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A strategic decision-making technique can help the decision maker to accomplish and analyze the information in an efficient
manner. However, in our real life, an uncertainty will play a dominant role during the information collection phase. To handle
such uncertainties in the data, we present a decision-making algorithm under the single-valued neutrosophic (SVN) environment.
)e SVN is a powerful way to deal the information in terms of three degrees, namely, “truth,” “falsity,” and “indeterminacy,”
which all are considered independent. )e main objective of this study is divided into three folds. In the first fold, we state the
novel concept of complex SVN hesitant fuzzy (CSVNHF) set by incorporating the features of the SVN, complex numbers, and the
hesitant element. )e various fundamental and algebraic laws of the proposed CSVNHF set are described in details. )e second
fold is to state the various aggregation operators to obtain the aggregated values of the considered CSVNHF information. For this,
we stated several generalized averaging operators, namely, CSVNHF generalized weighted averaging, ordered weighted average,
and hybrid average. )e various properties of these operators are also stated. Finally, we discuss a multiattribute decision-making
(MADM) algorithm based on the proposed operators to address the problems under the CSVNHF environment. A numerical
example is given to illustrate the work and compare the results with the existing studies’ results. Also, the sensitivity analysis and
advantages of the stated algorithm are given in the work to verify and strengthen the study.

1. Introduction

)emultiattribute decision-making (MADM)method is one
of the efficient methods to solve the decision-making
problems by considering the different experts, their pref-
erences, and alternatives. )e chief objective of this problem
is to address the best alternatives, when the information
related to them is accessed under the vague and imprecise
information. In other words, the decision-making strategy
aims to grow the chance of the benefits and reduce the

chance of the cost during the decision-making procedure for
simplifying genuine life dilemmas. Since its appearance, a
huge number of people have worked on decision-making
strategies under the presence of a crisp set. However, in
several situations, it is very complicated to provide the in-
formation related to the objects in terms of precise number,
due to the involvement of the uncertainties in the data. To
reduce the loss of data during the process, in 1965, Zadeh [1]
firstly put forward the theory of fuzzy set (FS), by extending
the range of the crisp set (which is {0, 1}) to the unit interval.
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Due to this beneficial work, a lot of space was created for a
decision maker to make a beneficial decision from the family
of alternatives. After the successful presentation of the FS
theory, a huge number of individuals have described it in the
circumstance of different places [2]. As ambiguity and
complexity are involved in every region of life, in the
presence of these dilemmas, it is very complicated for FS to
survive with the old mathematical structure (covered only
truth grade (TG)). In several cases, several experts have faced
a lot of data in the arrangement of “yes” or “no,” which is
very complex for FS to resolve. To reduce the level of the
deficiencies and worries, Atanassov [3] changed the shape of
FS and put forward the well-known shape, called intui-
tionistic FS (IFS). IFS is the modified technique of FS, which
includes two different terms, called TG Ŧ(u) and falsity
grade (FG) F(u) with a satiable and strong character in the
shape of 0≤Ŧ(u) + F(u)≤ 1. IFS is a different structure from
themathematical structure of FS to switch uncertain data. By
taking advantage of the IFSs, several studies have been
conducted by various scholars such as interval-valued IFSs
[4], distance measures [5], circular IFS [6], and so on.

In the IFSs, each element is characterized with two
degrees, truth and falsity, to access the information. How-
ever, in several real-life situations, very complex ambiguity is
encountered during processing the information, and hence
under the consideration of these dilemmas, it is very
complicated for IFS to survive with the old mathematical
structure (in terms of TG and FG only). In other words,
sometimes several experts have faced a lot of data in the
arrangement of “yes,” “abstinence,” and “no,” which is very
complex for IFS to resolve. To reduce the level of such
deficiencies, the fundamental mathematical structure of the
neutrosophic set (NS) was put forward by Smarandache [7].
NS is one of the massive dominant and reliable techniques
which can easily determine the solution to every complicated
problem that occurs in genuine life dilemmas)e concept of
NS is extended to the single-valued NS (SVNS) and its
corresponding operators [8] by the researchers. Since its
appearance, scholars have studied it under different envi-
ronments. For instance, in [9], the authors have defined the
Dombi weighted aggregation operators for the collections of
SVNSs. In [10], the scholars put forward the Bonferroni
mean operators for SVNS. In [11], the authors put forward
the COPRAS method for SVNS. For more details about the
study on NSs, we refer the readers to [12–17] and their
corresponding references.

In all the studies listed above, almost all the studies were
conducted by considering only the real component of the
grades of the element. However, the periodic nature of the
rating of the expert is not considered in the decision-making
process. To address it completely, there is a need to express
the rating of the expert from real interval [0, 1] to the unit
disc in the complex plane. )is idea was highlighted by
Ramot et al. [18] in 2002 who presented the concept of
complex FS (CFS). In CFS, each object is identified with two
degrees TG and FG under complex domain such as t′ei2πθ

t′

where t′, θt′ ∈ [0, 1] represent the real and amplitude terms
of the expert rating. It is clearly seen that CFS can handle the
vague information with one or two sorts of data in the shape

of singleton terms. Some application of the CFS towards the
decision-making process is summarized in [19]. Again, the
scope of the CFS is limited as it considers only the truth
degree and fails to consider the falsity degree at the time of
the execution. For instance, if some expert diagnosed data
like “yes” or “no” and each has two possibilities, then CFS is
very complicated for diagnosing the solution of the above
scenario. To reduce the above complications, Alkouri and
Salleh [20] proposed the complex IFS (CIFS), which includes
the two different terms, called TG (t′ei2πθ

t′ ) and FG
(f′ei2πθ

f′ ) in the shape of complex numbers with proficient
and well-known characteristics 0≤ t′ + f′ ≤ 1 and
0≤ θt′ + θf′ ≤ 1. To handle problematic and unseen situa-
tions, a huge number of people have employed the above
theory in different regions, for illustration, the study in [21]
includes the distance measures constructed under the CIFSs,
while the study in [22] includes the information measures
constructed under the CIFS. Further, CIFS theory has been
widely applied in different categories such as aggregation
operators [23], group theory [24], and generalized geometric
operators [25].

Since CIFS theory is able to deal only with “yes” or “no”
decision in the form of degrees TG and FG, it is unable to deal
with the term “abstinence.” For this, a structure of complex
NS (CNS) was proposed by Ali and Smarandache [26] by
considering the independent membership grades of “yes,”
“abstinence,” and “no” over the unit disc of complex plane.
)e structure of CNS is easily implemented in every region of
life which includes ambiguity and awkward sort of data. In
order to flexibly share preferences, Torra [27] came up with
the idea of hesitant fuzzy set (HFS), which allowed agents to
providemultiple membership grades for a specific alternative-
criterion pair. By this, the issue of hesitation was handled
effectively. Related to MADM problems, several researchers
have addressed the problem by using HFS features. For in-
stance, Rodriguez et al. [28] investigated an interesting review
onHFSmodels and its usage inMADMmodels. Xu and Zhou
[29] identified a problem with HFS and designed a consensus
building model by considering multiple experts for a specific
alternative-criterion pair. In [30], the authors defined the
similarity measures based on complex HFS and stated their
application to pattern recognition.

From the above listed literature, we noted that the several
researchers have utilized the advantages of CIFS, HFS, NS,
and CNS to address the problems related to the MADM.
However, it is noted that all these theories are unable to
handle some uncertain cases which occur during accessing
the decision-making problems. For instance, if a person
made committee, for laptop enterprise, which consists of ten
members, the head of this committee would like to choose
the suitable laptop according to the feasibility and suitability.
To get the best one, each committee member provides their
opinions about different laptops in terms of their prices and
name of the model. As the model and price of the laptop
change frequently over time, there exist a lot of uncertainties
during the execution. Under such circumstances, it is dif-
ficult to access the information using several existing sets. To
address it completely, in this article, we have presented an
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extension of the NSs by keeping the features of hesitant set
and complex membership degree and defined the novel set
named as complex single-valued neutrosophic hesitant fuzzy
set (CSVNHFS). )e idea behind this set is to address the
ambiguity in the data when it is arranged in the form of “yes,”
“abstinence,” and “no” under the complex domain. In the
presented set, each element is characterized with three in-
dependent hesitant degrees, namely, TG (t′eiθ

t′ ), abstinence
(a′eiθ

a′ ), and FG (f′eiθ
f′ ), over the unit disc of complex plane

with the conditions 0≤ t′ + a′ + f′ ≤ 3 and + where
0≤ t′, a′, f′ ≤ 1 and 0≤ θt′ , θa′ , θf′ ≤ 2. After managing the
information under such features and to state more infor-
mation about it, we define various operational laws and study
their characteristics. To explore about the laws, we stated
several weighted averaging operators to aggregate the col-
lective information into a single one. Additionally, we state a
MADM algorithm to explain the working of the proposed
work and demonstrate it with the help of numerical examples.
)e major advantages of the proposed set are that several
existing theories are considered as a special case of the
proposed one. For instance, by removing the components
θt′ , θa′ , θf′ during the information phase, the proposed set
reduces to SVNS. On the other hand, when we set
θa′ � θf′ � 0, then the set reduces to CHFS. Similarly, when
we set θa′ � 0 and all other degrees as a single number, then it
reduces to CIFS. Finally, when we consider all the degrees in
the form of singleton set, then the proposed CSVNHFS re-
duces to CSVNS, while when we set θt′ � θa′ � θf′ � 0, then
the set reduces to SVN hesitant fuzzy set.

In this paper, the main contribution of the present work
is summarized as follows:

(1) To present a new concept named as CSVNHFS to
address the uncertainties in the data and hence
describe their algebraic and operational laws.

(2) To initiate several generalized averaging operators,
namely, CSVNHF generalized weighted averaging,
ordered weighted average, and hybrid average,
denoted by CSVNHFGWA, CSVNHFGOWA, and
CSVNHFGHWA, respectively

(3) To discuss the MADM technique under the presence
of stated work. Also, to show the flexibility of the
stated operators, several important results and their
properties are also elaborated.

(4) A numerical example is given to illustrate the work
and compare the results with the existing studies’
results. Also, the sensitivity analysis and advantages
of the stated algorithm are given in the work to verify
and strengthen the study.

