥κω,n. (27)

Taking the expected values of both sides of (27), it follows
that

E vn+1􏼈 􏼉 � E vn􏼈 􏼉 + ηλE
zn􏽥κω,n

1 + λ en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼨 􏼩

− ηλE
􏽥κω,n􏽥κ⊤ω,n

1 + λ en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
vn􏼨 􏼩.

(28)

Since the impulsive CG noise zn with zero-mean is
assumed to be statistically independent of any other signals
as mentioned above, and 􏽥κω,n􏽥κ⊤ω,n is assumed to be statisti-
cally independent of weight error vector vn, i.e., the modified
independence assumption (MIA) widely used in [34, 41, 42],
then (28) can be reformulated as

E vn+1􏼈 􏼉 � IM − ηλE
􏽥κω,n􏽥κ⊤ω,n

1 + λ|en|
􏼨 􏼩􏼠 􏼡E vn􏼈 􏼉. (29)

For theoretical analysis tractability, the second term of
(29) can be approximated as

(1) Input: xn, yn􏼈 􏼉, n � 1, 2, . . .

(2) Initialization: select the step-size η> 0, the Gaussian kernel bandwidth ξ > 0, the threshold δκ > 0, the parameter λ> 0, the
dictionary D0 � x1􏼈 􏼉, and weight coefficient w0(1) � 0.

(3) for n � 1, 2, . . ., do
(4) if maxm�1,2,...,Mn

|κ(xn, xω,m)|> δκ Update wn+1 via (21);
(5) elseif maxm�1,2,...,Mn

|κ(xn, xω,m)|≤ δκ Update wn+1 via (22);
(6) end if Obtain solution ψ(xn) � 􏽐

Mn

m�1 wn(m)κ(xn, xω,m).
(7) end for

ALGORITHM 1: KLLAD algorithm.

Table 1: Error functions of several KAF algorithms.

Algorithm Error function f(en)

KLMS f(en) � 1
KMCC f(en) � κ(yn, ϕ(xn)) � exp(− ‖en‖22/2ξ

2
f)

KLMP f(en) � |en|p− 2

KLLAD f(en) � λ/1 + λ|en|
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E
􏽥κω,n􏽥κ⊤ω,n

1 + λ|en|
􏼨 􏼩 ≈

E 􏽥κω,n􏽥κ⊤ω,n􏽮 􏽯

1 + λE en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯

. (30)

On the one hand, the numerator of (30) is the auto-
correlation matrix of the kernelized input vector defined by

Rκκ � E 􏽥κω,n􏽥κ⊤ω,n􏽮 􏽯 ∈ RM×M
. (31)

It has been determined in the theoretical analysis of KAF
algorithms [34, 41]. ,e (i, j)-th element of matrix Rκκ can
be computed by

Rκκ􏼂 􏼃ij � IL +
2
ξ2
Rxx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 1/2

× exp −
1
4ξ2

2 xω,i

����
����
2
2 + xω,j

�����

�����
2

2
􏼒 􏼓􏼔􏼠

− xω,i + xω,j

�����

�����
2

IL+ξ2R− 1
xx/2( )

− 1􏼕􏼓,

(32)

with the input covariance matrix Rxx � E xnx⊤n􏼈 􏼉 ∈ RL×L. On
the other hand, using (25) and the MIA assumption, the
expression of MSE for KLLAD algorithm is given by

E e
2
n􏽮 􏽯 ≈ σ2z + tr RκκVn􏼈 􏼉, (33)

with the autocorrelation matrix of weight error vector
Vn � E vnv⊤n􏼈 􏼉 ∈ RM×M. Although the recursion ofVn is not
explicitly provided, it has trivial influence on the con-
vergence condition on the mean stability of KLLAD al-
gorithm as shown below. By the result of (4), (33) can be
expressed as

E e
2
n􏽮 􏽯 � 1 − pr( 􏼁σ2v + pr(K + 1)σ2v + tr RκκVn􏼈 􏼉. (34)

,e expectation in denominator of (30) can be roughly
approximated as

E en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯 ≈

�������������������������������

1 − pr( 􏼁σ2v + pr(K + 1)σ2v + tr RκκVn􏼈 􏼉

􏽱

. (35)

en

f (
e n)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

-10 -8 -6 -4 -2 0 2 4 6 8 10

(a)

f (
e n)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ξf = 0.05
ξf = 0.1

ξf = 0.5
ξf = 1

ξf = 5

en

-10 -8 -6 -4 -2 0 2 4 6 8 10

(b)

f (
e n)

0
1
2
3
4
5
6
7
8
9

10

p = 1.5
p = 1.6

p = 1.7
p = 1.8

p = 1.9

en

-10 -8 -6 -4 -2 0 2 4 6 8 10

(c)

f (
e n)

en

-10 -8 -6 -4 -2 0 2 4 6 8 10
0
1
2
3
4
5
6
7
8
9

10

λ = 1
λ = 2

λ = 4
λ = 6

λ = 10

(d)

