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�e design of the timetable is essential to improve the service quality of the public transport system. A lot of random factors in the
actual operation environment will a�ect the implementation of the synchronous timetable, and adjusting timetables to improve
synchronization will break the order of normal service and increase the cost of operation. A multi-objective bus timetable
optimization problem is characterized by considering the randomness of vehicle travel time and passenger transfer demand. A
multi-objective optimization model is proposed, aiming at minimizing the total waiting time of passengers in the whole bus
network and the inconsistency between the timetable after synchronous optimization and the original timetable. �rough large
sample analysis, it is found that the random variables in the model obey normal distribution, so the stochastic programming
problem is transformed into the traditional deterministic programming problem by the chance-constrained programming
method. Amodel solvingmethod based on the augmented epsilon-constraint algorithm is designed. Examples show that when the
random variables are considered, the proposed algorithm can obtain multiple high-quality Pareto optimal solutions in a short
time, which can provide more practical bene�ts for decisionmakers. Ignoring the random in�uence will reduce the e�ectiveness of
the schedule optimization scheme. Finally, sensitivity analysis of random variables and constraint con�dence in the model
is made.

1. Introduction

With the acceleration of social and economic development
and urban construction, the travel demand of citizens in-
creases. In order to adapt to this change, the number of
routes and stops in the public transport systems is in-
creasing, and the optimization of the public transport
network is becoming more and more complicated. �ere-
fore, e�ectively improving the public transport system’s
service quality and operational e�ciency has become a key
measure. In the public transport network planning problem,
the bus timetable is used to determine the departure time of
each line. �e relevance of generating a timetable relies on
the fact that inadequate and/or inaccurate timetables con-
fuse the passengers and reinforce the bad image of public

transit as a whole [1]. At the same time, the design scheme of
bus timetables also a�ects the operation planning of vehicle
scheduling and crew arrangement. Hence, the design of
timetables is essential for maximizing the quality of service
of the bus system.

In the bus network of large cities, passengers often have
to transfer between di�erent routes because they cannot get
to the destination directly, making it inevitable to spend time
waiting for the bus at the transfer station. For commuters
who choose to take the bus daily, on the premise that the
transfer station can catch up with the following bus line in
time, reducing their transfer waiting time to the maximum
extent is of positive signi�cance to save commuting time and
improve the commuting experience. In order to minimize
the transfer waiting time, it is necessary to cooperate
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between different bus lines so that the bus network has good
connectivity and the buses on different lines can complete a
seamless connection at the transfer station. However, the
public transport system is different from the railway
transport system. (ere is no definite arrival schedule for
each bus. Only the first departure time of each bus and the
departure interval time of each bus can be known. (e
randomness of the arrival time of the bus may lead to a long
waiting time for passengers and evenmiss the opportunity of
transfer. A synchronized timetable, with good coordination
between buses at transfer nodes, enables passengers to enjoy
a smooth transfer service, which is a very important and
attractive bus transportation service [2].

(e public transit planning process is usually divided
into a sequence of five steps: (1) the design of routes, (2) the
setting of frequencies, (3) the timetabling, (4) the vehicle
scheduling, and (5) the crew scheduling and rostering [3].
(e optimization of bus timetables is essential because it is a
link between the preceding and the following. As far as the
existing research on bus timetable optimization is con-
cerned, most of them are based on the assumption of the
operating environment, and there are few studies on the
actual operation problems. However, in the actual operating
environment, there are a large number of random factors in
the public transport system, such as vehicle travel time, stop
time, bad weather, and passenger demand, which will affect
the implementation of the synchronous timetable (Yu et al.
[4]; Yao et al. [5];Wu et al. [6];Wu et al. [7]). Although some
studies consider the uncertainty of vehicle driving in the
design of the timetable, some do not consider the impact of
this on operational planning. In the collaborative optimi-
zation of bus timetables, most researchers set up the con-
dition of fixed headways without considering the effect of
nonfixed headways, and most synchronous optimization
methods are only a single objective. Few scholars have
carried out multi-objective schedule optimization research.
Recently, Tang et al. [8] proposed a robust scheduling
strategy for the electric bus given the randomness of bus
operating conditions. At the same time, they considered the
limitation of the timetable and battery mileage and con-
structed an optimization model of static and dynamic
combinations. (e static model introduced the buffer dis-
tance strategy to solve the adverse effects caused by ran-
domness. In contrast, the dynamic model used the real-time
changing urban road traffic conditions to re-plan the bus
schedule in operation within a day.

Besides the stochastic effect of operation conditions, the
dynamic change of passengers’ demand also increases the
difficulty of vehicle synchronized optimization. In order to
realize passengers’ continuous transfer, bus companies often
make buses between different routes arrive at the transfer
point synchronously by adjusting the existing timetable. But
suppose there is a big deviation between the revised time-
table and the original timetable. In that case, it will not only
destroy the normal service order of the bus timetable but also
significantly increase the operation cost of the bus com-
panies due to the adjustment of the next operation plan. (e
primary tradeoff faced in the planning and operating tasks is
between the level of service faced by the user and the

operating costs for agencies [9]. (ere is a conflict of interest
between synchronizing bus timetables between different
routes to minimize passengers’ waiting time to transfer and
minimize the deviation from the original timetables, which
requires a difficult tradeoff between improving synchroni-
zation and operating costs.

Based on the above factors, we consider the influence of
various random factors and take them as the research focus.
At the same time, we consider the balance between pas-
senger convenience and operation cost. In order to minimize
the total waiting time of passengers in the whole road
network and minimize the inconsistency between the syn-
chronized optimized timetable and the original timetable, a
multi-objective optimization method is proposed to solve
the problem. (is study optimizes the original timetable to
improve the synchronization of vehicles arriving at transfer
stations on different routes so that more passengers can
reduce the waiting time and improve the service experience.
In order to achieve this goal, we propose a multi-objective
optimization model, which fully considers the randomicity
of vehicle travel time in public transport routes as a random
variable and finds that the stochastic programming model
obeys normal distribution through large sample analysis.
(erefore, the stochastic programming model is trans-
formed into a new deterministic model using chance-con-
strained programming. In this study, we design a model-
solving algorithm based on the augmented epsilon-con-
straint algorithm, which can obtain several Pareto optimal
solutions reasonably. Finally, the sensitivity analysis of the
random variables and the confidence of constraints in the
model are carried out to verify the robustness of the model.

(e rest of this study is as follows: Section 2 reviews the
past work. Section 3 describes the multi-objective model.
Section 4 analyzes the solution algorithm. Section 5 validates
the model’s effectiveness and makes a sensitivity analysis.
Section 6 gives the conclusion.

2. Literature Review

(e collaborative design and optimization of bus timetable
are to optimize the departure time and arrival time from the
planning layer and the operation layer, so as to reduce the
waiting time of passengers and the operation cost of the bus
company, and thus provide the service quality of the whole
bus system.

From the point of view of transfer optimization, Cevallos
and Zhao [10] proposed a systematic approach based on a
genetic algorithm to optimize transfer time by adjusting
existing timetables to find the best feasible solution for the
optimization of transfer time, taking into account the
randomness of bus arrivals. Shafahi and Khani [11] con-
structed a mixed-integer programming model intending to
minimize the waiting time for passengers to transfer between
different lines. (e model considered the fixed headways,
necessary vehicle stop time, and transfer time. (e author
also extended the model with other buses arriving as new
variables. Parbo et al. [12] developed a heuristic algorithm,
which used a tabu search algorithm to reduce the offset from
the original timetable to minimize passengers’ waiting time.
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Abdolmaleki et al. [13] assumed that the bus on each line had
fixed headways and proposed a model with the same de-
parture constraint to minimize the vehicle travel time in the
bus network. Based on the proof that the local search for the
generalized problem is equivalent to the maximum-directed
cut problem, the authors proposed an approximate algo-
rithm for solving the problem of maximum-directed cut to
solve the timetable synchronization problem. At last, the
authors relaxed the assumption of the fixed headways and
the endless number of transfer passengers between any two
lines and designed a recursive quasi-linear time algorithm to
solve the problem. To solve the operation problem of the
BRTsystem with two-way lanes, Seman et al. [14] proposed a
B-IHCPS strategy based on the simultaneous integrated
control of the headway and sequencing of the directional
bipartitions, which aims to minimize the total time for
passengers to travel and wait. Based on a bimodal network
composed of pedestrian and bus modes, De-Los-Santos et al.
[15] constructed a mixed integer linear programming model
to minimize the total travel time of users and considered
service operator objectives. Finally, two new models of line
network design and line planning are proposed.

