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�is paper presents the challenges of optimal measurement devices placement (MDP) in the distribution system by considering
the improvement of accuracy and speed for state estimation (SE) in the presence of distributed generations (DGs). We assumed
that active and reactive power measurements (both injection and �ow) with voltage magnitude measurements were used to
estimate the power system’s state. �e paper employed phase measurement unit (PMU) and smart meters, which are the two
commonly used measuring devices. For numerical evaluation of the system, the power system states are based on the angle and
magnitude of voltages at every bus. �e issues normally experienced in the optimal measurement devices placement in dis-
tribution networks were investigated using the binary dragon�y algorithm (BDA), in this study. As a way forward to pro�er
solutions to these issues, a fair compromise between accuracy, speed, and the number of measurements (NoMs) was reached, and
the proposed solution was tested in two di�erent scenarios applied in the IEEE 33-bus distribution test system. �e results
illustrate that by increasing the accuracy, NoMs and the cost are going to rise as well. On the other hand, by escalating the speed,
NoMs decrease and the accuracy falls dramatically.

1. Introduction

Recently, distribution networks are becoming more intel-
ligent in several ways, in order to improve their performance
and e�ective management. State estimation is one of the
most favorite tools in the power system to enhance the
monitoring process. �erefore, accurate and robust state
estimations are always needed in every sector of a power
system. By �nding the states of a power network, other tasks,
such as optimal power �ow, will be bene�ted from a reliable
and accurate process. PMUs and micro-PMUs are mea-
surement devices enhancing the state estimation process by
sending the measurements from the power system for es-
timating the states of the smart grids [1]. For performing a
state estimation, the voltage of every bus in the system is
driven, and the active and reactive power �owing in the
system are able to be calculated by power �ow [2]. Although
the distribution system is on its way to be modernized, the

mentioned network under radial operations still has a large
number of unbalanced loads in each phase with a high r/x
ratio. In the distribution system, lack of measurements has
made the system to become hardly observable, and the
distribution system state estimation (SE) seems to be one of
the problem-solving paths to the mentioned issue. While
minimizing the number of measurements (NoMs) is a vitally
important task to conduct, the accuracy and speed of the SE
are both decisive features. Measurement devices placement
(MDP) strategy behaves as a binary problem that calculates
the being or nonexistence of the measurement unit as binary
variables. �erefore, an optimization algorithm capable of
handling binary problems should be proposed that can
perform multiple-goal optimization.

Dragon�y algorithm (DA) proposed by Mirjalili [3] is an
ongoing swarm intelligence method that mirrors the �ve
crude standards of the amassing behavior of dragon�ies. �e
dragon�ies depend on detachment to evade crashes between
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people in the multitude, an arrangement to principle train
the speed of all people in the multitude, attachment to relate
dragonflies to an area, fascination in moving dragonflies
towards the food source, interruption to move dragonflies a
long way from the adversaries. +ese five standards require
five boundaries to be controlled that are separation (S),
alignment (A), cohesion (C), fascination towards the food
source (F), and interruption from the enemy (E). +e DA is
applied effectively to tackle a few optimization issues, for
example, economical dispatch [4], hybrid energy distributed
power system [5], power flow management [6], picture
division [7, 8], stress circulation [9], synthesis of concentric
circular antenna arrays [10], basic optimization of edge
structures [11], structural design optimization of vehicle
components [12], filter design issue [13], newborn child cry
classification [14], intent of vehicles [15], mobile sales rep
problem [16], remote hub limitation in PC networks [17],
0–1 rucksack issues [18], and artificial intelligence [19]. A
binary form of DA (called binary dragonfly algorithm
(BDA)) was proposed in [3]. In BDA, a transfer function is
utilized to plan the consistent inquiry space into binary.
BDA was at first applied to the feature selection (FS) issue in
[20], and the technique delivers top-notch results. As of late,
a novel FS approach that utilizes an improved BDA was
proposed in [19].

In [21], Singh proposed an algorithm for measurement
devices selection problem using an ordinary optimization
method. A multiobjective algorithm for both number and
placement of theMDP leading to better accuracy is proposed
in [22]. Das [23] proposed a simple rule-based algorithm for
placing the devices in a radial distribution system by taking
network reconfiguration into account. A comprehensive
survey on MDP in power system state estimation was
demonstrated in [24] by using a mixed-integer linear.