)e rest of the work is organized as follows. In Section 2,
we revise various prevailing concepts like FSs, CFSs, NSs,
SVNSs, CNSs, HFSs, generalized weighted averaging
(GWA), generalized ordered weighted averaging (GOWA),
generalized hybrid averaging (GHA) operators, and their
operational laws. In Section 3, we analyze the fundamental
theory of the CSVNHF setting and described its algebraic

laws. In Section 4, we define the various generalized oper-
ators, namely, CSVNHFGWA, CSVNHFGOWA, and
CSVNHFGHWA. To show the flexibility of the diagnosed
operators, several important results and their properties are
also elaborated. In Section 5, a MADM algorithm is stated
and illustrated with numerical example. Sensitivity analysis
and advantages of the work are also presented to verify and
feasibility of the theory. Section 6 draws the conclusion of
our study.

2. Preliminaries

In this section, some prevailing concepts are revised. Let X,
Ŧ(u), Ą(u), and F(u), be fixed set, TG, abstinence, and FG,
respectively.

Definition 1 (see [1]). )e FS is initiated by

F �
(u, Ŧ(u))

u ∈ X
􏼨 􏼩, (1)

where 0≤Ŧ(u)≤ 1.

Definition 2 (see [18]). )e CFS is initiated by

N �
(u, Ŧ(u))

u ∈ X
􏼨 􏼩, (2)

where Ŧ(u) � t′eiθ
t′ with the conditions 0≤ t′ ≤ 1 and

0≤ θt′ ≤ 2.

Definition 3 (see [7]). )e NS is initiated by

N �
(u, Ŧ(u), Ą(u), F(u))

u ∈ X
􏼨 􏼩, (3)

with the conditions 0− EŦ(u) + Ą(u) + F(u)E3+ and
0− EŦ(u), Ą(u), F(u)E1+. Further, n � Ŧ(u), Ą(u), F(u)􏼈 􏼉

represents the NN (neutrosophic number).

Definition 4 (see [8]). )e SVNS is initiated by

N �
(u,Ŧ(u), Ą(u), F(u))

u ∈ X
􏼨 􏼩, (4)

with the conditions 0≤Ŧ(u) + Ą(u) + F(u)≤ 3 and
0≤Ŧ(u), Ą(u), F(u)≤ 1. Further, n � Ŧ(u), Ą(u), F(u)􏼈 􏼉

represents the single-valued neutrosophic number (SVNN);
simply, we write n � (Ŧ, Ą,F).

Definition 5 (see [26]). )e CNS is initiated by

N �
(u,Ŧ(u), Ą(u), F(u))

u ∈ X
􏼨 􏼩, (5)

where Ŧ(u) � t′eiθ
t′ , Ą(u) � a′eiθ

a′ , and F(u) � f′eiθ
f′ with

the conditions 0− ≤ t′ + a′ + f′ ≤ 3+ and
0− ≤ θt′ + θa′ + θf′ ≤ 6+, where 0− ≤ t′, a′, f′ ≤ 1+ and
0− ≤ θt′ , θa′ , θf′ ≤ 2+. Further, n � Ŧ(u), Ą(u), F(u)􏼈 􏼉 rep-
resents the complex neutrosophic number (CNN); simply,
we write n � (Ŧ, Ą,F) � (t′eiθ

t′ , a′eiθ
a′ , f′eiθ

f′ ).
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Definition 6. (see [27]). A HFS is initiated by

E � u, hE(u)( 􏼁: where hE(u) is a finite subset of [0, 1]􏼈 􏼉, (6)

is called HFS, where h � hE(u) is called hesitant fuzzy el-
ement (HFE).

Definition 7 (see [27]). Let h, h1, and h2 be three HFEs with
c> 0. )en,

(1) h1 ⊕ h2 � ∐t1∈h1 ,t2∈h2
t1 + t2 − t1t2􏼈 􏼉.

(2) h1 ⊗ h2 � ∐t1∈h1 ,t2∈h2
t1t2􏼈 􏼉.

(3) hc � 􏽑t∈h tc{ }.
(4) ch � ∐t∈h 1 − (1 − t)c

{ }.

Definition 8 (see [8]). )e generalized weighted average
(GWA) operator is given by GWA: Ωn⟶Ω:

GWA n1, n2, . . . , nn( 􏼁 � 􏽘
n

i�1
ωin

c

i
⎛⎝ ⎞⎠

1/c

, (7)

where Ω represents the family of all positive integers with
c> 0. Further, the weighted vector is denoted and defined by
ω � (ω1,ω2, . . . ,ωn)Ŧ, ωi ∈ [0, 1], where 􏽐

n
i�1 ωi � 1.

Definition 9 (see [8]). )e generalized ordered weighted
average (GOWA) operator is given by GOWA: Ωn⟶Ω:

GOWA n1, n2, . . . , nn( 􏼁 � 􏽘
n

i�1
ωin
′c
o(i)

⎛⎝ ⎞⎠

1/c

, (8)

where Ω represents the family of all positive integers with
c> 0 and no(i)

′ is the ith largest term of ni, i.e., no(i)
′ ≤ no(i− 1)

′.
Further, the weighted vector is denoted and defined by
ω � (ω1,ω2, . . . ,ωn)Ŧ, ωi ∈ [0, 1], where 􏽐

n
i�1 ωi � 1.

Definition 10 (see [8]). )e generalized hybrid weighted
average (GHWA) operator is given by GHWA: Ωn⟶Ω:

GHWA n1, n2, . . . , nn( 􏼁 � 􏽘
n

i�1
ωin
′c
o(i)

⎛⎝ ⎞⎠

1/c

, (9)

where Ω represents the family of all positive integers with
c> 0 and n0(i)

′ is the ith largest term of ni, i.e., no(i)
′ ≤ no(i− 1)

′,
where ni

′ � nώini. Further, the weighted vector is denoted
and defined by ώ � (ώ1,ώ2, . . . ,ώn)Ŧ,ώi ∈ [0, 1], where
􏽐

n
i�1ώi � 1, and ω � (ω1,ω2, . . . ,ωn)Ŧ, ωi ∈ [0, 1],

􏽐
n
i�1 ωi � 1.

3. Proposed CSVNHFS

In this study, we explored two sets named as CSVNSs and
CSVNHFSs and their algebraic laws.

3.1.Complex Single-ValuedNeutrosophicFuzzySet (CSVNFS)

Definition 11. )e CSVNFS is initiated by

N �
(u,Ŧ(u), Ą(u), F(u))

u ∈ X
􏼨 􏼩, (10)

where Ŧ(u) � t′eiθ
t′ , Ą(u) � a′eiθ

a′ , and F(u) � f′eiθ
f′ with

the conditions 0≤ t′ + a′ + f′ ≤ 3 and 0≤ θt′ + θa′ + θf′ ≤ 6,
where 0≤ t′, a′, f′ ≤ 1 and 0≤ θt′ , θa′ , θf′ ≤ 2. Further, u �

Ŧ(u), Ą(u), F(u)􏼈 􏼉 represents the complex single-valued
neutrosophic fuzzy number (CSVNFN). Symbolically,
n � (Ŧ, Ą,F) � (t′eiθ

t′ , a′eiθ
a′ , f′eiθ

f′ ).

Definition 12. Let n1 � (Ŧ1, Ą1, F1) � (t1′e
iθ

t1′ , a1′e
iθ

a1′ , f1′e
iθ

f1′)

and n2 � (Ŧ2, Ą2, F2) �(t2′e
iθ

t2′ , a2′e
iθ

a2′ , f2′e
iθ

f2′) be two
CSVNFNs with c> 0. )en,

(1) n1 ⊕ n2 � (t1′ + t2′ − t1′t2′)e
i(θ

t′1
+θ

t′2
− θ

t1′
θ

t2′
/2π)

, (a1′a2′)􏼐

e
i(θ

a1′
θ

a2′
/2π)

(f1′f2′)e
i(θ

f1′
θ

f2′
/2π)

).
(2) n1 ⊗ n2 � (t1′t2′)e

i(θ
t1′
θ

t2′
/2π)

, (a1′ + a2′ − a1′a2′)􏼐

e
i(θ

a1′
+θ

a2′
− θ

a1′
θ

a2′
/2π)

(f1′ + f2′ − f1′f2′)e
i(θ

f1′
+θ

f2′
− θ

f1′
θ

f2′
/2π)

).
(3) cn1 � ((1 − (1 − t1′)

c)e
i2π(1− (1− θ

t1′
/2π)c)

, a
′c
1 e

iθc

a1′ ,

f
′c
1 e

iθc

f1′).

(4) n
c
1 � (t′

c

1 e
iθc

t′1 , (1− (1 − a1′)
c)e

i2π(1− (1− θ
a1′
/ 2π)c), (1 −

(1 − f1′)
c) e

i2π(1− (1− θ
f1′
/2π)c)

).

Theorem 1. Let n1 � (Ŧ1, Ą1, F1) � (t1′e
iθ

t1′ , a1′e
iθ

a1′ , f1′e
iθ

f1′)

and n2 � (Ŧ2, Ą2, F2) � (t2′e
iθ

t2′ , a2′e
iθ

a2′ , f2′e
iθ

f2′) be two
CSVNFNs with c, c1, c2 > 0. �en,

(1) n1 ⊕ n2 � n2 ⊕ n1.
(2) n1 ⊗ n2 � n2 ⊗ n1.
(3) c(n1 ⊕ n2) � cn2 ⊕ cn1.
(4) c1n1 ⊕ c2n1 � (c1 + c2)n1.
(5) n

c
1 ⊗ n

c
2 � (n1 ⊗ n2)

c.
(6) n

c1
1 ⊗ n

c2
1 � n

c1+c2
1 .

Proof. It can be easily derived, so we omit it here. □

Definition 13. Let n � (ti
′eiθ

ti
′ , ai
′eiθ

ai
′ , fi
′eiθ

fi
′) be CSVNFN.

)en,

Ş(n) �
1
6

ti
′ + 1 − ai

′( 􏼁 + 1 − fi
′( 􏼁( 􏼁 +

1
2

θti
′ + 1 − θai

′􏼐 􏼑􏼐􏼚

+ 1 − θfi
′􏼐 􏼑􏼑􏽯

(11)

is called the score function (SF), and the accuracy function
(AF) is defined as

H(n) �
1
6

1 − ti
′( 􏼁 + ai
′ + fi
′( 􏼁 +

1
2

1 − θti
′􏼐 􏼑 + θai

′ + θfi
′􏼐 􏼑􏼚 􏼛.