While reducing waiting time for passengers, it is also
necessary to reduce the operating costs of bus companies.
Castelli et al. [16] proposed a heuristic algorithm for traffic
network scheduling based on the Lagrange relaxation
method to minimize the weighted sum of the time spent by
passengers in the public transportation system and the cost
of vehicles used by operators. Moreover, the model proposed
by the authors is more suitable for the local network where
passenger demand changes significantly within a day. Wu
et al. [17] proposed a new coordination design model of
stochastic bus timetables. Passengers can readjust their
routes when they missed the bus transfer and established a
two-level programming model. In the experiment, the au-
thors found that the combination of vehicle scheduling
coordination and dynamic diversion can reduce the vehicle
size to save the cost of operation and reduce the loss caused
by passengers’ missed transfers. Considering that the tra-
ditional timetable adjustment is restricted by the dynamic
traffic jam on the road, Zhang and Liu [18] adopted the dual
dynamic method and used the Macroscopic Fundamental
Diagram framework to model the traffic dynamics, thereby
helping the operator reduce bus operating costs and net
benefit while maintaining costs for passengers.

(e above work is based on minimizing the waiting time
of passengers or minimizing the operation cost. However,
the collaborative design of the bus timetable can also be
optimized by avoiding bus congestion at common stops and
maximizing the number of synchronizations.

Considering the importance of designing the maximum
synchronism timetable, Ceder et al. [19] defined synchro-
nization as the simultaneous arrival of vehicles on different
routes at the transfer station and then set up a mixed-integer
linear programming model to maximize the number of
vehicles arriving at the transfer station simultaneously.
Based on the constraint of headways, they designed a
heuristic algorithm that can solve this problem in polyno-
mial time. (en, Ibarra-Rojas and Rios-Solis [20] loosened

the definition of Ceder et al. [19], considering that the in-
tervals between two routes are all synchronized in a small
time window, and established a mixed-integer programming
model considering the uneven headways. (e flexible, col-
laborative design of the public transport network was
adopted to maximize the number of vehicles arriving at the
transfer station simultaneously and avoid bus congestion.
After proving that the bus network timetable collaborative
design problem is an NP-hard problem, the authors
designed a multi-start iterative local search algorithm that
efficiently finds high-quality solutions. In order to effectively
combine global coordination and long-term operation,
Wang and Sun [21] proposed a multi-agent deep rein-
forcement learning framework to develop a dynamic and
flexible bus route retention control strategy to solve the bus
bunching problem. To better explore the best strategy, the
authors developed an effective headway-based reward
function in the framework and used a joint action tracker. In
order to train each bus within the framework, the authors
also designed an efficient learning algorithm using ap-
proximate strategy optimization. In order to reduce the
occurrence of bus congestion, Ma et al. [22] proposed a
nonlinear optimal control model considering driving dis-
turbance and passenger demand uncertainty. Considering
the uncertainty of the bus system and the real-time control
requirement of bus regulation, a robust optimal predictive
control algorithm is proposed.

Collaborative optimization of bus timetables often in-
volves multiple objectives, and the conflict of interests
among them is unavoidable. (erefore, it is necessary to
design a multi-objective optimization method to find the
balance of interests.

Kwan and Chang [23] studied the synchronization of
multi-objective metro timetables, aimed at minimizing the
total passenger dissatisfaction index related to transfer
waiting time and the total deviation index deviating from the
original timetable. (e Pareto frontier between these two
indexes was searched by the nondominated solution sorting
genetic algorithm-II (NSGA-II), and it was improved by the
differential evolution of NSGA-II. In order to improve the
service quality of the bus network, Hassold and Ceder [24]
studied the dual-objective timetable design problem to
minimize the expected waiting time of passengers and
minimize the deviation from the deviation expected vehicle
seating rate. By increasing the condition of using multiple
vehicle types on the same line to avoid the constraints of
uniform headways and passenger load. Assuming that the
possible departure time is known, they designed a multi-
objective label correction algorithm to solve the multi-ob-
jective problem. Wu et al. [25] studied the multi-objective
public transport network design and frequency setting
problem to minimize the cost of passengers and operators
and proposed an alternate objective genetic algorithm to
solve the problem with large search space and multiple
constraints. Liu et al. [26] developed a dual-objective integer
programming model, which aims at maximizing the number
of vehicles arriving at the transfer station and minimizing
the required vehicle size, and designed a sequential search
method solving model based on the two-stage deficit
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function. Fonseca et al. [27] proposed a mathematical
method to solve the two-objective mixed integer pro-
gramming problem of timetable coordination and vehicle
scheduling. (is method allows the timetable to be modified
within the departure distance limit to minimize the weighted
sum of passenger transfer time cost and bus operation cos.
(e timetable can be coordinated by modifying the de-
parture time and prolonging the vehicle stay time at the
transit station. Tang et al. [28] constructed a bi-objective bus
timetable optimization model based on a data-driven
method to minimize the total waiting time of passengers and
the departure time of bus companies and designed an im-
proved nondominated sorting genetic algorithm-II (NSGA-
II) with the special coding scheme, which can search the
Pareto optimal solution quickly. Wu et al. [29] proposed a
mixed integer linear programming model to optimize the
bus schedule and bus matching scheme, which aims at
minimizing passenger waiting time, passenger travel time,
and operating cost. In order to solve the model, the author
designs an algorithm based on improved Lagrangian re-
laxation and proposes a rolling level scheme for dynamic
algorithm implementation. Tian et al. [30] proposed a new
three-level programming model to solve the problem of
public transport network design with congestion, which
minimizes the total operating cost and passenger transfer
cost. In order to solve this problem, two methods are
proposed to transform the nonlinear nonconvex problem
into mixed integer linear programming and surrogate
optimization.

(ere are many uncertain factors in the actual envi-
ronment of bus operation, such as the random travel time of
vehicles, the dynamic demand of passengers, and so on. In
an uncertain environment, the above bus schedule opti-
mization model based on the deterministic operation en-
vironment is challenging to solve such problems. In order to
solve the problem of uncertainty, researchers consider
adding random variables to the construction of a model.