Figure 1: Curves of error functions f(en) with en ∈ [− 10, 10]. (a) KLMS algorithm. (b) KMCC algorithm. (c) KLMP algorithm. (d) KLLAD
algorithm.
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E vn+1􏼈 􏼉 � IM − ηλ
Rκκ

1 + λ
�������������������������������

1 − pr( 􏼁σ2v + pr(K + 1)σ2v + tr RκκVn􏼈 􏼉

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠E vn􏼈 􏼉. (36)

,en, (29) can be further determined by (36), as shown
at the top of next page. By (36), thus the sufficient con-
vergence condition on mean stability is given by

0< η<
2 + 2λ

�������������������������������

1 − pr( 􏼁σ2v + pr(K + 1)σ2v + tr RκκVn􏼈 􏼉

􏽱

eigmax Rκκ􏼈 􏼉
. (37)

,us, (37) can be rigorously reformulated as

0< η<
2 + 2λσv

�������
1 + prK

􏽰

eigmax Rκκ􏼈 􏼉
, (38)

where the calculation of autocorrelation matrix of weight
error vector Vn is not used as explained before.

5. Simulation Results

In this section, we evaluated the performance of the pro-
posed KLLAD algorithm in the context of impulsive noise by
the simulation results. All the curves are obtained by av-
eraging over 200 independent Monte Carlo trails.

5.1. Example I. In general, the optimal weight vectors of KAF
algorithms, which correspond to the elements of online dic-
tionary built by an online manner, are unavailable a priori. As a
consequence, it is difficult to exhibit the convergence perfor-
mance, particularly the mean-square-deviation (MSD). In order
to obviously demonstrate the excellent mean and mean square
convergence performance of KLLAD algorithm, the desired
output of an ideal nonlinear synthesis system consisting of the
optimum weight vector and the kernelized inputs is given by

yn � 􏽘
M

m�1
w
⋆
m exp −

xω,m − xn

����
����
2
2

2ξ2
⎛⎝ ⎞⎠ + zn, (39)

where the kernel bandwidth is set to ξ � 0.65, and zn is the
non-Gaussian impulsive CG noise with parameters
K � 1 × 104, σ2v � 1, and pr � 0.05.

Furthermore, the CG noise model defined by (2) can be
generalized into the mixture Gaussian noise model by
changing the distribution of the random variable ϵn into the
uniform, binary, Rayleigh, Laplacian distributions, etc.,en,
we are able to thoroughly investigate the variations of
nonlinear filtering performance of KLLAD algorithm in the
presence of distinct impulsive noises with large outliers.

Meanwhile, the preselected dictionary with 5 elements
utilized for the kernelized nonlinear mapping is given by

D � xω,1, xω,2, xω,3, xω,4, xω,5􏽮 􏽯

�
0.72

1.44
􏼢 􏼣,

3.31

1.28
􏼢 􏼣,

− 3.03

− 2.75
􏼢 􏼣,

1.48

− 1.66
􏼢 􏼣,

− 1.28

− 0.32
􏼢 􏼣􏼨 􏼩,

(40)

which is generated by the coherence criterion from the input
signals a priori. Correspondingly, the learning curve of the
MSD is defined as

MSDn �
1
T

􏽘

T

t�1
wt,n − w⋆

����
����
2
2, (41)

where T is the total number of Monte Carlo runs. ,e input
signal was assumed to be a sequence of statistically inde-
pendent vectors xn � [x1,n, x2,n]⊤ with correlated samples
satisfying x1,n � 0.5x2,n + τx,n, where x2,n is a white Gaussian
noise sequence with variance σ2x2

� 1 and τx,n is a white
Gaussian so that x1,n has variance σ2x1

� 1. ,e optimum
weight vector w⋆ was supposed to be abruptly changed from
[0.3, 0.1, − 0.15, − 0.3, − 0.1]⊤ to
[0.05, 0.25, − 0.05, − 0.2, − 0.35]⊤ at time instant n � 2 × 104.

,e set of parameters of all used algorithms for Example
I is listed in Table 2. It should be pointed that the step-size of
KLLAD algorithm is selected by satisfying the convergence
condition presented by (38).

,e convergence curves of weight coefficients obtained
by implementing KLMS, KMCC, KLMP, and KLLAD al-
gorithms are illustrated in Figures 2–5, respectively. As il-
lustrated in Figure 2, the averaged curves of weight
coefficients of KLMS algorithm are not able to tend to the
optimal weight coefficients during the two stages due to the
interference effect of impulsive CG noise. In contrast, the
averaged curves of weight coefficients of KMCC, KLMP, and
KLLAD algorithms are smooth and all converge to two
optimal weight coefficients within the two stages, as shown
in Figures 3–5. In addition, the effectiveness of convergence
condition on the mean stability (38) is validated by Figure 5.
More importantly, Figures 6(a)–6(f) show that the filtering
performance of KLLAD algorithm consistently outperforms
those of KLMS, KMCC, and KLMP algorithms in terms of
robustness, convergence rate, and accuracy of the learning
curves of MSD during the two stages using the mixture
Gaussian noise model based on the normal, uniform, binary,
Rayleigh, Laplacian, and symmetric α-stable distributions,
respectively. ,erefore, the robust performance of KLLAD
algorithm is validated by the simulation results of nonsta-
tionary nonlinear system identification in the presence of
non-Gaussian impulsive noise.