(12)

If we considered the two CSVNFNs n1 � (Ŧ1, Ą1, F1) �

(t1′e
iθ

t1′ , a1′e
iθ

a1′ , f1′e
iθ

f1′) and n2 � (Ŧ2, Ą2, F2) � (t2′e
iθ

t′2 ,

a2′e
iθ

a′2 , f2′e
iθ

f′2), then

(1) If Ş(n1)> Ş(n2), then n1 > n2.
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(2) If Ş(n1)< Ş(n2), then n1 < n2.
(3) If Ş(n1) � Ş(n2), then n1 � n2.

(1) If H(n1)>H(n2), then n1 > n2.
(2) If H(n1)<H(n2), then n1 < n2.
(3) If H(n1) � H(n2), then n1 � n2.

3.2. Complex Single-Valued Neutrosophic Hesitant Fuzzy Set
(CSVNHFS)

Definition 14. )e CSVNHFS is denoted and defined by

N �
(u,Ŧ(u), Ą(u), F(u))

u ∈ X
􏼨 􏼩, (13)

where Ŧ(u) � t � t′eiθ
t′ /t ∈ Ŧ(u)􏽮 􏽯, Ą

(u) � a � a′eiθ
a′ /a ∈ Ą(u)􏽮 􏽯, and F(u) � f � f′eiθ

f′ /􏼚

f ∈ F(u)} with the conditions 0≤max(t′) + max(a′)+
max(f′)≤ 3 and 0≤max(θt′) + max(θa′) + max(θf′)≤ 6,
where 0≤ t′, a′, f′ ≤ 1 and 0≤ θt′ , θa′ , θf′ ≤ 2. Further, n �

Ŧ(u), Ą(u), F(u)􏼈 􏼉 represents the CSVNHFN; simply, we
write n � (Ŧ, Ą,F) � (t′eiθ

t′ , a′eiθ
a′ , f′eiθ

f′ ).

Definition 15. Let n1 � (Ŧ1, Ą1, F1) � (t1′e
iθ

t′1 , a1′e
iθ

a′1 ,

f1′e
iθ

f′1) and n2 � (Ŧ2, Ą2, F2) �(t2′e
iθ

t2′ , a2′e
iθ

a2′ , f2′e
iθ

f2′) be two
CSVNHFNs. )en,

(1) n1 ∪ n2 � (Ŧ1 ∪Ŧ2, Ą1 ∩ Ą2, F1 ∩F2) �

(t1′∨t2′)e
i(θ

t1′
∨θ

t2′
)
, (a1′∧a2′)e

i(θ
a1′
∧θ

a2′
)

(f1′∧f2′)e
i(θ

f1′
∧θ

f2′
)􏼠 􏼡.

(2) n1 ∩ n2 � (Ŧ1 ∩Ŧ2, Ą1 ∪ Ą2, F1 ∪F2) �

(t1′∧t2′)e
i(θ

t1′
∧θ

t2′
)

(a1′∨a2′)e
i(θ

a1′
∨θ

a2′
)

(f1′∨f2′)e
i(θ

f1′
∨θ

f2′
)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠.

Definition 16. Let n1 � (Ŧ1, Ą1, F1) � (t1′e
iθ

t1′ , a1′e
iθ

a1′ , f1′e
iθ

f1′)

and n2 � (Ŧ2, Ą2, F2) � (t2′e
iθ

t2′ , a2′e
iθ

a2′ , f2′e
iθ

f2′) be two
CSVNHFNs with c> 0. )en,

(1) n1 ⊕ n2 � (Ŧ1 ⊕Ŧ2, Ą1 ⊕ Ą2, F1 ⊕F2) �

∐
t1′∈Ŧ1, a1′∈Ą1, f1′∈F1,
t2′∈Ŧ2, a2′∈Ą2, f2′∈n2

t1′ + t2′−
t1′t2′

􏼠 􏼡e
i

θt1′
+ θt2′

−
θt1′
θ

t2′
/2π􏼠 􏼡

, (a1′a2′)e
i(θ

a1′
θ

a2′
/2π)

(f1′f2′)e
i(θ

f1′
θ

f2′
/2π)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2) n1 ⊗ n2 � (Ŧ1 ⊗Ŧ2, Ą1 ⊗ Ą2, F1 ⊗F2) �

∐
t1′∈Ŧ1 ,a1′∈Ą1 ,f1′∈F1

t2′∈Ŧ2 ,a2′∈Ą2 ,f2′∈F2

(t1′t2′)e
i(θ

t1′
θ

t2′
/2π)

,
a1′ + a2′−

a1′a2′
􏼠 􏼡e

i
θa1′

+ θa2′
−

θa1′
θa2′

/2π􏼠 􏼡
,

f1′ + f2′−
f1′f2′

􏼠 􏼡e

i
θf1′

+ θf2′
−

θf1′
θf2′

/2π􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3) cn1 � ∐
t1′∈Ŧ1 ,a1′∈Ą1 ,f1′∈F1

(1 − (1 − t1′)
c
)(

e
i2π(1− (1− θ

t1′
/2π)c)

, a
′c
1 e

iθc

a1′ , f
′c
1 e

iθc

f1′).
(4) n

c
1 � ∐

t1′∈Ŧ1 ,a1′∈Ą1 ,f1′∈F1
t
′c
1 e

iθc

t1′ , (1 − (1 − a1′)
c
)􏼒

e
i2π(1− (1− θ

a1′ /2π)c)(1 − (1 − f1′)
c
)e

i2π(1− (1− θ
f1′
/2π)c)

).

Theorem 2. Let n1 � (Ŧ1, Ą1, F1) � (t1′e
iθ

t1′ , a1′e
iθ

a1′ , f1′e
iθ

f1′)

and n2 � (Ŧ2, Ą2, F2) �(t2′e
iθ

t2′ , a2′e
iθ

a2′ , f2′e
iθ

f2′) be two
CSVNHFNs with a positive real number c, c1, c2 > 0. �en,

(1) n1 ⊕ n2 � n2 ⊕ n1.
(2) n1 ⊗ n2 � n2 ⊗ n1.
(3) c(n1 ⊕ n2) � cn2 ⊕ cn11/2.
(4) c1n1 ⊕ n2c1 � (c1 + c2)n1.
(5) n

c
1 ⊗ n

c
2 � (n1 ⊗ n2)

c.
(6) n

c1
1 ⊗ n

c2
1 � n

c1+c2
1 .

Definition 17. Let n � (ti
′eiθ

ti
′ , ai
′eiθ

ai
′ , fi
′eiθ

fi
′) be CSVNHFN.

)en,

Ş(n) �
1
6

1
α

􏽘

α

i�1
ti
′ +

1
β

􏽘

β

i�1
1 − ai
′( 􏼁 +

1
c

􏽘

c

i�1
1 − fi
′( 􏼁⎛⎝ ⎞⎠

⎧⎨

⎩

+
1
2

1
α

􏽘

α

i�1
θti
′ +

1
β

􏽘

β

i�1
2 − θai

′􏼐 􏼑 +
1
c

􏽘

c

i�1
2 − θfi

′􏼐 􏼑⎛⎝ ⎞⎠
⎫⎬

⎭

(14)

Is called the SF, and the AF is denoted and defined by

H(n) �
1
6

1
α

􏽘

α

i�1
1 − ti
′( 􏼁 +

1
β

􏽘

β

i�1
ai
′ +

1
c

􏽘

c

i�1
fi
′⎛⎝ ⎞⎠

⎧⎨

⎩

+
1
2

1
α

􏽘

α

i�1
1 − θti

′􏼐 􏼑 +
1
β

􏽘

β

i�1
θai
′ +

1
c

􏽘

c

i�1
θfi
′⎛⎝ ⎞⎠

⎫⎬

⎭.

(15)

If we considered the two CSVNHFNs n1 � (Ŧ1, Ą1, F1) �

(t1′e
iθ

t1′ , a1′e
iθ

a1′ , f1′e
iθ

f1′) and n2 � (Ŧ2, Ą2, F2) � (t2′e
iθ

t′2 ,

a2′e
iθ

a′2 , f2′e
iθ

f′2), then
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(1) If Ş(n1)> Ş(n2), then n1 > n2.
(2) If Ş(n1)< Ş(n2), then n1 < n2.
(3) If Ş(n1) � Ş(n2), then n1 � n2.

(1) If H(n1)>H(n2), then n1 > n2.
(2) If H(n1)<H(n2), then n1 < n2.
(3) If H(n1) � H(n2), then n1 � n2.

4. Some Aggregation Operators
Based on CSVNHFSs

In this section, we propose new aggregation operators called
CSVNHFGWA operator, CSVNHFGOWA operator, and
CSVNHFGHWA operator to aggregate the CSVNHFNs
effectively. )roughout the paper, X represents the fixed set
and the weighted vector is denoted and defined by
ω � (ω1,ω2, . . . ,ωn)Ŧ,ωi ∈ [0, 1], where 􏽐

n
i�1 ωi � 1.

Definition 18. )e CSVNHFGWA operator is given by
CSVNHFGWA: Ωn⟶Ω:

CSVNHFGWA n1, n2, . . . , nn( 􏼁 � 􏽘

n

i�1
ωin

c
i

⎛⎝ ⎞⎠

1/c

, (16)

where Ω represents the family of all CSVNHFNs with c> 0.
)e CSVNHFN is of the form
ni � (ti
′eiθ

ti
′ , ai
′eiθ

ai
′ , fi
′eiθ

fi
′)(i � 1, 2, . . . , n).

Theorem 3. Let ni � (ti
′eiθ

ti
′ , ai
′eiθ

ai
′ , fi
′eiθ

ai
′)(i � 1, 2, . . . , n) be

the family of CSVNHFNs with c> 0. �en, consider the
concept of CSVNHFGWA operator, and we get
CSVNHFGWA(n1, n2, . . . , nn).