Ting and Schonfeld [31] studied the problem of mini-
mizing the total operating costs of multi-hub transportation
networks and designed a heuristic algorithm to simulta-
neously optimize the headways and timetable relaxation
time of transfer lines. (e results show that the relaxation
delay costs of vehicles and passengers increase with the
relaxation time, while the costs of passenger missed transfer
and vehicle scheduling delay decrease. Considering the
stochastic disturbance caused by the change in passenger
demand, Yan et al. [32] set up a stochastic demand
scheduling model and developed two heuristic algorithms to
solve the model using simulation technology and routing
strategy-based online network and designed a performance
evaluation method. Zhao and Zeng [33] defined a passenger
cost function based on the random arrival time of passen-
gers, line network, vehicle spacing, and timetable. (ey
proposed a meta-heuristic optimization method of bus line
network combined with simulated annealing, taboo, and
greedy search to determine a bus line network that mini-
mizes the passenger cost function. Yan et al. [34] proposed a
bus network design problem considering the randomness of
vehicle driving time, constructed a robust optimization

model aiming at minimizing the weighted sum of operator
cost, and designed a heuristic algorithm based on the
k-shortest path algorithm, simulated annealing algorithm,
Monte Carlo simulation, and probabilistic discrete selection
model to solve the model. Wu et al. [6] constructed a
random integer programming model for the three types of
passengers, namely, transfer passengers, passenger passen-
gers, and direct passengers, to minimize the total waiting
time. (e relaxation time was added to the timetable to
reduce the randomness of bus travel time, and a genetic
algorithm with local search was designed to solve the model.
Berrebi et al. [35] regarded the bus scheduling problem as a
random decision-making process. Assuming that there are
random operating conditions and unstable driving dis-
tances, they proposed a strategy for scheduling buses using
real-time information so that passengers can minimize the
waiting time at the transfer station and maximize the bus
frequency on the route. Li et al. [36] took the bus travel time
as a fuzzy variable, constructed a bi-objective optimization
model to minimize the total vehicle travel time and the total
passenger waiting time in the bus network, and designed a
genetic algorithm with variable chromosome length to solve
the model. To cope with the impact of randomness, Morales
et al. [37] proposed a bus injection bus operation strategy,
namely the bus scheduling strategy for the situation of ex-
tremely long headway. (e authors established a random
model based on the secondmoment of interval distribution to
determine whether the bus is worth injecting and developed a
complete service model to determine when the bus should be
injected. Based on the above literature research, a multi-
objective optimization model is constructed in this study.

3. Model Formulation

3.1. Assumptions and Notations

3.1.1. Assumptions. (e bus schedule optimization problem
studied in this study is to find a reasonable and relatively
optimal set of departure times for a certain route in a certain
period from the point of view of the transfer station. Let the
line set be X, and both lineM and lineN belong to the line set
X. In order to simplify the problem, assuming that line M is
the mainline and line N is another line, and lineM to line N
has transfer demand, it is necessary to optimize the bus
departure schedule of line N. To simplify the problem, this
study only considers the one-way transfer demand. For a
large public transport network in real life, no matter whether
the number of bus transfer lines is increased or the request
for two-way transfer is considered, we only need to consider
the problem by extending the model. Due to data confi-
dentiality reasons, the GPS location information of Shenz-
hen bus cards is missing. It is no longer feasible to build a
model considering the transfer of a single passenger in the
traditional model building method. (erefore, we designed
an innovative method that considered from the overall
perspective, ignoring the heterogeneity of stations and
stations, and considering the full sample planning problem.

(a) Passenger transfer demand: considering the same
bus IC card, based on the analysis of large sample
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data, for lineM and line N, if the bus IC card has an
adjacent swiping record of line M and line N and
the bus IC card has to swipe record of line N after
lineM, the number of transfer passengers from line
M to line N is assumed to be plus 1. We count the
number of bus IC cards with these two properties to
determine the number of interchange passengers
from line M to line N and record them as PN

M to
represent passenger transfer demand.

(b) (e total drop-off time of transfer passengers
online M: assuming the boarding time of the
transfer passenger who holds the ith IC card is ti.
All IC cards, namely all transfer passengers, are
anonymously processed to avoid losing generality.
Considering the statistical analysis of large samples,
it is assumed that the total travel time of line M is
TM. And the passenger travel time onlineM can be
approximately equal to the mean value of TM,
which is approximately substituted by (1/2)TM and
recorded as HM. Since the passenger’s time to get
off is equal to the sum of the passenger’s boarding
time and the ride time, the total drop-off time of
transfer passengers online M can be calculated by
the following formula:

li � ti + HM,

LM � 

PN
M

i�1
li,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where li is the drop-off time of the transfer pas-
senger who holds the ith IC card in lineM and LM is
the total drop-off time of all transfer passengers
online M.

(c) (e total boarding time of transfer passengers
online N: assuming the number of trips corre-
sponding to the record of the ith IC card onlineN is
a(i). In general, the number of all trips in line N is
counted, and it is assumed that there are A trips in
total. Considering the statistical analysis of large
samples, we can find out the earliest card swiping
time of all card swiping times of each train in the
data set, and set QN

min � q1, q2, . . . , qa, . . . , qA , and
set qA and q1 as the minimum and maximum card
swiping time in the set, then we can calculate the
original departure time of different trains ap-
proximately by the following formula:

t �
qA − q1

A − 1
,

f
a(i)
N � q1 +(a − 1)t,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where f
a(i)
N represents the departure time of the

a(i)th bus online N in the existing timetable.
Similarly, based on the consideration of a large
sample, it is assumed that the total travel time of line
N is TN. And the travel time of line N is

approximately equal to the mean of TN, which is
approximately substituted by (1/2)TN and recorded
as HN. (e boarding time of transfer passengers
online N is the arrival time of the bus online N,
which can be expressed by the sum of the departure
time and travel time of the bus number. We can
calculate the total boarding time of the transfer
passengers online N according to the following
formula:

si � f
a(i)
N + HN,

SN � 

PN
M

i�1
si,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where si is the boarding time of the transfer pas-
senger who holds the ith IC card in lineN, and SN is
the total boarding time of all transfer passengers in
line N.

(d) (e total waiting time of passengers transferring
from line M to line N: from (2) and (3), we can get
the passengers’ total drop-off time online M and
total boarding time online N, respectively. (e total
waiting time of transfer passengers from line M to
line N can be obtained by the difference calculation
of the formula:

T
N
M � SN − LM

� 

PN
M

i�1
f

a(i)
N + HN  ] − 

PN
M

i�1
ti + HM( ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(4)

where TN
M represents the total waiting time of

passengers transferring from line M to line N.

3.1.2. Notations. (e following terms have been defined and
used in our model (Table 1).

3.2. Model Analysis

3.2.1. Objective Function Analysis. (e objective function of
bus departure schedule optimization is composed of two
parts: the total waiting time of transfer passengers and the
total adjustment time of the bus timetable. Passenger cost is
determined by the total waiting time from line M to line N.
(e total bus departure adjustment time is equal to the
deviation value between the optimized timetable and the
original timetable of each bus. (us, the total departure
adjustment time of line M to line N of the bus company
during the research period can be calculated based on the
following formula:

B � min

PN
M

i�1
x

a(i)
N − f

a(i)
N



, (5)

where B represents the total departure adjustment time of
line M to line N.
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According to the research contents of this study, the
objective of the optimization is to minimize both the waiting
time for transfer passengers and the total bus departure
adjustment time as much as possible. (e objective of the
optimization is to minimize both the objective function F1
and F2, defined as follows:

minF1 � 

PN
M

i�1
x

a(i)
N + HN

′  ] − 

PN
M

i�1
ti + HM( ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

minF2 � min

PN
M

i�1
x

a(i)
N − f

a(i)
N



,

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where x
a(i)
N is the departure time of the a(i)th bus onlineN in

the optimized timetable and HN
′ represents optimized bus

travel time.

3.2.2. Model Constraint Analysis

(a) Vehicle Headway Constraint. After a large sample
analysis and in light of actual needs, assuming that the
maximum departure time interval is Gmax and the minimum
is Gmin, the vehicle headway constraint can be obtained as
follows:

Gmin ≤x
a(i)+1
N − x

a(i)
N ≤Gmax, ∀a(i) ∈ 1, 2, . . . , A{ }, N ∈ X. (7)

(b) Timetable Adjustment Range Constraint. From 3.1.1 (3),
we can see that the departure time of the a(i)th bus online N
in the existing timetable is f

a(i)
N . Assuming that based on the

existing timetable, the departure time of each vehicle can be
fluctuated up and down K ranges. (erefore, the adjustable
departure time constraints are defined as follows:

Table 1: Compliance description of notations used in this study.