Optimization algorithm. +e optimal location of PMU
was presented in [25] for detecting cyber-attacks on the
devices. A multiobjective method has been proposed in [26]
to find the optimal placement of PMUs and intelligent
electronic devices (IEDs). In reference [27], zonal SE was
considered by optimal PMU placement. In reference
[28, 30], optimal PMU placement based on GA and a binary-
coded GA is proposed by considering observability and
reliability, respectively. Due to their promising performance,
swarm intelligence techniques are still attracting researchers
and have been applied in several fields of power system
analysis [31–34]. Mahari [35] applied a binary imperialistic
competition algorithm in the optimal placement of PMU to
maintain system observability. +e optimal location of PMU
with a limited number of channels was presented by the
authors of [36]. +e weight least square (WLS) technique for
SE was first proposed by Ali Abur in [37], and the authors of
[38], and a linear-based optimization technique for optimal
MDP was proposed. In reference [29], the author used GA
for PMU placement in the distribution system for observ-
ability and load loss using WLS. In reference [39], the au-
thors used an integer-arithmetic algorithm for observability
analysis of systems with SCADA and PMU measurements.
Recently, the optimal location of PMUs andm-PMUs for the
observability of system in the fault locations is gaining

interest [40, 41]. Besides that, many papers only target full
observability by using measurements such as the phasor
measurement unit (PMU). A few of them performed the
derivative-free optimization algorithm such as the genetic
algorithm (GA) [42] and a heuristic optimization like
particle swarm algorithm (PSO) [40, 43, 44] to optimize the
cost function of their proposed problems which is the NoMs.
+e author of [42] employs a derivative-free optimizer, that
is, a generalized pattern search. +is algorithm is counted
with GA in the MATLAB optimization library regarding the
derivative-free optimizers. +e authors of [30, 45] present
the use of genetic algorithms (GAs) to place a minimum
number of PMUs around the power network considering
topological observability.+e latter used a hybrid method by
combining GA and BBA. m-PMUs performance in distri-
bution systems is fully studied in [1]. In [46, 47], the authors
used the interior-point method, which is a subfield of linear
programming, to solve the optimal PMU placement problem
in the power systems. A comparison between different MDP
objectives in some previous studies in the literature is given
in Table 1.

In this paper, a novel method has been proposed to solve
the MDP problem by taking the accuracy, speed, and
number of measurement units into consideration. Real-time
measurements derived from IEEE standard systems play an
important role in the convergence of the SE. +e accuracy
and speed of the state estimation depend on standard
measurements, and for a more realistic scenario, the devi-
ation of measurements was considered.

+e rest of the paper is organized as follows: section 2
defines the WLS state estimation and its formulation. In
Section 3, the mentioned BDA is introduced as an opti-
mization method to aid in finding the best placement for
measuring devices. Section 4 describes a new formulation of
minimizing the number of measurements while the accuracy
and speed are within the acceptable limits and formally
introduce the flowchart of the mentioned method and
optimization algorithm. Section 5 illustrates the simulation
process and case studies in which two different scenarios are
proposed and then applied in IEEE 33-bus radial distribu-
tion network with presenting the acceptable accuracy range
for SE. +is paper is concluded in Section 6.

2. Wight Least-Square State Estimation

State estimate is extensively used as a method to assess the
current real-time time grid parameters. State estimation
algorithms may suffer divergence below stressed system
conditions. +e minimum singular worth of gain matrix is
projected to measure the space between the in-operation
purpose and state estimation divergence.

A state estimator is capable of filtering the knowledge to
supply an additional correct image of the state of the system.
+e state estimation may be outlined as a method that
determines the in-operation state of the system to permit the
system operator to form selections geared toward main-
taining the protection of the system. +e WLS method is
often used for estimating the state of the system.+e normal
objective of the state estimation is to cut back on activity
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errors by utilizing the redundancy obtainable within most
activity systems. +e root mean square metric, in particular,
is used to reduce estimate variance and improve overall
efficiency.

+e SCADA information, measurement information,
network model, and also the pseudo-measurements are
types of the input for the power system SE method. +e
applications, such as contingency analysis, security analysis,
optimal power flow, are enhanced by using the states esti-
mated by SE.

All the SE equations in this section are derived from [37].
+e process of WLS ES is illustrated in Figure 1.