1 − 􏽙

n

i�1
∐
ti
′

1 − ti
′( 􏼁c( 􏼁

ωi⎛⎝ ⎞⎠e

i2π 1− 􏽙

n

i�1
∐ti
′∈Ti

1 − θti
′/2π􏼐 􏼑

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

1 − 1 − 􏽙
n

i�1
∐

ai
′∈Ai

1 − 1 − ai
′( 􏼁c( 􏼁

ωi⎛⎝ ⎞⎠

1/c

⎛⎝ ⎞⎠e

i2π 1− 1− 􏽙

n

i�1
∐ti
′∈Ti

1 − 1 − θai
′/2π􏼐 􏼑

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

⎛⎝ ⎞⎠

1 − 1 − 􏽙
n

i�1
∐

fi
′∈Fi

1 − 1 − fi
′( 􏼁c( 􏼁

ωi⎛⎝ ⎞⎠

1/c

⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

Proof. (1) First, we have proven that

􏽘
n

i�1
ωin

c
i �

1 − 􏽙
n

i�1
∐

ti
′∈Ti

1 − ti
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠e

i2π 1− 􏽙

n

i�1
∐ti
′ 1 − θfi

′/2π( 􏼁
c

􏼐 􏼑
ωi⎛⎝ ⎞⎠

􏽙

n

i�1
∐

ai
′∈Ai

1 − 1 − ai
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠e

i2π 􏽙

n

i�1
∐ai
′∈Ai

1 − 1 − θai
′/2π( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

􏽙

n

i�1
∐

fi
′∈fi

1 − 1 − fi
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠e

i2π 􏽙

n

i�1
∐fi
′∈fi

1 − 1 − θfi
′/2π( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)
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We utilize the mathematical induction on n to proof
equation (18). □

Case 1. If we considered n � 1,

n
c
1 � ∐

t1′∈T1 ,a1′∈A1 ,f1′∈f1

t1′( 􏼁
c
e

i θ
t1′

􏼐 􏼑
c

, 1 − 1 − a1′( 􏼁
c

􏼐 􏼑e
i2π 1− 1− θ

a1′
/2π􏼐 􏼑􏼐 􏼑

1 − 1 − f1′( 􏼁
c

􏼐 􏼑ei2π 1 − 1 − θf1′
/2π􏼐 􏼑􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

ω1n
c
1 � ∐

t1′∈T1 ,a1′∈A1 ,f1′∈f1

1 − 1 − t1′( 􏼁
c

􏼐 􏼑
ω1

􏼒 􏼓e
i2π 1− 1− θ

t1′
􏼐 􏼑

c

􏼐 􏼑
ω1

􏼐 􏼑

1 − 1 − a1′( 􏼁( 􏼁
c

􏼐 􏼑
ω1

e
i2π 1− 1− θ

a1′
/2π􏼐 􏼑

c

􏼐 􏼑
ω1

1 − 1 − f1′( 􏼁( 􏼁
c

􏼐 􏼑
ω1

e
i2π 1− 1− θ

f1′
/2π􏼐 􏼑

c

􏼐 􏼑
ω1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(19)

It is true for n � 1. Case 2. If n � k is right, then

􏽘
k

i�1
ωinc

i
�

1 − 􏽙
k

i�1
∐

ti
′∈Ti

1 − ti
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠e
i2π 1− 􏽙

k

i�1
∐

ti
′∈Ti

1− θ
ti
′/2π􏼐 􏼑

c

􏼐 􏼑
ωi

􏼒 􏼓

􏽙

k

i�1
∐

ai
′∈Ai

1 − 1 − ai
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠e
i2π 􏽙

k

i�1
∐

ai
′ ∈Ai

1− 1− θ
ai
′/2π􏼐 􏼑

c

􏼐 􏼑
ωi

􏼒 􏼓

􏽙

k

i�1
∐

fi
′∈fi

1 − 1 − fi
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠e
i2π 􏽙

k

i�1
∐

fi
′ ∈fi

1− 1− θ
fi
′/2π􏼐 􏼑

c

􏼐 􏼑
ωi

􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

)en, we checked for n � k + 1, and we get

ωk+1n
c

k+1 � ∐
t
k+1′ ∈Tk+1′ ,ak+1′ ∈Ak+1′ ,fk+1′ ∈Fk+1′

1 − 1 − tk+1′( 􏼁
c

( 􏼁
ωk+1􏼐 􏼑e

i2π 1− 1− θ
tk+1′

/2π􏼐 􏼑
c

􏼐 􏼑
ωk+1

􏼐 􏼑

1 − 1 − ak+1′( 􏼁
c

( 􏼁
ωk+1e

i2π 1− 1− θ
ak+1′

/2π􏼐 􏼑
c

􏼐 􏼑
ωk+1

1 − 1 − fk+1′( 􏼁
c

( 􏼁
ωk+1e

i2π 1− 1− θ
fk+1′

/2π􏼐 􏼑
c

􏼐 􏼑
ωk+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

and
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􏽘

k+1

i�1
ωini

c
�

􏽙

k

i�1
∐

ai
′∈Ąi

1 − 1 − ai
′( 􏼁

c
􏼐 􏼑

ωi⎛⎜⎜⎝ ⎞⎟⎟⎠e

i2π 􏽙

k

i�1
∐ai
′∈ Ai

􏽥

1 − 1 −
θ
ai
′/2π􏼐 􏼑

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

,

􏽙

k

i�1
∐

fi
′∈Fi

1 − 1 − fi
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠e

i2π 􏽙

k

i�1
∐fi
′∈Fi

1 − 1 −
θ
fi
′/2π􏼐 􏼑

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1 − 􏽙
k

i�1
∐

ti
′ ∈ −Ti

1 − ti
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠e

i2π 1− 􏽙

k

i�1
∐ti
′ ∈ −Ti

1 −
θ
ti
′/2π􏼐 􏼑

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∐
t
k+1′ ∈ −Τk+1 ,a

k+1′ ∈Ąk+1 ,f
k+1′ ∈Fk+1

1 − 1 − ak+1′( 􏼁
c

􏼐 􏼑
ωk+1

􏼐 􏼑e
i 1− 1− θa′k+1/2π( )

c
( )

ωk+1( ),

1 − 1 − fk+1′( 􏼁
c

􏼐 􏼑
ωk+1

􏼐 􏼑e
i 1− 1− θf′k+1/2π( )

c
( )

ωk+1( ),

1 − 1 − tk+1′( 􏼁
c

􏼐 􏼑
ωk+1

􏼐 􏼑e
i 1− 1− θt′k+1/2π( )

c
( )

ωk+1( ),

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 − 􏽙
k+1

i�1
∐

ai
′ ∈ −Ti

1 − 1 − ai
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠e
i2π 1− 􏽙

k+1

i�1
∐

ai
′ ∈Ąi

1− θai
′/2π( )

c
( )

ωi􏼒 􏼓

1 − 􏽙
k+1

i�1
∐

ti
′ ∈ −Ti

1 − fi
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠e
i2π 1− 􏽙

k+1

i�1
∐

fi
′ ∈∉Fi

1− 1− θfi
′/2π( )

c
( )

ωi􏼒 􏼓

1 − 􏽙

k+1

i�1
∐

ti
′ ∈ −Ti

1 − ti
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠e
i2π 1− 􏽙

k+1

i�1
∐

ti
′ ∈ −Ti

1− θti
′/2π( )

c
( )

ωi􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(22)

It is true also for n � k + 1, so it is true for all n. Now, we have

CSVNHFGWA n1, n2, . . . , nn( 􏼁 � 􏽘
n

i�0
ωini

⎛⎝ ⎞⎠ �

1 − 􏽙
n

i�1
∐

ti
′ ∉ −Τi

1 − ti
′( 􏼁
ωi⎛⎝ ⎞⎠e

i2π 1− 􏽙

n

i�1
∐ti
′ ∉ −Τi 1 −

θ
ti
′/2π􏼐 􏼑􏼐 􏼑

ωi⎛⎝ ⎞⎠,

1 − 􏽙

n

i�1
∐

ai
′∉Ąi

ai
′( 􏼁
ωi⎛⎜⎜⎝ ⎞⎟⎟⎠e

i2π 1− 􏽙

n

i�1
∐

ai
′∉Ąi

θ
ai
′/2π􏼐 􏼑

ωi⎛⎝ ⎞⎠,

1 − 􏽙
n

i�1
∐

fi
′∉F

fi
′( 􏼁
ωi⎛⎝ ⎞⎠e

i2π 1− 􏽙

n

i�1
∐fi
′∉Fi

θ
fi
′/2π􏼐 􏼑

ωi⎛⎝ ⎞⎠,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

Hence, the result is completed.
Next, we state some properties for CSVNHFGWA

operator.

Theorem 4. Let n � ni (i � 1, 2, . . . , n) be the family of
CSVNHFNs with c> 0. �en, CSVNHFGWA(n1, n2,

. . . , nn) � n.
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Proof. If n � ni, then

CSVNHFGWA n1, n2, . . . , nn( 􏼁 � 􏽘
n

i�1
ωin

c
i

⎛⎝ ⎞⎠

1/c

� 􏽘
n

i�1
ωin

c⎛⎝ ⎞⎠

1/c

� n
c

􏽘

n

i�1
cωi

⎛⎝ ⎞⎠

1/c

� n.

(24)

Hence, the result is completed. □

Theorem 5. Let ni � (ti
′eiθ

ti
′ , ai
′eiθ

ai
′ , fi
′eiθ

fi
′)(i � 1, 2, . . . , n) be

the family of CSVNHFNs with c> 0. If ni ≥ nj′ , then

CSVNHFGWA n1, n2, . . . , nn( 􏼁

≥CSVNHFGWA n1′, n2′, . . . , nn
′( 􏼁.