Set
X Routes set, N ∈ X
QN

min (e earliest card-brush time set of all vehicles in line N, qi ∈ QN
min

C
a(i)
N All card-brush time of the a(i)th bus in line N, ci ∈C

a(i)
N

Parameters
A Total number of cars in route n
PN

M Passenger transfer demand
LM Total drop-off time of all transfer passengers in line M
TM Total vehicle travel time for line M
TN Total vehicle travel time for line N
HM Mean of total vehicle travel time for line M
HN Mean of total vehicle travel time for line N
ti Boarding time of the transfer passenger who holds the ith IC card
li Drop-off time of the transfer passenger who holds the ith IC card in line M
si Boarding time of the transfer passenger who holds the ith IC card in line N
a(i) Number of trips corresponding to the record of the ith IC card in line N
qi (e earliest card swiping time of the ith IC bus in line N
SN Total boarding time of all transfer passengers in line N
f

a(i)
N Departure time of the a(i)th bus online N in the existing timetable, ∀a(i) ∈ 1, 2, . . . , A{ }

TN
M Total waiting time of passengers transferring from line M to line N

B Total departure adjustment time of line M to line N
HN
′ Optimized bus travel time online N

Gmax Maximum departure time interval
Gmin Minimum departure time interval
K Adjustable range of departure timetable
J Floating range of a vehicle’s travel time
Dearly (e earliest departure times of a bus line
Dlate (e latest departure times of a bus line
cmax Maximum card swiping time of the a(i)th bus online N
F1 Optimal value of F1 derived from deterministic programming
F2 Optimal value of F2 derived from deterministic programming
HN
′ Random travel time of vehicles online N

αN Confidence level of constraint satisfaction for stochastic programming
uN Mean of random travel time in line N
σN Variance of random travel time in line N

λ1
Probability that the random planning transfer time after considering the random variable is less than the deterministic

planning transfer time
Decision
variables
D 1− λ1
x

a(i)
N Departure time of the a(i)-th bus online N in the optimized timetable
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f
a(i)
N − K≤x

a(i)
N ≤f

a(i)
N + K, ∀a(i) ∈ 1, 2, . . . , A{ }, N ∈ X. (8)

(c) Departure Time Sequence Constraint. Since the departure
time of the next bus must be later than that of the previous
bus, the departure time sequence constraints are defined as
follows:

x
a(i)
N ≤x

a(i)+1
N , ∀a(i) ∈ 1, 2, . . . , A{ }, N ∈ X. (9)

(d) Reasonable Departure Time Constraint. Assume that
Dearly and Dlate represent the earliest and latest departure
times of a bus line, respectively, and that the departure times
of each bus cannot be earlier than Dearly and not later than
Dlate. (e reasonable departure time constraint can be ob-
tained as follows:

Dearly ≤x
a(i)
N ≤Dlate, ∀a(i) ∈ 1, 2, . . . , A{ }, N ∈ X. (10)

(e) Constraint of Relationship betweenMaximum Swipe Time
and Departure Time. For line N, it is necessary to ensure at
least that the sum of the maximum departure time in the
timetable and the travel time is greater than the maximum
card swiping time for transfer passengers. Assuming that all
card swiping times of the a(i)th bus online N is set to
C

a(i)
N � c1, c2, . . . , and cmax is the maximum card swiping

time in the set.(e constraint of the relationship between the
maximum card swiping time and the departure time is set
out in (11) as follows:

x
a(i)
N + 2HN ≥ cmax, ∀a(i) ∈ 1, 2, . . . , A{ }, N ∈ X. (11)

(f ) Route N Bus Travel Time Floating Upper and Lower
Bound. For line N, assuming that the travel time of the bus is
a floating J based on the original data, the upper and lower
limits of the travel time of the line N bus can be obtained as
shown in:

HN − J≤HN
′ ≤HN + J, ∀N ∈ X. (12)

(g) Constraint of Relationship between the Total Drop-Off
Time and the Total Boarding Time. Obviously, given that the
total drop-off time of all transfer passengers online M is


PN
M

i�1(ti + HM) and the total optimized boarding time is


PN
M

i�1(x
a(i)
N + HN

′ ) , the constraint of the relationship between
the total drop-off time and the total boarding time is defined
as follows:



PN
M

i�1
x

a(i)
N + HN

′  ≥ 

PN
M

i�1
ti + HM( , ∀a(i) ∈ 1, 2, . . . , A{ }, M, N ∈ X. (13)

3.3. Establishment and Optimization of the Model

3.3.1. Consideration and Selection of Random Variables.
(e three branches of stochastic programming are the ex-
pected value model, chance-constrained programming, and

related chance programming. Chance-Constrained pro-
gramming, which A. Charnes and W. W. Cooper proposed
in 1959, is an optimal theory in a certain sense of probability.
Considering randomness is more practical and can bring
higher solution effect and precision. (erefore, we consider
the travel time of line N as a random variable, defined as HN

′.
(en, the objective function and the corresponding con-
straint conditions are simplified by chance-constrained
programming.

3.3.2. Objective Function Optimization. First, we define
F1and F2 as the optimal values of the two objective
functions obtained by solving the deterministic pro-
gramming through the above modeling process without
considering random variables. F1 and F2 are the minimum
of F1 and the maximum of F2 respectively. By counting the
travel times of buses on route N from route M to route N
on different days, it is clear that HN

′ follows a normal
distribution, thus converting it from random variables to
deterministic equivalents uN + σN ·Φ− 1(λ1). Since we
consider the general situation and ignore the extreme
situation, here we calculate based on the existing data that
the random variable obeys the normal distribution, which
is consistent with the general reality and is directly
simplified to consider the normal distribution. For ex-
treme situations that may exist in reality, such as holidays,
etc., passenger transfer needs will change greatly. Based on
3.2 (6), the optimized objective function can be expressed
in a joint expression:

Pr min 

PN
M

i�1
x

a(i)
N + HN

′ ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ − 

PN
M

i�1
ti + HM( ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦≤F1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� λ1,

minF2 � min

PN
M

i�1
x

a(i)
N − f

a(i)
N



,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)

max λ1,

minF2 � min

PN
M

i�1
x

a(i)
N − f

a(i)
N



.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

Let D � 1 − λ1, convert the above union expression to
the formula:

minD � 1 − λ1,

minF2 � min

PN
M

i�1
x

a(i)
N − f

a(i)
N



.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

3.3.3. Model Constraint Optimization

(a) Constraint of Relationship betweenMaximum Swipe Time
and Departure Time. Considering that the travel time of the
buses online N is a random variable HN

′ , we change the
model constraint equation (11) to the following equation
(17), where αN is the confidence level of constraint
satisfaction.
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Pr cmax − x
a(i)
N ≤ 2

HN
′ ≥ αN, ∀a(i) ∈ 1, 2, . . . , A{ }, N ∈ X.

(17)

Let (N) � cmax − x
a(i)
N − 2 HN

′, then it satisfies the
following:

E[z(N)] � cmax − x
a(i)
N − 2uN, (18)

D[z(N)] � 4 σN( 
2

� 2σN( 
2
.

(19)

(ere is a constraint cmax − x
a(i)
N ≤ 2

HN
′ equivalent to

cmax − x
a(i)
N − 2 HN

′ ≤ 0 that satisfies equation (20) and can
also be expressed as equation (21):

cmax − x
a(i)
N − 2 HN

′  − cmax − x
a(i)
N − 2uN  + cmax − x

a(i)
N − 2uN  

2σN

≤ 0,

(20)

cmax − x
a(i)
N − HN

′ − cmax − x
a(i)
N − uN 

2σN

≤ −
cmax − x

a(i)
N − uN

2σN

.