3. Dragonfly Algorithm

+e dragonfly algorithm (DA) fundamentally in-towers the
conduct of chasing (called static multitude (feeding)) and
relocation instruments of glorified dragonflies administra-
tors [3]. In nature, the dragonflies fly in little gatherings
looking for food sources which are called chasing.

Bigger gatherings of dragonflies fly with one another one
way, so the multitude relocates in a cycle called the
movement component. +e two instruments of chasing and
taking care of the amassing conduct of dragonflies when
searching are delineated in Figure 2.

+e dragonflies amassing conduct is described by five
administrators:

(1) Separation is the component that guarantees to get
the inquiry specialists far from one another in the
area. +e numerical demonstration of the detach-
ment conduct has appeared.

Si � − 
N

j�1
X –Xi. (1)

(2) Alignment shows how the speed of a particular in-
quiry specialist is coordinated with the speed of other
pursuit operators in the area. +e numerical dem-
onstration of the arrangement conduct has appeared.

Ai �


N
j�1 vj

N
. (2)

Here, Vj represents the speed of the jth neighbour.
(3) Cohesion shows how people fly from the neigh-

bourhood region to the focal point of mass. It alludes
to the propensity of people to fly towards the
neighbouring focus of mass. +e numerical dem-
onstration of the Cohesion conduct is introduced.

Ci �


N
j�1 xj

N
− X. (3)

(4) Attraction speaks to how the food source draws in
the people that fly towards it. +e numerical dem-
onstration of this conduct has appeared.

Table 1: A comparison between different MDP objectives in the literature.

Refs [2] [21] [22] [23] [24] [25] [26] [27] [28] [29] +is paper
Optimal NoMs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Quality ✓ ✓ ✓ ✓ ✓
Optimal accuracy of states ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Cost ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Presence of distributed generations (DGs) ✓ ✓

Start iterration
with k = 1

Initialize the state
vector xk

Calculate G (xk)

Calculate tk = HT

R-1 [z – h (x)]

Find ∆xk

If didnt converge,
xk+1 = ∆xk+xk, k =

k+1

Test for
convergance

Figure 1: +e WLS state estimation process.
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Fi � Floc − X, (4)

where Floc represents the position of the food source.
(5) Distraction alludes to the inclination of people to

take off from a foe. +e interruption between the ith
arrangement and the adversary is numerically
demonstrated.

Ei � Eloc + X, (5)

where Eloc symbolizes the enemy’s position.
During the hunting cycle in the dragonfly algorithm,

the wellness of the food source and the area are refreshed
utilizing the competitor with the best wellness. Besides,
the most noticeably terrible applicant updates the
wellness and the area of the adversary. +is resulted in
the uniqueness of excellent hunting zones and moving
indefinitely from poor hunting locations. +e nonex-
clusive system of the particle swarm optimization al-
gorithm is utilized by the dragonfly algorithm as it
utilizes two vectors to refresh the situation of a dragonfly:
the progression vector (∆X) that is like the particle
swarm optimization speed vector and the position vec-
tor. +e progression vector (displayed in (6)) serves to
change the dragonflies’ development.

ΔXt+1 � sSi + aAi + cCi + fFi + etEi(  + wΔXt, (6)

where s, a, c, f, and e are loads of the partition Si, ar-
rangement Ai, attachment Ci, development speed into the
food source Fi, and the foe aggravation level Ei of the ith
individual separately. Figure (7) shows how these bound-
aries are adaptively tuned during the advancement cycle to
keep up a decent harmony between investigation and ex-
ploitation. W is the latency weight, which is derived based
on (8). More insights regarding the estimations of these
boundaries and their impact on the dragonfly algorithm
conduct can be found.

s � 2 × r × pct

a � 2 × r × pct

c � 2 × r × pct

f � 2 × r

et � pct,

(7)

W � 0.9 − Iter∗
(0.9 − 0.4)

MaxIter
, (8)

where pct is calculated as shown in (8).

pct �

0.1 −
0.2 × iter
max iter

, if (2 × iter) ≤max iter

0, O.W

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, (9)

where r is an arbitrary number in the time period of [0,1].
+e situation of an individual is refreshed as shown in

(9).