(25)

Proof. We considered ni ≥ ni′ , that is, ti
′ ≥ ti
″, ai
′ ≤ ai
″, fi
′ ≤fi
″

and θti
′ ≥ θti
′, θai
′ ≤ θai
′, θfi
′ ≤ θfi
′ for all i; then, firstly we prove for

membership grades such that

1 − ti
′( 􏼁

c
􏼐 􏼑

ωi
e

i2π 1− θ
ti
′/2π􏼐 􏼑

c

􏼐 􏼑
ωi

≤ 1 − ti
″( 􏼁

c
􏼐 􏼑

ωi
e

i2π 1− θ
t
i
″′/2π􏼒 􏼓

c

􏼒 􏼓
ωi

􏽙

n

i�1
∐

ti
′∈Ŧi

1 − ti
′( 􏼁

c
􏼐 􏼑

ωi
e

i2π 􏽙

n

i�1
∐ti
′ ∈ Ŧi

1 − θti
′/2π􏼐 􏼑

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

≤􏽙

n

i�1
∐

ti
′∈Ŧi

1 − ti
″( 􏼁

c
􏼐 􏼑

ωi
e

i2π 􏽙

n

i�1
∐ti
′ ∈ Ŧi

1 − θti
′′/2π􏼐 􏼑

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1 − 􏽙

n

i�1
∐

ti
′ ∈ Ŧi

1 − ti
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

e

i2π 1− 􏽙

n

i�1
∐ti
′ ∈ Ŧi

1 − θti
′/2π􏼐 􏼑

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

≥ 1 − 􏽙
n

i�1
∐

ti
′ ∈ Ŧi

1 − ti
″( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

e

i2π 1− 􏽙

n

i�1
∐ti
′ ∈ Ŧi

1 − θti
′′/2π􏼐 􏼑

c
􏼐 􏼑

ωi ⎞⎠

1/c

.⎛⎝

(26)

Similarly, for falsity and non-membership grades, we get

1 − 1 − 􏽙
n

i�1
∐

ai
′ ∈ Ąi

1 − 1 − ai
′( 􏼁

c
􏼐 􏼑

ωi⎛⎜⎜⎝ ⎞⎟⎟⎠

1/c

⎛⎜⎜⎝ ⎞⎟⎟⎠e
i2π 1− 1− 􏽑

n

i�1∐ai
′ ∈ Ąi

1− 1− θ
ai
′/2π􏼐 􏼑

c

􏼐 􏼑
ωi

􏼒 􏼓
1/c

􏼠 􏼡

≤ 1 − 1 − 􏽙
n

i�1
∐

ai
′ ∈ Ąi

1 − 1 − ai
″( 􏼁

c
􏼐 􏼑

ωi ⎞⎟⎟⎠

1/c

⎛⎜⎜⎝ ⎞⎟⎟⎠e
i2π 1− 1− 􏽑

n

i�1∐ai
′ ∈ Ąi

1− 1− θ
ai
′′/2π􏼐 􏼑

c

􏼐 􏼑
ωi

􏼒 􏼓
1/c

􏼠 􏼡
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(27)

and

1 − 1 − 􏽙
n

i�1
∐

fi
′ ∈ Fi

1 − 1 − fi
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

⎛⎝ ⎞⎠e
i2π 1− 1− 􏽑

n

i�1∐fi
′ ∈ Fi

1− 1− θ
fi
′/2π􏼐 􏼑

c

􏼐 􏼑
ωi

􏼐 􏼑
1/c

􏼒 􏼓

≤ 1 − 1 − 􏽙
n

i�1
∐

fi
′ ∈ Fi

1 − 1 − fi
″( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

⎛⎝ ⎞⎠e
i2π 1− 1− 􏽑

n

i�1∐fi
′ ∈ Fi

1− 1− θ
fi
′′/2π􏼐 􏼑

c

􏼐 􏼑
ωi

􏼑
1/c

􏼒 􏼓.􏼒

(28)
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Hence, we combine the above equations such that

1 − 􏽙
n

i�1
∐

ti
′ ∉ −Τi

1 − ti
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

e

i2π 1− 􏽙

n

i�1
∐ti
′ ∉ −Τi 1 −

θ
ti
′/2π􏼐 􏼑

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

,

1 − 1 − 􏽙
n

i�1
∐

ai
′∉Ąi

1 − ai
′( 􏼁

c
􏼐 􏼑

ωi⎛⎜⎜⎝ ⎞⎟⎟⎠

1/c

⎛⎜⎜⎝ ⎞⎟⎟⎠e

i2π 1− 􏽙

n

i�1
∐

ai
′ ∉Ąi

1 −
θ
ai
′/2π􏼐 􏼑

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

,

1 − 1 − 􏽙
n

i�1
∐

fi
′∉Fi

1 − fi
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

⎛⎝ ⎞⎠e

i2π 1− 􏽙

n

i�1
∐fi
′ ∉ Fi

1 −
θ
fi
′/2π􏼐 􏼑

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥

1 − 􏽙
n

i�1
∐ti
′ ∉ −Τi 1 − t′

′

i􏼠 􏼡

c

􏼠 􏼡

ωi

⎛⎝ ⎞⎠

1/c

e

i2π 1− 􏽙

n

i�1
∐ti
′ ∉ −Τi 1 −

θ′
ti
′/2π􏼒 􏼓

c

􏼒 􏼓
ωi

⎛⎝ ⎞⎠

1/c

,

1 − 1 − 􏽙
n

i�1
∐

ai
′∉Ąi

1 − a′
′

i􏼠 􏼡

c

􏼠 􏼡

ωi

⎛⎜⎜⎝ ⎞⎟⎟⎠

1/c

⎛⎜⎜⎝ ⎞⎟⎟⎠e

i2π 1− 􏽙

n

i�1
∐

ai
′ ∉Ąi

1 −
θ′

ai
′/2π􏼒 􏼓

c

􏼒 􏼓
ωi

⎛⎝ ⎞⎠

1/c

,

1 − 1 − 􏽙
n

i�1
∐

fi
′ ∉ Fi

1 − f′
′

i􏼠 􏼡

c

􏼠 􏼡

ωi

⎛⎝ ⎞⎠

1/c

⎛⎝ ⎞⎠e

i2π 1− 􏽙

n

i�1
∐fi
′ ∉Fi

1 −
θ′

fi
′/2π􏼒 􏼓

c

􏼒 􏼓
ωi

⎛⎝ ⎞⎠

1/c

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(29)

So,

CSVNHFGWA n1, n2, . . . , nn( 􏼁

≥CSVNHFGWA n1′, n2′, . . . , nn
′( 􏼁.

(30)

Hence, the result is completed. □

Theorem 6. Let ni � (ti
′eiθ

ti
′ , ai
′eiθ

ti
′ , fi
′eiθ

ti
′)(i � 1, 2, . . . , n) be

the family of CSVNHFNs which lies between max and min
operators with c> 0. �en,

min n1, n2, . . . , nn( 􏼁≤CSVNHFGWA n1, n2, . . . , nn( 􏼁

≤max n1, n2, . . . , nn( 􏼁.
(31)

Proof. We know that α � min(n1, n2, . . . , nn) and
β � max(n1, n2, . . . , nn); then,

α≤CSVNHFGWA n1, n2, . . . , nn( 􏼁≤ β. (32)

)en, we get

􏽘

n

i�1
ωiα

c⎛⎝ ⎞⎠

1/c

≤ 􏽘

n

i�1
ωin

c
i

⎛⎝ ⎞⎠

1/c

≤ 􏽘

n

i�1
ωiβ

c⎛⎝ ⎞⎠

1/c

. (33)

)is implies that

α≤ 􏽘
n

i�1
ωin

c
i

⎛⎝ ⎞⎠

1/c

≤ β, (34)

i.e.,

min n1, n2, . . . , nn( 􏼁≤CSVNHFGWA n1, n2, . . . , nn( 􏼁

≤max n1, n2, . . . , nn( 􏼁.
(35)

Hence, the result is completed. □

Remark 1. )e aim of this study is to discover the particular
cases of the presented approach.

(1) If c⟶ 0, our proposed work will be reduced to
CSVNHF weighted geometric operator:
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CSVNHFWG n1, n2, . . . , nn( 􏼁 � 􏽙
n

i�1
ni( 􏼁

ωi �

􏽙

n

i�1
∐

ti
′∈Ŧi

ti
′( 􏼁
ωi⎛⎝ ⎞⎠e

i2π 􏽙

n

i�1
∐ti
′ ∈ Ŧi

θti
′/2π􏼐 􏼑

ωi⎛⎝ ⎞⎠

1 − 􏽙
n

i�1
∐

ai
′∈Ąi

1 − ai
′( 􏼁
ωi⎛⎜⎜⎝ ⎞⎟⎟⎠e

i2π 1− 􏽙

n

i�1
∐

ai
′ ∈ Ąi

1 − θai
′/2π􏼐 􏼑

ωi⎛⎝ ⎞⎠

1 − 􏽙
n

i�1
∐

fi
′∈Fi

1 − fi
′( 􏼁
ωi⎛⎝ ⎞⎠e

i2π 1− 􏽙

n

i�1
∐fi
′ ∈ Fi

1 − θfi
′/2π( 􏼁

ωi⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

(2) If c � 1, our proposed work will be reduced to
CSVNHF weighted averaging operator:

CSVNHFGWA n1, n2, . . . , nn( 􏼁 � 􏽘
n

i�0
ωini

⎛⎝ ⎞⎠ �

1 − 􏽙
n

i�1
∐

ti
′ ∉ −Τi

1 − ti
′( 􏼁
ωi⎛⎝ ⎞⎠e

i2π 1− 􏽙

n

i�1
∐ti
′ ∉ −Τi 1 −

θ
ti
′/2π􏼐 􏼑􏼐 􏼑

ωi⎛⎝ ⎞⎠,

1 − 􏽙
n

i�1
∐

ai
′ ∉Ąi

ai
′( 􏼁
ωi⎛⎜⎜⎝ ⎞⎟⎟⎠e

i2π 1− 􏽙

n

i�1
∐

ai
′ ∉Ąi

θ
ai
′/2π􏼐 􏼑

ωi⎛⎝ ⎞⎠,

1 − 􏽙
n

i�1
∐

fi
′∉Fi

fi
′( 􏼁
ωi⎛⎝ ⎞⎠e

i2π 1− 􏽙

n

i�1
∐fi
′∉Fi

θ
fi
′/2π􏼐 􏼑

ωi⎛⎝ ⎞⎠,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

If c � 2, our proposed work will be reduced to CSVNHF
weighted quadratic averaging operator:

CSVNHFGWQA n1, n2, . . . , nn( 􏼁

� 􏽘
n

i�0
ωini

⎛⎝ ⎞⎠

1/2

�

1 − 􏽙
n

i�1
∐

ti
′ ∉ −Τi

1 − ti
′( 􏼁
2

􏼐 􏼑⎛⎝ ⎞⎠

1/2

e

i2π 1− 􏽙

n

i�1
∐ti
′ ∉ −Τi 1 −

θ
ti
′/2π􏼐 􏼑

2
􏼒 􏼓

ωi
⎛⎝ ⎞⎠

1/2

,

1 − 1 − 􏽙
n

i�1
∐

ai
′ ∉Ąi

1 − 1 − ai
′( 􏼁
2

􏼐 􏼑
ωi⎛⎜⎜⎝ ⎞⎟⎟⎠

1/2

⎛⎜⎜⎝ ⎞⎟⎟⎠e

i2π 1− 1− 􏽙

n

i�1
∐

ai
′ ∉Ąi

1 −
θ
ai
′/2π􏼐 􏼑

2
􏼒 􏼓

ωi
⎛⎝ ⎞⎠

1/2

⎛⎝ ⎞⎠,

1 − 1 − 􏽙
n

i�1
∐

fi
′∉Fi

1 − 1 − fi
′( 􏼁
2

􏼐 􏼑
ωi⎛⎝ ⎞⎠

1/2

⎛⎝ ⎞⎠e

i2π 1− 1− 􏽙

n

i�1
∐fi
′∉Fi

1 −
θ
fi
′/2π􏼐 􏼑

2
􏼒 􏼓

ωi
⎛⎝ ⎞⎠

1/2

⎛⎝ ⎞⎠,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(38)

Definition 19. )e CSVNHFGOWA operator is given by
CSVNHFGOWA: Ωn⟶Ω:

CSVNHFGOWA n1, n2, . . . , nn( 􏼁 � 􏽘
n

i�1
ωin

c

o(i)
⎛⎝ ⎞⎠

1/c

, (39)
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where Ω represents the family of all CSVNHFNs with c> 0
and no(i) is the ordered CSVNHFNs which is an ascending
ordered (AO) or descending ordered (DO) i.e., no(i) ≤ no(i− 1).
)e CSVNHFN is of the form
ni � (ti
′eiθ

ti
′ , ai
′eiθ

ti
′ , fi
′eiθ

ti
′)(i � 1, 2, . . . , n).