(21)

Let the inverse of the left equation of (20) be η, then η is
expressed as equation (22), so n satisfies the standard normal
distribution Φ(0, 1), and its probability density is expressed
as equation (23):

η �
HN
′ − 2uN

2σN

, (22)

Φ(η) �
1
���
2π

√ 
η

−∞
e

− t2/2( )dt. (23)

(erefore, equation (21) can be transformed in form as
shown in the following:

−
cmax − x

a(i)
N − 2 HN

′ − cmax − x
a(i)
N − 2uN 

2σN

≥
cmax − x

a(i)
N − 2uN

2σN

, (24)

η≥
cmax − x

a(i)
N − 2uN

2σN

. (25)

According to probability theory, theremust be a numberKa

for the confidence level αN, which makes the following formula
(26) true. So the derivation can be done as shown in equations
(27)–(30):

Pr Ka ≤ η  � αN (26)

Ka � Φ− 1 1 − αN(  (27)

Pr

cmax − x
a(i)
N − 2uN

2σN

≤ η ≥ αN
(28)

cmax − x
a(i)
N − 2uN

2σN

≤Ka
(29)

cmax − x
a(i)
N − 2uN

2σN

≤Φ− 1 1 − αN( . (30)

(en, the constraint xa
N + HN
′ ≥ cmax is equivalent to

equation (31), where Φ− 1(αN) is an inverse function of αN.
Further merging and simplification lead to equation (32).

cmax − x
a(i)
N ≤ 2uN + 2σN ·Φ− 1 1 − αN( , (31)

cmax − x
a(i)
N ≤ 2 uN + σN ·Φ− 1 1 − αN(  . (32)

(b) Variable Constraint. Standardize the range of values of
ordinary parameters in the model, the specific meaning of
which has been stated in the notation, and therefore is not
repeated here but expressed in the formula as follows:

D ∈ [0, 1]. (33)
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3.3.4. OptimizedModel. After considering random variables
and changing the objective function and constraint

condition, ns, as shown above, the final multi-objective
chance-constrained model is proposed as follows:

minD

min F2 � min

PN
M

i�1
x

a(i)
N − f

a(i)
N





subject.to



PN
M

i�1
x

a(i)
N + uN + σN ·Φ− 1 λ1(    ] − 

PN
M

i�1
ti + HM( ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦≤F1

x
a(i)
N + 2 uN + σN ·Φ− 1 1 − αN(  ≥ cmax ∀a(i) ∈ 1, 2, . . . , A{ }, N ∈ X

Gmin ≤ x
a(i)+1
N − x

a(i)
N ≤Gmax, ∀a(i) ∈ 1, 2, . . . , A{ }, N ∈ X

f
a(i)
N − K≤x

a(i)
N ≤f

a(i)
N + K, ∀a(i) ∈ 1, 2, . . . , A{ }, N ∈ X

x
a(i)
N ≤ x

a(i)+1
N , ∀a(i) ∈ 1, 2, . . . , A{ }, N ∈ X

Dearly ≤x
a(i)
N ≤Dlate, ∀a(i) ∈ 1, 2, . . . , A{ }, N ∈ X



PN
M

i�1
x

a(i)
N + uN + σN ·Φ− 1 λ1(   ≥ 

PN
M

i�1
ti + HM( , ∀a(i) ∈ 1, 2, . . . , A{ }, M,N ∈ X

D � 1 − λ1
D ∈ [0, 1].

(34)

4. Algorithm Design

(e constrained programming model in this study belongs
to the category of multi-objective optimization problems.
Because multiple goals often conflict, tradeoffs can only be
made between multiple goals, and different tradeoffs can be
combined into a set of Pareto optimal solutions.

(e Pareto solution is defined as if there are any two
solutions S1 and S2, S1 is superior to S2 for all objectives, we
call S1 dominates S2. And if the solution of S1 is not
dominated by other solutions, S1 is called a nondominated
solution, also known as the Pareto solution. And the defi-
nition of the weak dominating solution is as follows: if any
two solutions S1 and S2 have f(S1)<f(S2) for all targets, but
at least one objective function has g(S1)<g(S2), S1 is called
weak dominating S2, that is, S1 is the weak dominating
solution.

In order to effectively find the Pareto solution to the
multi-objective optimization problem, scholars have made a
long effort. Epsilon-constraint is a representative constraint
processing technique proposed by Takahama and Sakai [38],
which can relax the constraint to a certain extent so that the
algorithm can get a good solution at the edge of the feasible
region. Later, on the basis of the original epsilon-constraint
method, Mavrotas, and Florios [39] proposed an augmented
epsilon-constraint method to improve the original algo-
rithm, which solves the problem that when some con-
strained targets are not well constrained by inequalities, the
original epsilon-constraint method may match to the weak

dominated solution. (erefore, the augmented epsilon-
constraint method can be well applied to our proposed two-
objective optimization model.

4.1. Augmented Epsilon-Constraint Algorithm.
Epsilon-Constraint is one of the multi-objective integer
programming algorithms with both theoretical and com-
putational attractions. It can loosen the constraint and get a
feasible solution with low constraint violation and small
objective function. Its basic principle is to retain only one
objective in the multi-objective problem and add the
remaining objective constraint values to the constraints to
obtain the Pareto solution of the selected single objective by
adjusting the values of the restricted objective.

To facilitate the algorithm description, we simplify the
original problem to min z(x) � z1(x), z2(x) , x ∈ X.

Here, z1(x) represents the objective function D (the
probability that the stochastic programming transfer time is
less than the deterministic programming transfer time), and
z2(x) represents the objective function F2 (the variance
between the optimized timetable and the original timetable),
and the feasible region X includes all constraints of the
optimization model proposed in Section 3.3.3.

For the optimization problem in this study, the model
focuses on optimizing the total passenger transfer time and
improving the passenger service experience, while mini-
mizing changes in the timetable is less important than the
former.(erefore, the priority of z1(x) is greater than that of
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z2(x). (us, by minimizing z1(x), constraining z2(x), and
setting σ2 as the constraint value of z2(x), the standard
epsilon-constraint model of the original problem is

min z(x) � z1(x),

subject. to.
z2(x)≤ σ2,

x ∈ X.


(35)

(e Pareto solution of the original problem can be
obtained by solving the abovemodel.When all the inequality
constraints of the constrained target are in effect, the original
epsilon-constrained algorithm can correctly identify the
nondominated solution when all the inequality constraints
of the constrained target are in effect. However, it is possible
to output the weak-dominated solution when the inequality
constraints of the partially constrained target are not in effect
[40]. (e dominant solution has not reached the optimi-
zation effect of the Pareto solution, so we should avoid the
weak dominant solution as far as possible. (erefore, we
need to improve the original epsilon-constraint algorithm.

4.2. Customized Augmented Epsilon-Constraint Algorithm.
(e augmented epsilon-constraint algorithm is an improved
multi-objective analytic class optimization algorithm aiming
at the problem that the traditional epsilon-constraint al-
gorithm may not get a practical Pareto solution set. By
introducing relaxation variables, the inequality constraints
corresponding to each constrained object are normalized as
equality constraints. (e range of values of the constrained
object is divided into equidistant meshes and multiplied by a
sufficiently small weight ρ> 0, which is then extended to the
original objective function. (e augmented epsilon-con-
straint algorithm ensures that only valid Pareto solutions are
searched. Here are the steps of the augmented epsilon-
constraint algorithm to solve this scenario in this study.

Step 1.Get the range of values of z1(x) and z2(x) as
[zmin

1 , zmax
1 ] and [zmin

2 , zmax
2 ], where zmin

i and zmax
i are the

minimum and maximum values of the objective func-
tion zi(x), respectively. When z1(x) obtains the min-
imum value zmin

1 , let x1 be the optimal solution at this
time, z2(x) will get the maximum value zmax

2 � z2(x1)

in the feasible region. Similarly, when z2(x) obtains the
minimum value zmin

2 , let x2 be the optimal solution at
this time, z1(x) will get the maximum value zmax

2 �

z2(x1) in the feasible region.(e two objective functions
are optimized for lexicographic order as follows:

z
max
1 � min z1(x), s.t.z2(x) � z

min
2 , x ∈ X,

z
max
2 � min z2(x), s.z1(x) � z

min
1 , x ∈ X.

⎧⎨

⎩ (36)

Step 2.Mesh the range of values of z2(x). If we want to
get g2 + 1 Parato solutions, there will be g2 + 1 grid
points (including the grid points corresponding to the
minimum and maximum of z2(x) ). (en, the range of
values will be meshed into g2 grids, with each grid
having an interval size of (zmax

2 − zmin
2 )/g2.

