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Background. *e use of body mass index (BMI) is prevalent, to measure the fat in the body. Sometimes, during a clinical survey,
different measures of body parts of people may be available, but the actual weight and height are not available. In this article, we
have shown a method to estimate the body mass index using the measures of different body parts. Systematic sampling is to be
applied only if the given population is logically homogeneous because systematic sample units are uniformly distributed over the
population. Methods. *e method of estimation for the mean of the study variable under systematic sampling using auxiliary
information has been used to estimate the body mass index (BMI). We also have shown the effect of observational error in the
estimation. *e measures of different body parts are taken as auxiliary variables. *e correlation coefficient between BMI and the
circumference of different body parts has been obtained.*e efficacy of methods in terms of mean square error has been obtained
in the estimation of BMI. Also, the observations available on different body parts are assumed to be recorded with observational
error. *us, we propose a method of estimation of BMI in the presence of observational error. A simulation study has been
conducted to demonstrate the effect of the observational error on the estimation of body mass index. Results. *e properties of the
proposed estimation method have been derived under large sampling approximation, and the conditions under which the
proposed method is more efficient are found. We assume the presence of observational error in the study of 252 men. *e
efficiency of the difference estimators is better in the presence of observational error. Also, the presence of observational error does
not change the properties of the estimators. Conclusions. *e study provides an easy approach and the simplest way to obtain the
BMI estimation with and without observational error. *us, the suggested method may be used by statisticians for this problem
and for many other similar problems in the estimation of mean.

1. Background

In a survey, it may often happen that the data are observed with
some error, and it is termed as measurement error or ob-
servational error. It is defined as the discrepancy between the
observed value and the true value of the sample. *ere are
several examples of real-life situations when data are obtained
with errors [1, 2]. *e observational error in the context of
linear and nonlinear regression models also has been thor-
oughly discussed in the literature [3–6]. Several research
studies have been performed on the observational errors in the
estimation of ratio, product, and regression methods of esti-
mation, which are available in [7–11]. If the data are

systematically distributed, the systematic sampling has nice
features of selecting every kth element by choosing the first
element arbitrary. Many authors have done pioneered work
using systematic sampling at the estimation stage (see [12–16]).
*e estimation of parameters for certain natural population is
convenient using systematic sampling [17, 18]. *e use of
auxiliary variables is prevalent as ratio, product, and regression
estimator. In case of estimating the volume of timber, the
proposed ratio estimator under systematic sampling suggested
that the leaf area or the girth of the tree may be taken as the
auxiliary variable [19].*e product estimators in the context of
systematic sampling have been discussed in [20]. Some pioneer
works in systematic sampling have been introduced in [21, 22].
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A study was conducted to derive a prediction equation
for body fat percentage in men (n� 252, age 22–81 years)
from simple body measurements [23]. Body density de-
termined by underwater weighing and body fat percentage
was determined. *e dataset includes the following vari-
ables, given in [24], pp. 45–48), for observational techniques:
density determined from underwater weighing, percent
body-fat from Siri’s equation [25], age in years, weight in lbs,
height in inches, and circumference of the neck, chest,
abdomen, hip, thigh, knee, ankle, bicep, arm, and wrist in
centimetre. In this article, we propose a different method to
estimate the body mass index rather than the already
established multiple regression method in [23, 26]. *e body
mass index is highly correlated with the body parts, so in case
if BMI is not known for a large population, we can estimate
using sampling methods ratio, product, and difference es-
timator. We attempt to estimate the body mass index in
place of body fat by using one of the auxiliary variables. *e
circumference of hip, thigh, knee, ankle, bicep, arm, and
wrist can be taken as a single auxiliary variable to estimate
the body mass index. *e correlation coefficient for each
auxiliary variable has been obtained. Since the data are
natural, we used systematic sampling. An estimated optimal
sample size by using the body mass index for a dietetic
supplement has been calculated [27].

*e method of estimation for the mean of the study
variable under systematic sampling using auxiliary infor-
mation has been used to estimate the body mass index
(BMI). We also have shown the effect of observational error
in the estimation. *e measures of different body parts are
taken as auxiliary variables. *e correlation coefficient be-
tween BMI and the circumference of different body parts has
been obtained. *e efficacy of methods in terms of mean
square error has been obtained in the estimation of BMI.
Also, the observations available on different body parts are
assumed to be recorded with observational error. *us, we
also propose a method of estimation of BMI in the presence
of observational error. A simulation study has been con-
ducted to demonstrate the effect of the observational error
on the estimation of body mass index.