5.2. Example II. As the second example, we consider the
input random sequence generated from the following
relation:

un � ρun− 1 + σu

�����

1 − ρ2
􏽱

ζn, (42)

where ζn is a random noise following the i.i.d. standard
normal distribution. Here, the correlation factor ρ and the
standard deviation σu of random sequence un were all
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chosen as 0.5. ,e desired output of nonlinear system is
generated as follows:

tn � 0.5un − 0.3un− 1,

yn � tn − 1.25t
2
n + 0.25t

3
n + zn,

􏼨 (43)

where zn is the non-Gaussian impulsive CG noise with
parameters K � 1 × 104, σ2v � 1, and pr � 0.1. At each time
instant n, the input vectors xn � [un, un− 1]

⊤ are used to
estimate the nonlinear desired response signal yn contam-
inated by the impulsive noise. In order to clearly investigate
the characteristic of convergence of weight coefficients, the 6

elements of dictionary were chosen by the coherence cri-
terion from the input vectors a priori as follows:

D � xω,1, xω,2, xω,3, xω,4, xω,5, xω,6􏽮 􏽯

�
0.17

− 1.92
􏼢 􏼣,

− 1.62

− 0.18
􏼢 􏼣,

0.52

1.55
􏼢 􏼣,

2.90

1.92
􏼢 􏼣,

− 2.0

− 2.47
􏼢 􏼣,

2.65

− 0.82
􏼢 􏼣􏼨 􏼩.

(44)

,e set of parameters of used algorithms for Example II
is listed in Table 3. Likewise, the step-size of KLLAD al-
gorithm in second example is also determined from the
range of convergence condition according to (38).

Although the fixed dictionary with 6 elements is used to
compare the differences of convergent performance among
used algorithms, the corresponding optimal weight

Table 2: Parameter settings of used algorithms for Example I.

Algorithm Parameters
KLMS ξ � 0.65; η � 0.05;
KMCC ξ � 0.65; η � 3; ξf � 0.05;
KLMP ξ � 0.65; η � 0.05; p � 1.1
KLLAD ξ � 0.65; η � 0.08; λ � 15
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Figure 2: Convergence of the coefficients wn(m) for KLMS al-
gorithm (the dotted lines are for the optimal weight coefficients,
and solid lines are for weight coefficients of KLMS algorithm).

Iteration n ×104
0.5 1 1.5 2 2.5 3 3.5 4

W
ei

gh
ts 

w n
 (m

)

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

Figure 3: Convergence of the coefficients wn(m) for KMCC al-
gorithm (the dotted lines are for the optimal weight coefficients,
and solid lines are for weight coefficients of KMCC algorithm).
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Figure 4: Convergence of the coefficients wn(m) for KLMP
algorithm (the dotted lines are for the optimal weight coeffi-
cients, and solid lines are for weight coefficients of KLMP
algorithm).
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Figure 5: Convergence of the coefficients wn(m) for KLLAD
algorithm (the dotted lines are for the optimal weight coeffi-
cients, and solid lines are for weight coefficients of KLLAD
algorithm).
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Figure 6: Comparisons of learning curves of MSD for KLMS, KMCC, KLMP, and KLLAD algorithms with different non-Gaussian
distribution noises. (a) Normal distribution noise. (b) Uniform distribution noise with (− 1, 1). (c) Binary distribution noise with (− 1, 1). (d)
Rayleigh distribution noise with σ2 � 4. (e) Laplacian distribution noise with μ � 0 and σ2 � 1. (f ) Symmetric α-stable distribution noise
with α � 0.9, c � 0.5, and δ � 0.
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coefficients are still unknown in fact. ,e KLMS algorithm is
ignored due to its severe instability of convergence. Figure 7
shows that the mean value curves of weight coefficients of
KLLAD algorithm converge much smoother and faster
compared with the KLMP and KMCC algorithms, which
verified the superiorities of KLLAD algorithm.

6. Conclusion

In this paper, we presented a novel KLLAD algorithm based
on the logarithmic error cost criterion under the assumption
of non-Gaussian impulsive CG noise. ,e KLLAD algorithm
can effectively mitigate the instability of convergence learning
curves caused by impulsive noise. ,e simulation results
demonstrated that the proposed KLLAD algorithm has an
excellent performance compared to the KLMS, KMCC, and
KLMP algorithms in the presence of impulsive noise.
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