Step 3. Determine the constraint level for each z2(x) in
each grid interval. To facilitate the presentation of the
algorithm, we set k2 as the index of the grid points,
numbering from 0, so that the grid points k2 � 0, 1, . . .,
g2 correspond to the constraint level X12.
Step 4.By introducing the relaxation variable u2, the in-
equality constraint of constrained targets is changed into
an equality constraint. (e ratio of u2 to z1 is calculated to
eliminate the dimensional effect. (en multiplied by the
sufficiently small weight p, and extended to the objective
function 1, the augmented epsilon-constraint method
model is constructed. (e final model is as follows:

min z1(x) −
ρμ2
v2

  ,

s.t.

z2(x) + μ2 � σ2;

μ2 ≥ 0;

x ∈ X;

k2 � 0, 1, . . . , g2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

For each lattice k2, a corresponding Pareto solution
(z1(x∗), z2(x∗)) and the current optimal solution x∗, μ∗2 

will be obtained for the above model. If
μ∗2 ≥ (zmax

2 − zmin
2 )/g2, that is, the value of the relaxation

variable is greater than the size of the grid interval, then the
next few grid intervals will not be optimized and the same
Pareto solution will still be obtained.(e Pareto solution can
be searched directly by skipping these covered grid intervals.
We make ξ2 is the jump coefficient of the total risk objective
and take ξ2 � [μ2g2/6500]. If ξ2 ≥ 1, then let k2 � k2 + ξ2, the
algorithm continues. If the desired number of Pareto so-
lutions is not reached, increase the value of G. Each Pareto
solution is the optimal solution of a multi-objective function
under various tradeoffs and can be used as a candidate
solution. In different situations, decisionmakers can make
decisions based on demand.

(e algorithm flow chart is shown in Figure 1.

5. Example Analysis

5.1. Overview and Visualization Analysis of Examples.
(is study selects bus route 338 and bus route 615 in
Shenzhen, China, as examples to verify the feasibility and
effectiveness of the multi-objective optimization model of a
bus timetable. In the actual operation of public transport,
generally speaking, vehicles driving up and down inde-
pendently do not affect each other, and the vehicle routes are
used respectively according to the upward and downward
directions. Bus route 338 has 40 stops, 95 minutes for the
whole upward direction of the line, 101 minutes for the
entire downward direction of the line, and Bus route 615 has
62 stops, 168 minutes for the whole upward direction of the
line and 153 minutes for the whole downward direction of
the line. (is study chooses a downward direction bus to
study to simplify the problem.
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Figure 2 shows the route of 338 and 615 buses and the
location of each station in the real environment. It can be
clearly seen that the two bus routes have a section of
overlapping paths. �e route’s two endpoints are Fuyong
Seafood Market Station and Hedong Station. According to
Section 3.3.1, we use the mean of the total travel time in one
direction of the vehicles in di�erent routes to approximate
the passenger travel time. To prove the reasonableness of the
assumption, we selected 338 and 615 roads with multiple
identical sites and all sites evenly distributed on both sides of
the line midpoint. As shown in Figure 2, passengers’ transfer
at any station in the overlap path can be equivalent to
transferring at the path’s endpoints (namely, Fuyong Sea-
food Market Station and Hedong Station). �erefore, for the
convenience of the study, the selected bus network is sim-
pli�ed. �e simpli�ed diagram is shown in Figure 3. �e
arrows on each line in the diagram indicate the direction in
which the bus will run.

In this study, the data include: passenger’s IC card
number, passenger’s card transaction date and time,
passenger’s bus route, and vehicle’s plate number. In the
research period selected in this study, there are 23838
data on Bus route 338 and 6798 data on Bus route 615,
where 65 pieces of data are generated by passengers
swiping their cards from Bus route 338 to Bus route 615.
Some of which are shown in Table 2. For passengers who
take Bus route 338 but transfer to another route, use the
same optimization method. Each passenger has a separate
IC card number, so the IC card number can represent an
independent passenger. �e same IC card number record
can be used to determine whether a passenger has a
transfer demand. For the data shown in date and time of
transaction, the �rst eight digits represent the speci�c
transaction date, and the last six digits represent the
speci�c transaction time (in 24-hour format). Each bus
has a unique license plate number, through the license

Parameter

Parameter settings for constraints:
.Average travel time of the line
.Departure time interval constraint 

range
.Adjustment floating range of departure 

schedule

Card swiping data

Original departure schedule

Card swiping data of transfer personnel

Input Data

Conventional constrained programming
objective function:

Minimize total transfer time [Eq]
Constraints:

Enter all constraints of the model proposed in 3.3 [Eq 3.7]

objective function:
Minimize decision variable D [Eq]

Constraints:
Input all constraints of the model proposed in 3.3.2

Model

objective function:
Minimize schedule changes [Eq]

Constraints:
Input all constraints of the model proposed in 3.3.2

Augmented epsilon constraint
objective function:

Minimize the augmented decision variable D [Eq]
Constraints:

Input all constraints of the model proposed in 4.1.2

Chance constrained programming 

Output Data

Pareto solution

The value range of the total time variation target is divided 
into several grids. For each grid, a Pareto solution will be 
obtained, and for all grids, the final Pareto solution set will
be obtained

Fmin

Z1
min

Z2
max

Z2
min

Z1
max

Figure 1: Algorithm �ow chart of input data, model, algorithm, and output.
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plate number can be obtained in the number of bus
routes, and each bus in the study period of the number of
vehicles.

5.2. Summary and Presentation of Calculation Results.
�is model is nonconvex optimization. �e augmented
epsilon-constraint algorithm designed for solving the model
is programmed by Python 3.7, and the optimizationmodel is
solved by calling Gurobi 9.12. All calculations pass on PCs
with CPU Intel Core i5-9300H 2.40GHz and RAM 8.00GB,
with all parameters being the default, except setting the Time
Limit to a maximum of 300 seconds.

In the above initial optimization model, vehicle travel
time is stochastic, so this study takes bus travel time as a
random variable, introduces the chance constraint based on
the scene, and deals with the uncertainty of the random
variable by adjusting the con�dence level. We transform the

Bus route 338
Bus route 615
Bus station

Figure 2: A real-world bus network in Shenzhen, China.

1 2

Line 1
Line 2
Transfer Node

Figure 3: A simpli�ed diagrammatic illustration of bus network.

12 Mathematical Problems in Engineering



stochastic programming problem into a deterministic
programming problem using chance-constrained pro-
gramming. �is study assumes that the travel time of each
bus obeys the normal distribution N(uN, σ2N), where
(uN, σN) are the mean and variance of the travel time of each
bus. We transform the objective F1 of the initial model from
solving the minimum passenger transfer waiting time
without considering the random variable to solving the
probability λ1 that the random planning transfer time after
considering the random variable is less than the deter-
ministic planning transfer time. For ease of presentation, we
make D the new deterministic programming objective
function, where D � 1 − λ1, which means that D is the
complementary probability of λ1. In addition, for the con-
venience of calculation, we transform the objective F2 of the
initial model from the sum of the absolute values of the
optimized timetable and the original timetable o�set to the
sum of the squares of the timetable o�set, which can be
e�ectively substituted.

In this calculation example, Bus No.615 is selected as the
route for passengers to take after transfer, and the departure
timetable of 25 trains on this route during the study period
(i.e., 6: 00 to 21: 30 during the operation period of the route
on December 23, 2016) is optimized. �e Pareto approxi-
mate optimal solution of the multi-objective optimization
problem is obtained by test example. �e target values of
Pareto nondominated front and Pareto solutions are shown
in Figure 4 and Table 3, respectively.