Suppose, the population consists of N units
u � (u1, u2, . . . , uN) from a finite population. *e pop-
ulation size is divided into k intervals such that N � nk. To
select a sample, the first unit is selected at random from the
first k units. *is sampling method is similar to that of
selecting a cluster at random out of k cluster (each cluster
containing n units) made such that ith cluster contains se-
rially numbered units i, (i + k), (i + 2k), . . . , (i +{

(n − 1)k)}. After the sampling of n units, we observe both the
study and auxiliary variables. In this article, we consider a
situation where each data value may be observed with error.
In order to compute the effect of observational error, it is
assumed that (xij, yij) are the observed values instead
of their true values (Xij, Yij) for every
ijth(i � 1, 2, . . . , k, j � 1, 2, . . . , n) unit. In such a way,
these values are expressible in additive form as xij � Xij +

Vij and yij � Yij + Uij. We consider that the errors (U, V)

are normally distributed with mean zero and variance

(σ2U, σ2V). We assume that the error variables U and V are
uncorrelated to each other as well as uncorrelated to all
combinations with X and Y, respectively. *is implies
Cov(X,U)�Cov(X,V)�Cov(Y,V)�Cov(Y,U)�Cov(U,

V) �0, and Cov(X,Y)≠0. Let μYsy, μXsy be the population
mean and σ2Ysy, σ2Xsy be the population variance of the study
and the auxiliary variables, respectively. ρ is the correlation
coefficient between the study and auxiliary variable. Fur-
thermore, the sample means of the observed data are the
unbiased estimators of the population means μXsy and μYsy,
respectively.

*e population means are μYsy � 1/nk 
k
i�1 

n
j�1 yij and

μXsy � 1/nk 
k
i�1 

n
j�1 xij.

*e sample means are the unbiased estimators of the
population means μYsy and μXsy, respectively.

ysy �
1
n



n

j�1
yij, (i � 1, 2, . . . , k),

xsy �
1
n



n

j�1
xij, (i � 1, 2, . . . , k).

(1)

For determining variance, it is expressed by means of
error terms e0 and e1, which are defined as ysy � μYsy(1 +

e0) and xsy � μXsy(1 + e1).
We can write
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2. Methods

*ree well-known forms of the estimator have been pro-
posed to estimate the body mass index. We use ratio esti-
mator [19], product estimator [20], and difference estimator
under systematic sampling.
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yRsy � Ysy

μXsy

Xsy

,

yPsy � Ysy

Xsy

μXsy

,

yds y � Ysy + b μXsy − Xsy .

(3)

*e mean square error of the ratio estimator is given as

MSE yRsy  �
1
k

σ2Ysy + R
2σ2Xsy − 2ρRσYsyσXsy . (4)

*e mean square error of the product estimator is ob-
tained in [20] as

MSE yPsy  �
1
k

σ2Ysy + R
2σ2Xsy + 2ρRσYsyσXsy . (5)

*e variance of the difference estimator is given as

V yds y  �
1
k

σ2Ysy 1 − ρ2  . (6)

2.1. 3e Proposed Estimation under Observational Error.
*e observation recorded during data collection is obtained
with some error. We consider the severity of misleading
inference based on data obtained with observational error.
In this section, we propose ratio, product, difference, and
mean estimators when the data are recorded with obser-
vational errors. In the previous section, we have used well-
known methods of estimation, but in this section, we derive
the expression for mean square error and variance for all
estimators when the data are observed with error.

Considering that the observations are recorded with
observational error, then the variance is

σ2Ysym �
1
k



n

i�1
ysy − μYsy 

2
,

σ2Ysym � σ2Ysy + σ2Usy � V ysym ,

(7)

where the term σ2Usy is the variance due to observational
error.

*ere are situations when both the study variables and
the auxiliary variables are observed with observational error.
In that case, we propose the ratio estimator as

yRsym � ysy

μXsy

xsy

. (8)

In order to obtain the bias andmean square error, we can
write equation (8) as

yRsym � μYsy 1 + e0( 
μXsy

μXsy 1 + e1( 
, (9)

yRsym � μYsy 1 + e0(  1 + e1( 
−1

. (10)

For the bias of the estimator, we obtained from equation
(10) as

yRsym � μYsy e
2
1 − e0e1 . (11)

Taking the expectation of equation (11), we get the bias of
the estimator as

bias yRsym  �
1

kμYsy

R
2 σ2Xsy + σ2Vsy  − ρRσXsyσYsy . (12)

For the mean square error, we can write from equation
(10) as

yRsym − μYsy 
2

� μ2Ysy e
2
0 + e

2
1 − 2e0e1 . (13)

Taking the expectation of equation (13), we get the mean
square error as

MSE yRsym  �
1
k

σ2Ysy + σ2Usy + R
2 σ2Xsy + σ2Vsy  − 2ρRσYsyσXsy .