Xt+1 � Xt + ΔXt+1. (10)

Here, t is the present step.
Figure 3 shows the pseudo-code of the dragonfly algo-

rithm. At first, the algorithm makes an arbitrarily created
population and instates it with step vectors haphazardly.
Iteratively, the algorithm executes the accompanying strides
until an end basis is met. Initially, a CO is utilized to assess
every person in the populace. Second, the algorithm re-
freshes the primary coefficients (i.e., s, w, a, c, f, and e). Later,
the administrators, separation (S), alignment (A), cohesion
(C), food source (F), and enemy €, are adjusted utilizing
equations (1) to (5). At long last, equations (6) and (10) are
utilized to refresh the progression vectors and the dragonfly
position. Subsequently, the best arrangement got so far is
returned.

Figure 2: Chasing and taking care of amassing conduct of dragonflies when searching [3].
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3.1. .e Binary Dragonfly Algorithm (BDA). A binary op-
timization issue is taken into account by a feature selection
optimization. +e solution space is shaped as a hypercube,
where an individual area is distinguished inside the pursuit
space utilizing the position vector x� {x1, x2,. . ., xd}. DA is
initially proposed to deal with continuous optimization
issues. +e individual position is updated by adding the
current position vector to the progression vector. +is
technique must be changed to deal with parallel optimiza-
tion issues. Angular transfer function is utilized to change
over the nonstop qualities into binary which is drawn as
shown in Figure 4.

By utilizing the transfer functions, the positions are
changed over from continuous to binary by using two stages.
To start with, the value of the dth measurement of the ith
step vector (speed) inside the current iteration (t) is utilized
as a contribution to equation (11) to get the likelihood to set
the component to binary integers (0 or 1). Second, the
component is set as an incentive to 0 or 1 upheld equation
(12).

T V
i
D(t)  �

V
i
D(t) 

������������

1 + V
i
D(t)  

2






, (11)

X(t + 1) �
−Xt, r<T v

i
k(t) 

Xt , r≥T v
i
k(t) 

⎧⎪⎨

⎪⎩
, (12)

where r could be a function that generates a random number
between 0 and 1. +e value of r plays a crucial role to decide
whether the value of Xt is flipped. When the value of T
(vi

k(t)) is little, the possibility of flipping the new value X
(t+ 1) is going to be also small.

4. Problem Formulation

+e optimal MDP for SE in the distribution system solution
is going to be conducted by a method in which a binary
upper triangular matrix called measurement matrix (M) is
proposed. By encoding the M, the placement of the mea-
surements in the test system will be illustrated. +erefore, a
binary optimization method called BDA is employed to find
the optimal form ofM.+e solution space is divided into two
sections, buses, and lines. In this article, line measurements
are attached near to the superior bus, and by taking that
assumption into account, diagonal elements of M are rep-
resenting the bus measurement units, and nondiagonal

elements introduce the line measurement units. As an ex-
ample,M22 �1 means that there is a bus measurement device
(smart meter) in the second bus measuring the voltage
magnitude and active/reactive power injection, and M23 �1
means there is a linemeasurement in the line which connects
the second bus to the third onemeasuring active and reactive
power flows in the line. BDA generates n variable binary
digits in which n is the sum of the number of buses and lines.
After that, the first nb (number of buses) digits are con-
sidered to be bus measurement device placements, and the
other nb+ 1 to nb+ nl (number of lines) digits illustrate line
measurement device placement. By taking this process into
account, when BDA generates a binary number, this process
is able to locate the measurement devices in the power grid.
Figure 5 illustrates the flowchart of the proposed method.

+e problem formulation is as follows:

min

nb

i�1


nb

j�1
cost × MijwhenM(i, j)≥ b, (13)

where b is a unit vector [48].
Table 2 shows the two types of measurement devices

considered for SE.
+e sampling rate for both is 120 samples per second in a

60Hz distribution network [1]. Smart meters can only be
installed in buses, but PMUs are able to be installed in lines
too.

5. Model System Case Study

+e IEEE 33-bus distribution test system is employed to
examine the proposed method in two different scenarios. In
one of which, the DGs are installed in some buses. It is worth
noting that the one with the DGs scenario is slightly similar
to that of [29]. +e mentioned system is working with a
three-phase symmetric structure and balanced operation
and accuracy.

Two scenarios are introduced in Table 3, and the
comparison between entering DGs and system performance
without DGs is argued in this section while the simulation
process is carried out by MATLAB 2018a in MACOS 10.15.6
with 4GB of RAM.