It can be seen from Figure 4 that the complementarity
probability of the transfer time of stochastic programming
less than that of deterministic programming is negatively
correlated with the o�set between the optimized timetable
and the original timetable. It can be concluded that mini-
mizing passenger transfer waiting time and minimizing
timetable adjustment o�set are two con�icting objectives
when vehicle travel time is considered as a random variable.
�is is in line with the basic requirement that the Pareto
optimal solution can be obtained only when the interests of
each objective are con�icting in the multi-objective opti-
mization problem. �erefore, the optimization objectives
selected in this study are reasonable.

From Table 3, we get 10 Pareto approximate optimal
solutions by the designed algorithm. Among them, the

nondominant solution one and the nondominant solution
10 represent the two preferences, respectively: the minimum
total waiting time for passenger transfer and the minimum
total o�set from the original timetable when considering
random variables. �ese two Pareto solutions correspond to
the optimal adjustment range of the timetable and the
optimized departure timetable, as shown in Tables 4 and 5,
where di�erent shades of color represent di�erent timetable
o�sets.�e larger the color depth o�set, the smaller the color
light o�set.

By taking bus travel time as a random variable, the
Pareto solution set of D is obtained between 0.40 and 0.49

Table 2: Passenger data samples of bus lines.

IC card number Date and time of transaction Route License plate number
665483448 20161223071249 Bus route 338 YUE B93772
329219947 20161223084405 Bus route 338 YUE B93753
020816509 20161223063450 Bus route 338 YUE BBB439
684335961 20161223081852 Bus route 338 YUE BL7180
666734618 20161223072423 Bus route 338 YUE B87393
684060460 20161223071933 Bus route 338 YUE BL8287
665483448 20161223082307 Bus route 615 YUE BH0972
329219947 20161223093908 Bus route 615 YUE BBA947
020816509 20161223071808 Bus route 615 YUE B86900
684335961 20161223090336 Bus route 615 YUE BBB702
666734618 20161223073903 Bus route 615 YUE BBB743
684060460 20161223074057 Bus route 615 YUE BBB479

3600

0.40 0.42 0.44
D

F 2

0.46 0.48

3800

4000

4200

4400

4600

4800

5000

Pareto-optimal solution

Figure 4: Pareto optimal front for the network example shown in
Figure 2.

Table 3: Target values of Pareto optimal solutions.

Pareto optimal solution no. D F2

1 0.400 5043.694
2 0.408 4871.264
3 0.417 4698.833
4 0.426 4526.402
5 0.435 4353.972
6 0.445 4181.541
7 0.456 4009.111
8 0.466 3836.680
9 0.477 3664.250
10 0.488 3491.819
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approximately. When the complementarity probability of
the transfer time of stochastic programming less than that of
deterministic programming is the largest among all the
Pareto solutions, the offset of the optimized timetable is the
minimum of 173min 48 s. With the decrease of comple-
mentary probability, the offset of the timetable increases
gradually until the complementary probability is the smallest
of all Pareto solutions. (e offset of timetable reaches the
maximum value of 210min 30 s. When the complementary
likelihood is less than the minimum Pareto solution, the
offset of the optimized timetable is no longer in the range of
the Pareto optimal solution set. Increasing the offset of the
timetable will only increase the operation cost of the bus
company, but not reduce the complementary probability,
and reduce the total waiting time for passengers to transfer.
It means that the service quality of the bus system cannot be
improved, and the resource of transportation energy may be
wasted.

(erefore, the bus operation department can choose one
of the Pareto solutions as the final bus schedule according to
operation and management needs. If the bus operation
department prefers the minimumwaiting time for passenger
transfer, it is necessary to make the buses from different
routes arrive at the transfer station as soon as possible. At

this time, Pareto solution No.1 can be selected as the de-
parture schedule. But more and irregular changes to the
original timetable will affect the normal order of public
transport services, make the subsequent vehicle scheduling
and personnel arrangement more complicated, and lead to
an increase in operation cost. If the public transport op-
eration department prefers the minimum operation cost of
the enterprise, it is necessary to maintain the original service
order as far as possible and adjust the original timetable to
the smallest extent or approximately the same extent. At this
time, Pareto solution No.10 can be selected as the departure
schedule. However, it will increase the waiting time of
passengers and reduce the passenger’s service experience. If
the bus operation department needs to consider both the
enterprise operating cost and the passenger’s travel expe-
rience, it can choose the appropriate result from Pareto
solution No.2–No.9 to make the bus timetable.

In addition, it can be seen from Table 4 that for the first
vehicle departure time, Pareto solution one and Pareto
solution ten both make smaller optimization adjustments at
the same time. We find that in the other 8 Pareto solutions,
the departure time of the first vehicle is the same as that of
Pareto solutions 1 and 10, both of which are 45 s earlier. It
can be explained that the change of timetable optimization

Table 4: Adjustment time and optimized timetable of Pareto solution no.1.

Original Adjust Optimized Original Adjust Optimized Original Adjust Optimized

6:02:23 –45 s 6:01:38 

6:19:34 –7 min45 s 6:11:49 8:37:04 –4 min45 s 8:32:19 10:54:34 –7 min45 s 10:46:49

6:36:45 –7 min45 s 6:29:01 8:54:16 –10 min0 s 8:44:16 11:11:46 –10 min0 s 11:01:46

6:53:57 –9 min45 s 6:44:12 9:11:27 –7 min45 s 9:03:42 11:28:57 –10 min0 s 11:18:57

7:11:08 –7 min45 s 7:03:23 9:28:38 –10 min0 s 9:18:38 11:46:08 –8 min45 s 11:37:23

7:28:19 –9 min45 s 7:18:34 9:45:49 –7 min45 s 9:38:04 12:03:19 –8 min45 s 11:54:34

7:45:31 –7 min45 s 7:37:46 10:03:01 –7 min45 s 9:55:16 12:20:31 –10 min0 s 12:10:31

8:02:42 –10 min0 s 7:52:42 10:20:12 –10 min0 s 10:10:12 12:37:42 –8 min45 s 12:28:57

8:19:53 –7 min45 s 8:12:08 10:37:23 –9 min45 s 10:27:38 12:54:53 –9 min45 s 12:45:08

Table 5: Adjustment time and optimized timetable of Pareto solution no.10.

6:02:23 –45 s 6:01:38 

6:19:34 –7 min21 s 6:12:13 8:37:04 –4 min20 s 8:32:44 10:54:34 –7 min18 s 10:47:16

6:36:45 –7 min24 s 6:29:22 8:54:16 –7 min19 s 8:46:57 11:11:46 –7 min19 s 11:04:27

6:53:57 –7 min16 s 6:46:41 9:11:27 –7 min20 s 9:04:07 11:28:57 –7 min21 s 11:21:36

7:11:08 –7 min21 s 7:03:47 9:28:38 –7 min20 s 9:21:18 11:46:08 –7 min29 s 11:38:39

7:28:19 –7 min19 s 7:21:00 9:45:49 –7 min18 s 9:38:31 12:03:19 –7 min18 s 11:56:01

7:45:31 –7 min20 s 7:38:11 10:03:01 –7 min20 s 9:55:41 12:20:31 –7 min19 s 12:13:12

8:02:42 –7 min22 s 7:55:20 10:20:12 –7 min21 s 10:12:51 12:37:42 –7 min18 s 12:30:24

8:19:53 –7 min20 s 8:12:33 10:37:23 –7 min20 s 10:30:03 12:54:53 –7 min20 s 12:47:33

Original Adjust Optimized Original Adjust Optimized Original Adjust Optimized
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goal will not have an obvious in�uence on the optimization
of the departure time of the �rst vehicle. Similarly, for the
bus departing at 8:37:04, all Pareto solutions have an op-
timized adjustment time range of 4 to 5 minutes (that is, the
adjustment time range of the timetable is signi�cantly
smaller than that of other calculation results except for the
�rst vehicle), and the corresponding optimization results are
all in the time range of 8:32 to 8:33. Di�erent optimization
objectives will adjust this bus to the same time range. It
shows that the bus operation department can get a smaller
passenger transfer waiting time through a smaller timetable
adjustment during this period.