(14)

We can obtain the result under no observational error by
putting σ2Usy and σ2Vsy equal to zero. *is will give the same
result as obtained in [19]. From equations (4) and (14), we
can write that MSE in the presence of the observational error
is always high.

*e product estimator is proposed under the consid-
eration of observational error as

yPsym � ysy

xsy

μXsy

. (15)

To obtain the bias and mean square error, we can write
equation (15) as

yPsym � μYsy 1 + e0(  1 + e1( . (16)

For the bias, by taking the expectation of equation (16),
we get

bias yPsym  � 2ρRσYsyσXsy. (17)

For the mean square error, we can write from equation
(16) as

yPsym − μYsy 
2

� μ2Ysy e
2
0 + e

2
1 + 2e0e1 . (18)

Taking the expectation of equation (18), we get the mean
square error as

MSE yPsym  �
1
k

σ2Ysy + σ2Usy + R
2 σ2Xsy + σ2Vsy  + 2ρRσYsyσXsy .

(19)

By substituting the value σ2Usy and σ2Vsy equal to zero, we
can obtain the MSE without observational error which is the
same as obtained in [20]. From equations (4) and (19), we
can conclude that MSE is always high in the presence of
observational error.

*e difference type estimator as proposed under the
influence of observational error is

yds ym � ysy + b μXsy − xsy . (20)

In order to obtain variance, we can write equation (20) as
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yds ym � μYsy 1 + e0( 

+ b μXsy − μXsy 1 + e1(  ,
(21)

yds ym − μYsy  � μYsye0 − be1μXsy . (22)

By squaring both sides of equation (22) and taking
expectation,

E yds ym − μYsy 
2

� E μ2Ysye
2
0 + b

2
e
2
1μ

2
Xsy − 2bμYsyμXsye0e1 .

(23)

From equation (23), we can get the variance of the es-
timator as

V yds ym  �
1
k

σ2Ysy + σ2Usy  + b
2 σ2Xsy + σ2Vsy  − 2bρσYsyσXsy .

(24)
To obtainminimum variance differentiate from equation

(24) with respect to b and equate it to zero, we get

b �
ρσYsyσXsy

σ2Xsy + σ2Vsy 
. (25)

By substituting the value of b in equation (24), we get the
minimum variance of the estimator as

Table 1: MSE and PRE of various estimators of ysym for BMI estimation for (k � 25, 10) when no error variance.

Body part Estimator Expected values
k � 25 k � 10

MSE PRE MSE PRE

Circumference of the abdomen

ydsym 27.72 173.7477 121.42 25.1320 121.42
yRsym 28.14 174.3850 120.97 26.0398 117.19
yPsym 24.24 303.7588 69.45 38.7288 78.79
ysym 25.94 210.9612 100.00 30.5148 100.00

Circumference of the neck

ydsym 24.98 196.0010 107.63 28.3509 107.63
yRsym 25.89 198.0751 106.51 28.4656 107.20
yPsym 26.10 235.6348 89.53 35.1281 86.87
ysym 25.94 210.9612 100.00 30.5148 100.00

Circumference of the chest

ydsym 25.12 179.9560 117.23 26.0300 117.23
yRsym 25.81 184.5389 114.32 27.1705 112.31
yPsym 26.25 260.8786 80.87 36.0632 84.61
ysym 25.94 210.9612 100.00 30.5148 100.00

Circumference of the hip

ydsym 24.15 165.9304 127.14 24.0013 127.14
yRsym 25.77 180.6452 116.78 26.9497 113.23
yPsym 26.26 257.8028 81.83 35.4747 86.02
ysym 25.94 210.9612 100.00 30.5148 100.00

Circumference of the thigh

ydsym 25.01 171.4538 123.04 24.8002 123.04
yRsym 25.80 176.8878 119.26 26.1525 116.68
yPsym 26.30 276.3093 76.35 37.8913 80.53
ysym 25.94 210.9612 100.00 30.5148 100.00

Circumference of the knee

ydsym 24.68 182.9926 115.28 26.4693 115.28
yRsym 25.83 190.3175 110.85 27.5349 110.82
yPsym 26.16 244.9394 86.13 35.4117 86.17
ysym 25.94 210.9612 100.00 30.5148 100.00