As mentioned above, in scenario 1, there are no DGs
installed in the grid, and the accuracy range of SE is from 92
to 94 percent, meaning that the tolerance of 0.08 to 0.06 from
the standard data is acceptable. A speed limit for each part is
assumed to make the simulation results more realistic. For
being more comparable to prior works, DGs are included in
the second scenario. In the end, by using the proposed
method, the optimal MDP for the test system under the
impact of both scenarios is established. It is worth noting
that the speed limit (0.04 s) is less than half of the con-
vergence speed of the load flow method for the distribution
system. In global optimization algorithms, a term called
efficiency is used to evaluate the performance of the method
with respect to computational costs [49]. As wementioned, a
speed limit is set for the state estimation to perform faster
than traditional load flows decreasing the computational
cost of the state estimation compared to load flow. Another

Initialize ∆Xi (i= 1, 2, . . . , n)
while (end condition is not satisfied) do Evaluate each dragonfly

Update (F) and (E)
Update the main coefficients (i., w, s, a, c, f, and et)

Calculate S, A, C, F, and E (using Eqs. (1) to (5))
Update step vectors (∆Xt+1) using Eq. (6)
Update Xt+1 using Eq. (10)

Return the best solution

Figure 3: Dragonfly algorithm process.
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Import accuracy and the
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Figure 5: Proposed flowchart of the scheme.

6 Mathematical Problems in Engineering



term, which is also mentioned in [49], is effectiveness which
is a key index that counts the algorithm’s ability to find
optimality.

+e cost of PMU is assumed to be 2000 $, and the smart
meter depends on its inputs, which are from 1000 to 3000 $
[50].

+e base parameters of the mentioned system are 11 kV
for voltage, 100MVA for power, 1.21 ohm for impedance,
and 60Hz for frequency. +e standard deviation for bus
measurements is 0.008, and for line, measurements are
0.004.

For BDA, the iteration limit is 200, and the number of
particles is 200, while the number of variables is 65, and sums
of nb and nl are 33 and 32, respectively.

Although SE works in the static space, the speed of
convergence is a crucial element giving an advantage to the
SE over the customary load flow. +erefore, with less ac-
curacy, lower speed limitations are assumed in the test
scenarios. +e number of measurements and accuracy are
poles apart, similar to speed and accuracy, meaning that by

minimizing the NoMs, SE will be less accurate, so some
boundaries are implemented in the method, such as accu-
racy range and speed limit.

Figure 6 describes the BDA algorithm’s efficiency, the
convergence speed towards optimality, and success in op-
timizing the problem. As mentioned before, the comparison
between BDA and GA took place in Tables 4 and 5, illus-
trating the simulation results of the test system under first
and second scenarios influences. It is worth mentioning that
GA method results are driven from [29].

Figure 7 illustrates 3D figures from scenarios 1 and 2.
+e figure illustrates how the number of measurements
changes with different accuracies when there are no DGs
implemented in the test system and the number of repeats
needed for SE to find the answer by the given accuracy in the
first scenario.

By describing the MDP in IEEE 33-bus distribution
system, Figures 8 and 9 are dedicated to simulation results
for both scenarios. It is assumed that some primary mea-
surement devices are placed in the test system, and both

Table 3: Different scenarios performed in the IEEE 33-bus system.

DGs installed DGs placements (bus) Accuracy range (%) Speed limits (for each accuracy)
Scenario 1 No — 92 to 94 0.04
Scenario 2 Yes 14, 30 92 to 94 0.04

Table 2: Measurement devices in which V and I are voltage and current phasor while P and Q are active and reactive power, respectively.

Measurement type Measuring unit Measured quantities
Branch PMU V, P, Q
Injection Smart meter Abs(V), P, Q
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Iteration
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Convergence curve-first scenario
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Convergence curve-second scenario

Figure 6: Convergence curve shows a minimized number of measurements with 94% accuracy from both scenarios.
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proposed measurement devices are implemented, as shown
in the mentioned figures. +erefore, the comparison be-
tween BDA and GA became possible.

DGs active power injections are 200 and 300 kW and are
installed in buses 14 and 30, respectively, and the related
measurements extracted from forward-backward load flow
results in IEEE 33-bus with the installation of two DGs.

+e first scenario convergence curve with 94% accuracy
is shown in Figure 6, and the effectiveness of the proposed
algorithm is shown with measurements per iteration in the
mentioned plot. As it is visible, it is proposed in [3] that the
BDA algorithm benefits from fast iteration and a sharp
convergence curve. Figure 6 also describes the convergence
curve of the second scenario with the given accuracy per-
centage. +e term called effectiveness is also fully under-
standable in Figure 6.