Theorem 7. Let ni � (ti
′eiθ

ti
′ , ai
′eiθ

ti
′ , fi
′eiθ

ti
′)(i � 1, 2, .., n) be the

family of CNHFNs with c> 0.�en, considering the concept of
CSVNHFGOWA, we get

CSVNHFGOWA n1, n2, . . . , nn( 􏼁,

CSVNHF/GOWA n1, n2, . . . , nn( 􏼁 �

1 − 􏽙
n

i�1
∐

ti
′∈Ti

1 − ti
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

e

i2π 1− 􏽙

n

i�1
∐ti
′∈Ti

1 − θti
′/2π􏼐 􏼑

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

,

1 − 􏽙
n

i�1
∐

ai
′∈Ai

1 − ai
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

e

i2π 1− 􏽙

n

i�1
∐ai
′∈Ai

1 − θai
′/2π􏼐 􏼑

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

,

1 − 􏽙
n

i�1
∐

fi
′∈Fi

1 − fi
′( 􏼁

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

e

i2π 1− 􏽙

n

i�1
∐fi
′∈Fi

1 − θfi
′/2π􏼐 􏼑

c
􏼐 􏼑

ωi⎛⎝ ⎞⎠

1/c

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(40)

Proof. Straightforward. □

Theorem 8. Let ni � (ti
′eiθ

ti
′ , ai
′eiθ

ti
′ , fi
′eiθ

ti
′)(i � 1, 2, . . . , n) be

the family of CSVNHFNs with c> 0. �en,

CSVNHFGOWA n1, n2, . . . , nn( 􏼁 � n. (41)

Proof. Straightforward. □

Theorem 9. Let ni � (ti
′eiθ

ti
′ , ai
′eiθ

ti
′ , fi
′eiθ

ti
′)(i � 1, 2, .., n) be the

family of CSVNHFNs with c> 0. If ni ≥ nj′ , then

CSVNHFGOWA n1, n2, . . . , nn( 􏼁≥CSVNHFGOWA n1′, n2′, . . . , nn
′( 􏼁.

(42)

Proof. Straightforward. □

Theorem 10. Let ni � (ti
′eiθ

ti
′ , ai
′eiθ

ti
′ , fi
′eiθ

ti
′)(i � 1, 2, . . . , n) be

the family of CSVNHFNs which lies between max and min
operators with c> 0. �en,

min n1, n2, .., nn( 􏼁≤CSVNHFGOWA n1, n2, . . . , nn( 􏼁

≤max n1, n2, . . . , nn( 􏼁.
(43)

Proof. We know that α � min(n1, n2, . . . , nn) and
β � max(n1, n2, . . . , nn); then,

α≤CSVNHFGOWA n1, n2, . . . , nn( 􏼁≤ β. (44)

)en, we get

􏽘

n

i�1
ωiα

c⎛⎝ ⎞⎠

1/c

≤ 􏽘

n

i�1
ωin

c

o(i)
⎛⎝ ⎞⎠

1/c

≤ 􏽘

n

i�1
ωiβ

c⎛⎝ ⎞⎠

1/c

. (45)

)is implies that

α≤ 􏽘
n

i�1
ωin

c

o(i)
⎛⎝ ⎞⎠

1/c

≤ β. (46)

)at is,

min n1, n2, .., nn( 􏼁≤CSVNHFGOWA n1, n2, . . . , nn( 􏼁

≤max n1, n2, . . . , nn( 􏼁.
(47)

Hence, the result is completed. □

Remark 2. )e aim of this study is to discover the particular
cases of the presented approach.

(1) If c⟶ 0, our proposed work will be reduced to
CSVNHF ordered weighted geometric operator:
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CSVNHFGOWA n1, n2, . . . , nn( 􏼁 � 􏽙
n

i�1
n0(i)􏼐 􏼑

ωi
�

􏽙

n

i�1
∐

ti
′∈Ti

to(i)
′􏼐 􏼑

ωi⎛⎝ ⎞⎠e

i2π 􏽙

n

i�1
∐ti
′∈Ti

θto(i)/2π􏼐 􏼑
ωi⎛⎝ ⎞⎠

􏽙

n

i�1
∐

ai
′∈Ai

ao(i)
′􏼐 􏼑

ωi⎛⎝ ⎞⎠e

i2π 􏽙

n

i�1
∐ai
′∈Ai

θao(i)/2π􏼐 􏼑
ωi⎛⎝ ⎞⎠

􏽙

n

i�1
∐

fi
′ ∈Fi

fo(i)
′􏼐 􏼑

ωi⎛⎝ ⎞⎠e

i2π 􏽙

n

i�1
∐fi
′∈Fi

θfo(i)/2π􏼐 􏼑
ωi⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (48)

(2) If c � 1, our proposed work will be reduced to
CSVNHF ordered weighted averaging operator:

CSVNHFGOWA n1, n2, . . . , nn( 􏼁 � 􏽙
n

i�1
n0(i)􏼐 􏼑

ωi
�

􏽙

n

i�1
∐

ti
′∈Ti

to(i)′􏼐 􏼑
ωi⎛⎝ ⎞⎠e

i2π 􏽙

n

i�1
∐ti
′∈Ti

θto(i)/2π􏼐 􏼑
ωi⎛⎝ ⎞⎠

􏽙

n

i�1
∐

ai
′∈Ai

ao(i)′􏼐 􏼑
ωi⎛⎝ ⎞⎠e

i2π 􏽙

n

i�1
∐ai
′∈Ai

θao(i)/2π􏼐 􏼑
ωi⎛⎝ ⎞⎠

􏽙

n

i�1
∐

fi
′∈Fi

fo(i)′􏼐 􏼑
ωi⎛⎝ ⎞⎠e

i2π 􏽙

n

i�1
∐fi
′∈Fi

θfo(i)/2π􏼐 􏼑
ωi⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (49)

(3) If c � 2, the proposed work will be reduced to
CSVNHF ordered weighted quadratic averaging
operator:

CSVNHFGOWA n1, n2, . . . , nn( 􏼁 � 􏽘
n

i�1
ωino(i)

⎛⎝ ⎞⎠ �

1 − 􏽙
n

i�1
∐

ti
′∈Ti

to(i)′􏼐 􏼑
ωi⎛⎝ ⎞⎠e

i2π 􏽙

n

i�1
∐ti
′∈Ti

θto(i)/2π􏼐 􏼑
ωi⎛⎝ ⎞⎠,

1 − 􏽙

n

i�1
∐

ai
′∈Ai

ao(i)′􏼐 􏼑
ωi⎛⎝ ⎞⎠e

i2π 􏽙

n

i�1
∐ai
′∈Ai

θao(i)/2π􏼐 􏼑
ωi⎛⎝ ⎞⎠,

1 − 􏽙

n

i�1
∐

fi
′∈Fi

fo(i)′􏼐 􏼑
ωi⎛⎝ ⎞⎠e

i2π 􏽙

n

i�1
∐fi
′∈Fi

θfo(i)/2π􏼐 􏼑
ωi⎛⎝ ⎞⎠,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (50)

Definition 20. )e CSVNHFGHWA operator is given by
CSVNHFGHWA: Ωn⟶Ω:

CSVNHFGHWA n1, n2, . . . , nn( 􏼁 � 􏽘
n

i�1
ωi _n

c

o(i)
⎛⎝ ⎞⎠

1/c

, (51)
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where Ω represents the family of all CSVNHFNs with c> 0
and _no(i) � nώini i.e. no(n) ≤ no(i− 1). )e CSVNHFN is of the
form ni � (ti

′eiθ
ti
′ , ai
′eiθ

ti
′ , fi
′eiθ

ti
′)(i � 1, 2, . . . , n). Where

􏽐
n
i�1ώi � 1.

Theorem 11. Let ni � (ti
′eiθ

ti
′ , ai
′eiθ

ti
′ , fi
′eiθ

ti
′)(i � 1, 2, . . . , n) be

the family of CSVNHFNs with c> 0. �en, considering the
concept of CSVNHFGHWA, we get

CSVNHFGHWA n1, n2, . . . , nn( 􏼁

�

1 − 􏽙
n

i�1
∐

ti
′∈Ti

1 − to(i)
′􏼐 􏼑

c
􏼐 􏼑

wi⎛⎝ ⎞⎠

1/c

e

i2π 1− 􏽙

n

i�1
∐ti
′∈Ti

1 − θt′o(i)/2π􏼐 􏼑
c

􏼐 􏼑
wi⎛⎝ ⎞⎠

1/c

,

1 − 1 − 􏽙
n

i�1
∐

ai
′∈Ai

1 − 1 − _ao(i)
′􏼐 􏼑

c
􏼐 􏼑

wi⎛⎝ ⎞⎠

1/c

⎛⎝ ⎞⎠e

i2π 1− 1− 􏽙

n

i�1
∐ai
′∈Ai

1 − 1 − θ _ao(i)
′/2π􏼒 􏼓

c

􏼒 􏼓
wi

⎛⎝ ⎞⎠

1/c

⎛⎝ ⎞⎠

,

1 − 1 − 􏽙
n

i�1
∐

fi
′ ∈Fi

1 − 1 − _fo(i)
′􏼐 􏼑

c
􏼐 􏼑

wi⎛⎝ ⎞⎠

1/c

⎛⎝ ⎞⎠e

i2π 1− 1− 􏽙

n

i�1
∐fi
′∈Fi

1 − 1 − θ _fo(i)
′/2π􏼒 􏼓

c

􏼒 􏼓
wi

⎛⎝ ⎞⎠

1/c

⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(52)

Proof. Straightforward. □

Theorem 12. Let ni � (ti
′eiθ

ti
′ , ai
′eiθ

ti
′ , fi
′eiθ

ti
′)(i � 1, 2, . . . , n) be

the family of CSVNHFNs with c> 0. If ni ≥ nj′ , then

CSVNHFGHWA n1, n2, . . . , nn( 􏼁

≥CSVNHFGHWA n1′, n2′, . . . , nn
′( 􏼁.