Circumference of the ankle

ydsym 25.23 201.6285 104.63 29.1649 104.63
yRsym 25.92 201.6853 104.60 29.4117 103.75
yPsym 26.09 236.1036 89.35 32.5023 93.88
ysym 25.94 210.9612 100.00 30.5148 100.00

Circumference of biceps

ydsym 24.99 190.5693 110.70 27.5652 110.70
yRsym 25.79 190.6847 110.63 27.6162 110.50
yPsym 26.32 266.1175 79.27 37.8633 80.59
ysym 25.94 210.9612 100.00 30.5148 100.00

Circumference of the forearm

ydsym 25.02 201.1914 104.86 29.1016 104.86
yRsym 25.93 201.2036 104.85 29.1353 104.73
yPsym 26.08 238.9017 88.30 33.9158 89.97
ysym 25.94 210.9612 100.00 30.5148 100.00

Circumference of the wrist

ydsym 25.00 203.3305 103.75 29.4111 103.75
yRsym 25.92 203.5102 103.66 29.5349 103.32
yPsym 26.03 229.3498 91.98 32.4712 93.98
ysym 25.94 210.9612 100.00 30.5148 100.00
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V yds ym  �
1
k

σ2Ysy + σ2Usy  −
ρ2σ2Ysyσ

2
Xsy

σ2Xsy + σ2Vsy 

⎡⎢⎢⎣ ⎤⎥⎥⎦. (26)

From equations (6) and (25), we can write that MSE in
the presence of observational error is always high. By putting
σ2Usy and σ

2
Vsy equal to zero, we can obtain theMSE under no

observational error which is the same as given in equation
(6).

3. Results

A numerical study has been carried out to show the efficacy
of the proposed methods. We have taken the data from

https://lib.stat.cmu.edu/datasets/bodyfat. *is is a compre-
hensive dataset that lists estimates of the percentage of body
fat determined by underwater weighing and various body
circumference measurements for 252 men. With this pop-
ulation, two sample populations for k � 10, 25 have been
chosen using systematic sampling.

In this manuscript, we also consider the presence of
observational error in sample data. For the study of ob-
servational error, we have conducted a simulation study. A
hypothetical population has been generated by using the
mean and variance of original data under study. A pop-
ulation of size 5000 units with mean vector and a covariance
matrix has been generated.*e data matrices on X, Y, u, and

Table 2: MSE and PRE of various estimators of ysym for BMI estimation for (k � 25, 10) when the error variance (σ2U, σ2V � 0.5, 0.1).

Body part Estimator Expected values
k � 25 k � 10

MSE PRE MSE PRE

Circumference of the abdomen

ydsym 27.72 203.3305 103.75 30.5490 116.26
yRsym 28.14 203.5102 103.66 31.2247 113.74
yPsym 24.24 239.3498 91.98 43.7609 81.16
ysym 25.94 218.9612 100.00 35.5148 100.00

Circumference of the neck

ydsym 24.98 210.7290 106.04 34.0874 104.19
yRsym 25.89 211.6064 105.60 34.1271 104.07
yPsym 26.10 249.1661 89.68 40.7895 87.07
ysym 25.94 223.4612 100.00 35.5148 100.00

Circumference of the chest

ydsym 25.12 192.8664 115.86 31.3796 113.18
yRsym 25.81 197.1965 113.32 32.2637 110.08
yPsym 26.25 273.5362 81.69 41.1564 86.29
ysym 25.94 223.4612 100.00 35.5148 100.00

Circumference of the hip

ydsym 24.15 179.2454 124.67 29.7633 119.32
yRsym 25.77 193.2975 115.60 32.0421 110.84
yPsym 26.26 270.4551 82.62 40.5670 87.55
ysym 25.94 223.4612 100.00 35.5148 100.00

Circumference of the thigh

ydsym 25.01 184.9911 120.80 30.6509 115.87
yRsym 25.80 189.8094 117.73 31.4161 113.05
yPsym 26.30 289.2310 77.26 43.1549 82.30
ysym 25.94 223.4612 100.00 35.5148 100.00

Circumference of the knee

ydsym 24.68 199.1622 112.20 33.0655 107.41
yRsym 25.83 203.8243 109.63 33.1596 107.10
yPsym 26.16 258.4462 86.46 41.0364 86.54
ysym 25.94 223.4612 100.00 35.5148 100.00

Circumference of the ankle

ydsym 25.23 216.5653 103.18 35.2467 100.76
yRsym 25.92 216.9886 102.98 36.1959 98.12
yPsym 26.09 251.4069 88.88 39.2865 90.40
ysym 25.94 223.4612 100.00 35.5148 100.00