While DGs are not connected to the test network, it is
observed that with the same speed limit, when SE becomes
more accurate, optimized NoMs increase, and for less ac-
curacy, fewermeasurement devices are needed to achieve the
accuracy goal. +e speed needed for SE to converge each
stage of accuracy has been shown in Figure 7. For the first
scenario, the mentioned figure describes that with more
optimized NoMs, the speed of SE declines.

For less accuracy, however, while optimized NoMs de-
crease, the speed of SE slightly increases, which is logical
because, with a smaller number of measurements, the speed
of convergence raises dramatically, but with numerous
measurements, the speed of convergence decreases.

When two DGs are implemented in the test system, it is
observed that NoMs in high accuracy scenarios have
changed significantly while the speed of convergence for SE

3d figure, second scenario

3d figure, first scenario

9
0.06

10

0.05 94

11

93.50.04 93

12

0.03 92.50.02 92

N
oM

s

speed (s) accuracy (%)

5
0.0203 0.0202 94

5.5

N
oM

s

0.0201 93.5
speed (s) accuracy (%)

0.02 93

6

0.0199 92.50.0198 92

Figure 7: 3D figure from both scenarios representing the changes of accuracy, speed, and NoMs.

Traditional Measurement (bus) Smart Meter
PMUTraditional Measurement (line)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25

26 27 28 29 30 31 32 33

Figure 8: Measurement devices placement in the first scenario with 92% of accuracy.
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decreased and exceeded the mentioned limit, as it is ob-
servable in Figure 7. As accuracy falls, NoMs drop.

+e impact of traditional measurements is significant,
and while for the first scenario, there are 20 prior mea-
surements, and in the second scenario, there are 15.

+e convergence speed in the second scenario rose
sharply at the cost of the lower accuracy, and similar to the
prior scenario, when NoMs decrease, SE can converge with
more acceleration, and as shown in Figure 9, simulation
results for the DG scenario describe the same data. Due to a
low variety of voltage (between 0.99 and 0.92 p.u), for high
accuracies, NoMs changed significantly.

Figures 8 to 11 show the place of devices in the IEEE 33-
bus distribution system.

A significant fact about Figures 10 and 11 is that in buses
14 and 30, in which DGs are installed, a smart meter is
implemented, which shows that the system observability
depends highly on those buses.

Tables 4 to 7 illustrate a remarkable achievement by BDA
compared to GA and mixed-integer linear programming
(MILP), which shows that even with the highest accuracy,
the optimized solution proposed by BDA is less than the
lowest accuracy proposed solution GA. +is is because of
MDP in two DG-implemented buses presented by the BDA

Traditional Measurement (bus) Smart Meter
PMUTraditional Measurement (line)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25

26 27 28 29 30 31 32 33

Figure 9: Measurement devices placement in the first scenario with 94% of accuracy.

Traditional Measurement (bus) Smart Meter
PMUTraditional Measurement (line)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25

26 27 28 29 30 31 32 33

Figure 10: Measurement devices placement in the second scenario with 92% of accuracy.
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algorithm. It is worth noting that linear programming is also
used in [46, 47].

It is illustrated from Tables 6 and 7 that when NoMs
decrease, quality falls dramatically, and in the second sce-
nario with higher accuracy, BDA finds an optimum

placement. However, the WLS SE surpasses the speed limit,
so the answer is not valid when the speed of the method is
vitally important.

+e cost of devices, compared to others, decreased due to
more optimumNoMs by using BDA, showing that the study

Traditional Measurement (bus) Smart Meter
PMUTraditional Measurement (line)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25

26 27 28 29 30 31 32 33

Figure 11: Measurement devices placement in the second scenario with 94% of accuracy.

Table 4: Second scenario with 92% accuracy.

NoMs Cost
[29] 10 28000$
+is paper 9 24000$

Table 5: Second scenario with 94% accuracy.

NoMs Cost
[29] Not observable N/A
+is paper 12 32000$

Table 6: First scenario with 94% accuracy.

Quality NoMs Cost
[2] 6158703 11 22000$
+is paper 9432851 6 15000$

Table 7: First scenario with 92% accuracy.
Quality NoMs Cost

[2] 6197340 6 12000$
+is paper 8463721 5 10000$
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method in cases of quality, cost, accuracy, and the minimum
number of measuring devices has excellent achievements.