(53)

Proof. Straightforward. □

Theorem 13. Let ni � (ti
′eiθ

ti
′ , ai
′eiθ

ti
′ , fi
′eiθ

ti
′)(i � 1, 2, . . . , n) be

the family of CSVNHFNs which lies between max and min
operators with c> 0. �en,

min n1, n2, . . . , nn( 􏼁≤CSVNHFGHWA n1, n2, . . . , nn( 􏼁

≤max n1, n2, . . . , nn( 􏼁.

(54)

Proof. We know that α � min(n1, n2, . . . , nn) and
β � max(n1, n2, . . . , nn); then,

α≤CSVNHFGHWA n1, n2, . . . , nn( 􏼁≤ β. (55)

)en, we get

􏽘

n

i�1
ωiα

c⎛⎝ ⎞⎠

1/c

≤ 􏽘
n

i�1
ωi _n

c

o(i)
⎛⎝ ⎞⎠

1/c

≤ 􏽘
n

i�1
ωiβ

c⎛⎝ ⎞⎠

1/c

. (56)

)is implies that

α≤ 􏽘
n

i�1
ωi _n

c

o(i)
⎛⎝ ⎞⎠

1/c

≤ β. (57)

)at is,

min n1, n2, .., nn( 􏼁≤CSVNHFGHWA n1, n2, . . . , nn( 􏼁

≤max n1, n2, . . . , nn( 􏼁.
(58)

Hence, the result is completed. □

Remark 3. )e aim of this study is to discover the cases of
the presented approach.

(1) If c⟶ 0, our proposed work will be reduced to
CSVNHF hybrid weighted geometric
(CSVNHFHWG) operator:
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CSVNHFGHWA n1, n2, . . . , nn( 􏼁 � 􏽙

n

i�1
_no(i)􏼐 􏼑

wi
�

􏽙

n

i�1
∐

ti
′∈Ti

_to(i)
′􏼐 􏼑

wi⎛⎝ ⎞⎠e

i2π 1− 􏽙

n

i�1
∐ti
′ ∈Ti

θt′o(i)/2π􏼐 􏼑
wi⎛⎝ ⎞⎠

,

1 − 􏽙

n

i�1
∐

ai
′∈Ai

1 − _ao(i)
′􏼐 􏼑

wi⎛⎝ ⎞⎠e

i2π 1− 􏽙

n

i�1
∐ai
′ ∈Ai

1 − θ _a′o(i)
/2π􏼒 􏼓

wi
⎛⎝ ⎞⎠

,

1 − 􏽙
n

i�1
∐

fi
′∈Fi

1 − _fo(i)
′􏼐 􏼑

wi⎛⎝ ⎞⎠e

i2π 1− 􏽙

n

i�1
∐fi
′ ∈Fi

1 − θ _f′o(i)
/2π􏼒 􏼓

wi
⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(59)

(2) If c � 1, our proposed work will be reduced to
CSVNHF hybrid weighted averaging
(CSVNHFHWA) operator:

CSVNHFGHWA n1, n2, . . . , nn( 􏼁 � 􏽘
n

i�1
Wi _no(i)

⎛⎝ ⎞⎠ �

1 − 􏽙
n

i�1
∐

ti
′∈Ti

1 − _to(i)
′􏼐 􏼑

wi⎛⎝ ⎞⎠e

i2π 1− 􏽙

n

i�1
∐ti
′∈Ti

1 − θt′o(i)/2π􏼐 􏼑
wi⎛⎝ ⎞⎠

,

􏽙

n

i�1
∐

ai
′∈Ai

1 − _ao(i)
′􏼐 􏼑

wi⎛⎝ ⎞⎠e

i2π 􏽙

n

i�1
∐ai
′∈Ai

θ _a′o(i)
/2π􏼒 􏼓

wi
⎛⎝ ⎞⎠

,

􏽙

n

i�1
∐

fi
′∈F

_fo(i)
′􏼐 􏼑

wi⎛⎝ ⎞⎠e

i2π 􏽙

n

i�1
∐fi
′∈Fi

θ _fo(i)
′ /2π􏼒 􏼓

wi
⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(60)

(3) If c � 2, our proposed work will be reduced to
CSVNHF hybrid weighted quadratic averaging
(CSVNHFHWQA) operator:

CSVNHFGHWQA n1, n2, . . . , nn( 􏼁

� 􏽘
n

i�1
Wi _n

2
o(i)
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e
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∐
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(61)
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5. Proposed MADM Method

)e decision-making strategy aims to grow the chance of the
benefits and reduce the chance of the cost during the de-
cision-making procedure for simplifying genuine life di-
lemmas. Several people have worked on decision-making
strategies under the presence of a crisp set. In several sit-
uations, it is very complicated to study the decision-making
strategy considering fuzzy sets because they have covered a
lot of possibilities. Inspired by theMADM technique, we will
employ it here in the presence of the proposed works.

5.1. Decision-Making Algorithm. During the decision-
making process, ambiguity and complexity always occur in
our day-to-day life. )is study aims to employ the decision-
making strategy in the presence of proposed works. For this,
consider a finite number of alternatives X � u1, u2, . . . , um􏼈 􏼉

and attributes C � c1, c2, . . . , cn􏼈 􏼉. To evaluate each alter-
native under each attribute, we assign a weight vector for
attribute as ω � (ω1,ω2, . . . ,ωn)Ŧ, 􏽐

n
i�1 ωi � 1. Experts are

invited to evaluate each alternative Ąi and give their pref-
erences in terms of the CSVNHF information
nij � (tij, aij, fij)(i, j � 1, 2, . . . , n) for criteria Cj where

tij � tij
′e

iθ
tij
′ /tij ∈ Ŧ(u)􏼚 􏼛, aij � aij

′e
iθ

aij
′ /aij ∈ Ą(u)􏼚 􏼛 and

fij � fij
′e

iθ
fij
′ /fij ∈ F(u)􏼚 􏼛, gives the TG, abstinence grade,

and FG . )en, the following are the steps summarized to
find the best alternative(s).

Step 1: collect the data in the shape of the CSVNHF
setting and summarize them in the form of the matrix
called as decision matrix.
Step 2: normalize the collective information, if needed
by using the following equation.

D rij􏼐 􏼑 �
tij, aij, fij􏼐 􏼑, for benefit criteria,

fij, aij, tij􏼐 􏼑, for cost criteria.

⎧⎪⎨

⎪⎩
(62)

Step 3: aggregate the collective information by using
stated operators. For instance, utilize equation (7) to
aggregate the information rij into
ri � (ti
′eiθ

ti
′ , ai
′eiθ

ai
′ , fi
′eiθ

fi
′).

Step 4: compute the crisp value for each number ri �

(ti
′eiθ
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′) by using the following equation:
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If for any two indices, Ş(ri) values are equal, then
compute accuracy degree as

H ri( 􏼁 �
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(64)

Step 5: rank the alternatives based on the crisp values
and get the beneficial optimal.

5.2. Illustrated Example. To illustrate the working of the
above stated algorithm to the decision-making process, we
consider a numerical example which can be read as follows.

Consider a decision-making process related to the se-
lection of the best enterprise for the investment. Since the
market always shows an up and down phases at a regular
interval of time, the decision maker will always look for the
desired option for the investment. After deep analysis of the
market scenario, an investor selects the following four po-
tential options, considered as an alternative, which are
characterized as

(i) Ą1: invest in the local market.
(ii) Ą2: invest in the southern Asian market.
(iii) Ą3: invest in the northeastern market.
(iv) Ą4: invest in the European market.

To access all these alternatives deeply, we have taken the
following three attributes with attribute weights taken as
ω � (0.5, 0.4, 0.1)Ŧ:

(i) C1C1: economic growth.
(ii) C2: profit in the long term.
(iii) C3: social political impact analysis.

)en, the following steps of the stated algorithms are
implemented to find the best alternative as follows.

Step 1: a senior expert from themarket sector is hired for
accessing the given alternatives under each attribute.
)eir corresponding rating is summarized in Table 1
Step 2: as all the criteria are of benefit types, there is no
need for normalization.
Step 3: with attribute weights taken as
ω � (0.5, 0.4, 0.1)Ŧ , utilize CSVNHFGHA operator as
stated in equation. (52) to aggregate the information for
c � 1.
Step 4: the score values of all the aggregated numbers
(as obtained from Step 3) are calculated, and their
results are summarized in Table 2 along with the
ranking order.
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Step 5: based on the score values, we rank the given
alternatives as

Ą3 ≥ Ą2 ≥ Ą4 ≥ Ą1, (65)

and found that Ą3 is the best one for this suitable job.

5.3. Comparative Analysis. To compare the study with the
several existing studies, we compare the performance of the
existing algorithms in [20, 21, 26, 31–34] under different
environments. )e result corresponding to each method is
listed in Table 3. It is clear that from Table 3 that Ą3 is the
best alternative identified by all existing methods and the
proposed method. Although the ranking result is same by all
the methods, the proposed MADM algorithm has several
advantages over such existing studies.

To highlight such things, we summarize the character-
istics of the statedmethod over the existing ones in Table 4. It
is seen from this table that proposed method in this paper is
more generalized than the existing methods. Also, it is clear
that the proposed concept is more general and reliable than
IFS [3], CIFS [20], CNS [26], and NS [7], and all are

Table 1: CSVNHF generalized aggregation operator decision matrix.