Figure 5 shows that during the maximum solution pe-
riod, the iterative solution process of the multi-objective
function reduces with the iteration time, and the optimal
target value does not change obviously after the 0.2 s iter-
ation time. �is shows that the convergence of the aug-
mented epsilon-constraint algorithm is good, and the
algorithm can �nd the approximate optimal solution more
stably. �is solution can be regarded as a practical solution
process.

5.3. Analysis and Discussion of Calculation Results. �en,
sensitivity analysis method is used to evaluate the e�ect of
parameter K and con�dence α on the objective function.
According to the preliminary calculation experiment, the
parameter K is taken 30min as the base, 5min each time as
the step length, the maximum increase 10min upward and
the maximum decrease 20min downward. �e parameter α
is taken 0.25 as the base, with each step of 0.01. �e max-
imum increase is 0.05 upward, and the maximum decrease is
0.04 downward. �e sensitivity analysis results of mini-
mizing only the objective function D and minimizing only
the sum of the departure time adjustments F2 are shown in
Tables 6 and 7 respectively.

As can be seen from Figure 6(a), the parameter K has a
signi�cant e�ect on the target function D. �e value of the
targetD decreases monotonously and tends to be stable with
the increase of the value of the parameter K. When the value
of the parameter K reaches 15 minutes, the change ampli-
tude of the target D caused by the rise of the value of the
parameter K becomes slower. At the same time, the total

adjustment time F2 increases monotonously and tends to be
stable with the increase of the value of the parameter K. �e
reason is that the adjustable range of the constraint becomes
larger, the constraint becomes more relaxed, the allowable
range of �uctuations becomes larger, and the total adjust-
ment time F2 is correspondingly larger.

As shown in Figure 6(b), parameter K has a signi�cant
e�ect on the total value of departure time adjustment F2.�e
total value of departure time adjustment F2 increases �rst
and then stabilizes with the increase of parameter K, �uc-
tuates slightly in a very small range, and achieves the
minimum value when parameter K is 10min. At the same
time, the value of target value D decreases �rst and then
stabilizes with the increase of parameter K, �uctuates slightly
in a very small range, and maximizes when parameter K is
10min.

To sum up, we can consider taking a better value of K
between K� 10min and K� 15min to meet the balance of
the minimum waiting time for passengers and the minimum
total adjustment of departure time.

Empathy analysis: as shown in Figure 7(a), the con�-
dence α has a signi�cant e�ect on the target function D, the
value of the target D increases monotonously with the in-
crease of the con�dence α, and the sum of the minimum
departure time adjustment F2 decreases monotonously with
the rise of the con�dence α. From Figure 7(b), it can be seen
that con�dence α has a signi�cant e�ect on the sum of
departure time adjustment values F2, and the sum of de-
parture time adjustment values F2 decreases monotonously
with the increase of con�dence α values. In contrast, the
value of the target D increases monotonously with the in-
crease of con�dence α values. To sum up, the con�dence α of
the compromise size can be taken into account to achieve the
balance of minimizing the values of the two objective
functions.

�e 10 nondominated solutions solved show di�erent
application scenarios and meanings. Considering the
meaning of the value of the objective function, the value of
the objective function F1, that is, the value of D, means the
complementary probability that the sum of the waiting time
of the transfer of passengers is smaller than that of the sum of
the waiting time of the original deterministic programming
model. In other words, it is a measure of the sum of waiting
time for the transfer of passengers. �e smaller the value of
D, the greater the probability that passengers needless
waiting time. For objective function F2, that is, the sum of
the adjustment of departure time, in order to avoid the
consumption of human and material resources, the ad-
justment of time deviation should be as small as possible.
�us, the two objective functions are considered from the
passenger’s point of view and the bus company’s point of
view. In real life, if the number of passengers is huge, we can
consider the nondominated solution which is in the front of
the 10 nondominated solutions; If the network of public
transport routes is especially complex, we can consider the
nondominated solution which is in the back of the 10
nondominated solutions; if the number of passengers or the
network of public transport routes is neither large nor
complex, we can consider the non-dominated solution
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Figure 5: Algorithm iteration diagram.
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Table 6: Sensitivity analysis of parameter K.

K 10 15 20 25 30 35 40
minD 0.400 0.383 0.383 0.383 0.383 0.383 0.383
F2 5043.694 5447.369 5447.369 5447.369 5447.369 5447.369 5447.369
minF2 3491.819 3532.187 3532.187 3532.187 3532.187 3532.187 3532.187
D 0.488 0.486 0.486 0.486 0.486 0.486 0.486

Table 7: Sensitivity analysis of parameter α.

α 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30
minD 0.326 0.332 0.344 0.356 0.369 0.383 0.400 0.419 0.438 0.459
F2 6500.000 6357.561 6107.638 5866.480 5601.604 5353.901 5043.694 4710.996 4398.832 4055.678
minF2 3637.450 3623.206 3598.213 3574.098 3547.610 3522.840 3491.819 3458.549 3428.475 3407.052
D 0.479 0.480 0.482 0.483 0.485 0.486 0.488 0.491 0.493 0.495
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Figure 6: Sensitivity analysis of parameter K. (a) D takes the minimum. (b) F2 takes the minimum.
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which is in the middle of the 10 nondominated solutions, so
that we can get the equilibrium state of two objective
functions.

6. Conclusion

(e optimization of the bus departure timetable is one of the
key problems in traffic planning. Based on this, this study
studies the cooperative optimization of multi-objective
public transport network timetables. A deterministic multi-
objective programming model is proposed considering the
total waiting time and the total departure time, and the
randomicity of bus travel time is fully taken into account.
We optimize the preliminary proposed deterministic multi-
objective programming model and simplify the model using
the normal distribution property of travel time random
variables. (us, the chance-constrained programming
method transforms random variables into deterministic
variables. Finally, stochastic programming is transformed
into a new deterministic multi-objective programming
problem.

(is study designs a model-solving algorithm based on
the augmented epsilon-constraint algorithm. Numerical
results show that the algorithm can obtain a high-quality
Pareto solution in a short time. For the bus operation system,
the bus operation plan is crucial, which not only controls the
basic operation of all buses but also directly determines the
efficiency and service level of the whole bus operation
system. (e main objective of this study is to minimize the
waiting time of transfer passengers. Using the model
established in this study, we can use the cumulative method
to solve the problem of considering reverse bus routes and
more bus routes in real life. Moreover, reducing the waiting
time of passengers can optimize the passengers’ experience
and improve the passengers’ satisfaction, thus increasing the
passengers’ willingness to take the bus and improving the
revenue of bus companies. On the other hand, in the al-
gorithm proposed in this study, another objective function is
constrained so that the adjustment range of the timetable is
not too large, which reduces the impact of the timetable
adjustment on the bus operation to a certain extent. At the
same time, the support guarantee of Pareto makes the model
more in line with the actual situation in real life. In addition
to using the cumulative method to expand the model, we can
optimize the timetable of the entire bus network, the model
proposed in this study can have many other applications in
real life. In real life, the problems of connecting buses to
subways, buses to trains, and buses to planes can be solved
using our proposed model. Furthermore, the problem of
transfer between subways, the problem of transfer between
trains, etc. can also be solved using the model proposed in
this study.

In the following work, we will analyze the performance
of the augmented epsilon algorithm and the multi-objective
programming model using a real large-scale example. We
consider the stochastic characteristics of road section in-
tervals congestion planning. However, due to computing
power and data limitation, we ignore the heterogeneity
between stations and simplify it to consider the stochastic

programming with full samples. Due to the complexity of
regional bus scheduling and the limitations of research
conditions, we will introduce the actual bus GPS data and
propose a more accurate model. In the future, we will also
combine advanced artificial intelligence algorithms such as
machine learning. Using the approximate optimal solution
solved by it, the solution solved in this study can be further
optimized, so that a more excellent optimization effect can
be obtained.
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