Figures 12 and 13 show the test system voltages and
active and reactive powers for each bus derived by using load
flow and WLS state estimation techniques for 94% and 92%
accuracy in the second scenario.

In light of the above results, for both scenarios within the
case of different accuracies, BDA optimum answers for
lower accuracy were 5 and 9 NoMs, respectively. In refer-
ences [2, 29], NoMs were 6 and 10 for low accuracy. For
higher accuracy as observable, by using the proposed
method, NoMs are significantly lower than [2] 6 and 11,
respectively. In the second scenario, the author of [29] was

not able to find an optimized answer. Although the speed
burdens were surpassed, this article was carried out to find
the optimal answer.

It is understandable from Figure 12 that the peak de-
viation from the standard value was about 0.05 for the active
power of bus 15 and the reactive power of bus 14. In Fig-
ure 13, the deviation reaches its highest point at bus 13 and
10 in active and reactive power, respectively.

In this article, the cost and quality in the first scenario
were lower than those in [2]. +e cost of measurement
devices in the second scenario was lower too for the pro-
posed method, which is one of the salient achievements of
this paper.
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Figure 12: Active power, reactive power, and voltage magnitude for each bus at the second scenario with 94% of accuracy.
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6. Conclusion

+e key contribution of this article is that the methodology
employed is accustomed to find adequate MDP for SE in the
distribution network by considering the DG installation.
BDA solves the optimization problem, and the SE problem is
approached by the WLS method while the IEEE 33-bus
distribution standard test system is employed to examine the
mentioned method with relevant network observability
under different situations and different accuracies with a
speed limit which is included in the simulation for power
system state estimation.

+e application of the PMUs at the distribution systems
can bring numerous benefits to distribution system man-
agement in a very way that overcomes the scarcity of
measurements and improves the distribution system state
estimation performance. However, the main obstacle to be
tackled is that the PMUs are relatively costlier than smart
meters. +e authors thank GPS antennas and time signal
distributions.

+e simulation result of two different case studies shows
that observability under the DG influence needs more
measurement devices than the other scenario in which no
DGs are installed in the tested system. When the high

accuracy is implemented in SE, the number of measurement
devices slightly increases in both scenarios. While the ac-
curacy of SE is assumed to be lower, the optimization al-
gorithm suggests a smaller number of measurement units to
reach the desired accuracy for the test system observability.

+is article showed how BDA outperformed GA and
linear optimization algorithms. In the case of operation costs
and cost of measurement devices, the mentioned method
found a more economical answer than the other techniques.
Concerning output quality, which was considered in the first
scenario, BDA found answers with more quality of results.
+erefore, the proposed method in terms of data quality,
cost, and NoMs surpassed other methods.

Note that the PMU performance criteria might vary
within the structure and parameters of distribution systems.
+e key contribution of this paper is that the methodology is
accustomed find adequate PMU for better state estimation
accuracy and their installation sites, which will improve the
distribution state estimation performance and overall ac-
curacy. In the end, the PMU accuracy at specific sites is often
selected in accordance with the current PMU standards.

Unbalanced three-phase loads and operation are not
taken into account in this article, along with observability
during faults and dynamic state estimation. Consequently, as
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Figure 13: Active power, reactive power, and voltage magnitude for each bus at the second scenario with 92% of accuracy.
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part of future work, our focus will be on dynamic state
estimation and its applications such as observability of a
system, while a fault occurs, and cyber-attack in the dis-
tribution system.

Abbreviations

BDA: Binary dragonfly algorithm
DG: Distributed generation
GA: Genetic algorithm
Iter: Iteration
MDP: Measurement devices placement
MLE: Maximum likelihood estimation
NoMs: Number of measurements
PMU: Phasor measurement unit
PSO: Particle swarm optimization
SE: State estimation
WLS: Weight least square
e: Error vector
h(x): Nonlinear function
k: Number of iterations
m: Number of measurements
nb: Number of buses
nl: Number of lines
s, a, c, f, and et: Weights of the separation
x: State vector
z: Measurement vector
σε: Standard deviation
A: Alignment
C: cohesion
E: Enemy disturbance level
F: Food source
Floc: Food location
J(x): Jacobian matrix
M: Measurement matrix
R: Diagonal matrix of standard deviation
S: Separation
Vj: Speed of the jth neighbor
Z: +e input of the algorithm generated by

DA.
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