Data representations C1 C2 C3

A1

(0.7)e
i.2(0.9)

(0.5)e
i.2(0.4)

(0.7)e
i.2(0.7)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.6)e
i.2(0.87)

(0.56)e
i.2(0.45)

(0.76)e
i.2(0.66)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.67)e
i.2(0.98)

(0.65)e
i.2(0.67)

(0.14)e
i.2(0.56)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(0.77)e
i.2(0.8)

(0.78)e
i.2(0.81)

(0.79)e
i.2(0.82)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.83)e
i.2(0.67)

(0.84)e
i.2(0.45)

(0.85)e
i.2(0.67)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.56)e
i.2(0.78)

(0.56)e
i.2(0.79)

(0.67)e
i.2(0.69)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
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(0.13)e
i.2(0.46)

(0.23)e
i.2(0.64)

(0.45)e
i.2(0.66)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.45)e
i.2(0.56)

(0.54)e
i.2(0.65)

(0.55)e
i.2(0.87)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.89)e
i.2(0.89)
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i.2(0.88)
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Ą2

(0.45)e
i.2(0.93)

(0.56)e
i.2(0.45)

(0.78)e
i.2(0.76)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(0.67)e
i.2(0.88)

(0.6)e
i.2(0.5)

(0.7)e
i.2(0.7)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(0.8)e
i.2(0.3)

(0.6)e
i.2(0.67)

(0.6)e
i.2(0.56)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(0.77)e
i.2(0.56)

(0.34)e
i.2(0.89)

(0.56)e
i.2(0.78)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(0.67)e
i.2(0.77)

(0.92)e
i.2(0.66)

(0.57)e
i.2(0.45)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(0.67)e
i.2(0.45)

(0.56)e
i.2(0.79)

(0.45)e
i.2(0.57)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(0.58)e
i.2(0.69)

(0.67)e
i.2(0.49)

(0.68)e
i.2(0.59)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(0.59)e
i.2(0.58)

(0.39)e
i.2(0.67)

(0.49)e
i.2(0.34)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(0.33)e
i.2(0.55)

(0.44)e
i.2(0.65)

(0.45)e
i.2(0.77)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ą3

(0.7)e
i.2(0.45)

(0.45)e
i.2(0.45)

(0.45)e
i.2(0.45)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.76)e
i.2(0.23)

(0.5)e
i.2(0.43)

(0.7)e
i.2(0.45)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.54)e
i.2(0.64)

(0.65)e
i.2(0.57)

(0.46)e
i.2(0.74)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(0.68)e
i.2(0.85)

(0.86)e
i.2(0.48)

(0.58)e
i.2(0.84)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.66)e
i.2(0.45)

(0.9)e
i.2(0.67)

(0.57)e
i.2(0.36)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.67)e
i.2(0.56)

(0.45)e
i.2(0.67)

(0.33)e
i.2(0.34)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(0.45)e
i.2(0.68)

(0.46)e
i.2(0.48)

(0.67)e
i.2(0.46)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.5)e
i.2(0.45)

(0.39)e
i.2(0.67)

(0.49)e
i.2(0.67)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.56)e
i.2(0.57)

(0.45)e
i.2(0.45)

(0.67)e
i.2(0.34)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ą4

(0.4)e
i.2(0.45)

(0.56)e
i.2(0.78)

(0.46)e
i.2(0.46)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.6)e
i.2(0.9)

(0.7)e
i.2(0.2)

(0.8)e
i.2(0.3)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.4)e
i.2(0.47)

(0.5)e
i.2(0.49)

(0.45)e
i.2(0.59)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(0.8)e
i.2(0.67)

(0.8)e
i.2(0.54)

(0.9)e
i.2(0.63)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.66)e
i.2(0.9)

(0.78)e
i.2(0.88)

(0.89)e
i.2(0.45)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.56)e
i.2(0.69)

(0.57)e
i.2(0.67)

(0.68)e
i.2(0.7)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(0.35)e
i.2(0.48)

(0.67)e
i.2(0.49)

(0.38)e
i.2(0.51)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.52)e
i.2(0.65)

(0.53)e
i.2(0.75)

(0.54)e
i.2(0.85)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(0.86)e
i.2(0.75)

(0.87)e
i.2(0.73)

(0.74)e
i.2(0.71)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 2: Ranking results of the CSVNHFSs.

Ąlternatives Şcore function Rank
Ą1 Ş(Ą1) � 0.467 4
Ą2 Ş(Ą2) � 0.515 2
Ą3 Ş(Ą3) � 0.524 1
Ą4 Ş(Ą4) � 0.478 3
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considered as special cases of CSVNHFS. For instance, by
taking c � 1 in the proposed work, the stated method re-
duces to CSVNHFWA operators, and if c � 2, then our
proposed work is reduced to CSVNHFWG.

5.4. SensitivityAnalysis of theParameterc. In this section, we
examined the influence of parameter c on to the decision-
making process. For this, we vary the value of the parameter
c from 1 to 20 (by taking arbitrary values) and implement
the steps of the proposed algorithm on it. )e final score
values and the ranking order for each value of c are recorded
and listed in Table 5. Also, we have listed some special cases
of the proposed operators with c in Remarks 1–3. From this
investigation, we noted that as we increase the value of c, the
score value corresponding to each alternative increases
which shows the optimistic nature. Decision makers can
select the suitable value as per their choice by seeing the

overall score value of each alternative. From the above
analysis, we conclude that the proposed strategies are more
unrivaled and more broad than existing work.

6. Conclusion

)e main contribution of this paper is discussed below.

(1) A novel concept of CSVNHFS is defined in the paper
by incorporating the features of SVN, hesitant, and
complex sets. )e idea behind this set is to address
the ambiguity in the data when it is arranged in the
form of “yes,” “abstinence,” and “no” under the
complex domain. In the presented set, each element
is characterized with three independent hesitant
degrees, namely, TG (t′eiθ

t′ ), abstinence (a′eiθ
a′ ), and

FG (f′eiθ
f′ ), over the unit disc of complex plane with

the conditions 0≤ t′ + a′ + f′ ≤ 3 and 0≤ θt′ + θa′ +

θf′ ≤ 6 where 0≤ t′, a′, f′ ≤ 1 and 0≤ θt′ , θa′ , θf′ ≤ 2.

Table 3: Comparative study with the existing methods.

Method Score values Ranking results Best alternatives
Ali and Smarandache [26] Cannot be calculated No No
Alkouri and Salleh [20] Cannot be calculated No No
Garg and Rani [31, 32] Cannot be calculated No No
Rani and Garg [21, 33] Cannot be calculated No No
Beg and Rashid [35] Ş(Ą1) � 0.66, Ş(Ą2) � 0.71, Ş(3) � 0.72, Ş(Ą4) � 0.67 Ą3 ≥ Ą2 ≥ Ą4 ≥ Ą1 Ą3
Torra [27] Ş(Ą1) � 0.573, Ş(Ą2) � 0.601, Ş(3) � 0.603, Ş(Ą4) � 0.579 Ą3 ≥ Ą2 ≥ Ą4 ≥ Ą1 Ą3
Beg and Rashid [35] Ş(Ą1) � 0.47, Ş(Ą2) � 0.52, Ş(3) � 0.53, Ş(Ą4) � 0.49 Ą3 ≥ Ą2 ≥ Ą4 ≥ Ą1 Ą3
Proposed method Ş(Ą1) � 0.467, Ş(Ą2) � 0.515, Ş(3) � 0.524, Ş(Ą4) � 0.478 Ą3 ≥ Ą2 ≥ Ą4 ≥ Ą1 Ą3

Table 4: Characteristic comparison between proposed work and existing methods.

Methods
Ability to
integrate

information

Ability to capture
information using
complex numbers

Ability to handle
two-dimensional
information

Flexible according
to decision
makers’

preferences

Superior
characteristic of

the ideas

Dealing hesitant
kind of

information

Atanassov [3] Yes No No No No No
Alkouri and
Salleh [20] Yes Yes Yes No No No

Garg and Rani
[31, 32] Yes Yes Yes No No No

Rani and Garg
[21, 33] Yes Yes Yes No No No

Smarandache
[7] Yes No No Yes Yes No

Ali and
Smarandache
[26]

Yes Yes Yes Yes Yes No

Proposed work Yes Yes Yes Yes Yes Yes

Table 5: Impact of the parameter c on the ratings.

Parameter c Score values Ranking
c � 1 Ş(Ą1) � 0.467, Ş(Ą2) � 0.515, Ş(Ą3) � 0.524, Ş(Ą4) � 0.478 Ą3 ≥ Ą2 ≥ Ą4 ≥ Ą1
c � 4 Ş(Ą1) � 0.496, Ş(Ą2) � 0.539, Ş(Ą3) � 0.545, Ş(Ą4) � 0.518 Ą3 ≥ Ą2 ≥ Ą4 ≥ Ą1
c � 10 Ş(Ą1) � 0.522, Ş(Ą2) � 0.566, Ş(Ą3) � 0.571, Ş(Ą4) � 0.553 Ą3 ≥ Ą2 ≥ Ą4 ≥ Ą1
c � 15 Ş(Ą1) � 0.531, Ş(Ą2) � 0.57, Ş(Ą3) � 0.58, Ş(Ą4) � 0.56 Ą3 ≥ Ą2 ≥ Ą4 ≥ Ą1
c � 20 Ş(Ą1) � 0.536, Ş(Ą2) � 0.584, Ş(Ą3) � 0.588, Ş(Ą4) � 0.57 Ą3 ≥ Ą2 ≥ Ą4 ≥ Ą1
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(2) )e fundamental properties and the operations of
the stated set are investigated. Also, it is analyzed that
the proposed CSVNHFS is the generalization of the
existing sets such as IFS [3], CIFS [20], CNS [26], and
NS [7].

(3) By taking the features of the CSVNHFS, we defined
generalized weighted average (CSVNHFGWA), or-
dered weighted (CSVNHFGOWA), and hybrid
weighted averaging (CSVNHFGHWA) operators to
aggregate different pairs of the given information.
Some of their basic properties are also discussed.

(4) A MADM algorithm based on the stated operators is
presented by using the features of CSVNHFS and
illustrated with the numerical examples.

(5) To determine the supremacy and efficiency of in-
vestigated operators, we utilized the advantages,
sensitive analysis, and geometrical expressions of the
proposed work to discover the dominance of the
elaborated approaches.

In the future, we will try to implement the application of
the stated algorithm and extend it to different fuzzy envi-
ronments [35–42].
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