Circumference of biceps

ydsym 24.99 204.6725 109.18 33.433 106.23
yRsym 25.79 204.6728 109.18 33.5436 105.88
yPsym 26.32 280.1056 79.78 43.7907 81.10
ysym 25.94 223.4612 100.00 35.5148 100.00

Circumference of the forearm

ydsym 25.02 215.2909 103.80 34.8574 101.89
yRsym 25.93 215.4835 103.70 35.2974 100.62
yPsym 26.08 253.1816 88.26 40.0779 88.61
ysym 25.94 223.4612 100.00 35.5148 100.00

Circumference of the wrist

ydsym 25.00 219.3158 101.89 35.3544 100.45
yRsym 25.92 220.6081 101.29 37.4055 94.95
yPsym 26.03 246.4477 90.67 40.3418 88.03
ysym 25.94 223.4612 100.00 35.5148 100.00
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v have been generated using multivariate normal distribu-
tion for four variables with the mean vector μY μX 0 0( 

and covariance matrix

σ2Y ρσXσY 0 0

ρσXσY σ2X 0 0

0 0 σ2U 0

0 0 0 σ2V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

Two sets for k � 10, 25 have been chosen by using
systematic sampling. *e mean and variances have been
computed for all the auxiliary variables. *e mean square
error and the variance have been computed. *e above
process has been replicated 5000 times, and the corre-
sponding grand mean has been obtained. *e percent rel-
ative efficiency of an estimator ϕ(� yRsym, yPsym, ydsym)

with respect to the usual unbiased estimator ysym is cal-
culated by

PRE(ϕ, y) �
V ysym 

MSE(ϕ)
× 100. (28)

*e results of the numerical and simulation studies are
given in Tables 1 and 2. Table 1 shows the MSE and PRE of
the data linked in the abstract. From the table, we can see for
all the measures of body parts, ratio and difference esti-
mators perform better than the usual estimator. In all cases,
the use of body measures of the hip has maximum efficiency
over other body measures as it has maximum correlation
coefficient with the body mass index. After the hip, the use of
body measures of the thigh has more efficiency in the es-
timation. *e body measures of the abdomen have also
better correlation with the body mass index, so it has better
efficiency. *e body measures of the ankle and the forearm
have less correlation coefficient with the body mass index,
and the resultant has less efficiency in the estimation. *e
circumference of the wrist has minimum correlation coef-
ficient with the body mass index. *e mean square error for
the wrist is maximum; thus, it is better not to use the wrist
circumference in the estimation of the body mass index.
Table 2 shows the results of the data with error variance
(σ2U, σ

2
V � 0.5, 0.1). *e MSE in the presence of observational

errors is always high for all the estimators. *e above results
of different body measures follow the same trends in the
presence of observational error. Hence, the properties of
estimators do not change in the presence of observational
error, but the value of mean square error is large. In a study
related to the sample size, the value of mean square error is
less when the size of sample is large, i.e., k is small. When k is
large, the size of the sample is small and MSE is high for all
the proposed estimators for all the body measures. *is
result can be seen from Tables 1 and 2.

4. Conclusions

We have given a different approach to estimate BMI rather
than the available method [21]. *is study is used for sys-
tematic sampling by using auxiliary variables. *e different

measures of the body are used as auxiliary variables. From the
study, we may conclude that a difference estimator under
systematic sampling has maximum efficiency in the estima-
tion of the body mass index. *e efficacy of the methods
depends on the correlation between the body mass index and
the circumference of the different measures of the body. *e
correlation coefficient for the body measurement of the hip,
abdomen, and thigh is good, so these variables provide better
estimation for the body mass index when the circumferences
of these parts are used as auxiliary variables. *e circum-
ferences of body parts the wrist, forearm, and ankle have the
least correlation coefficient with the bodymass index and thus
may not be used in the estimation of BMI. From the tables, we
can also conclude that the ratio estimator and difference
estimator are always more efficient than the unbiased mean
estimator. So it is better to use ratio and difference methods of
estimation by using the different measures of the body as
auxiliary variables. Since in this article, we are assuming the
presence of observational error in the study of 252 men. *e
efficiency of the difference estimators is better in the presence
of observational error. Also, the presence of observational
error does not change the properties of the estimators. From
Tables 1 and 2, we can conclude the effect of the observational
error onmean square error.*e above study provided an easy
approach and the simplest way to obtain the BMI estimation
with and without observational error. *us, the suggested
method may be used by statisticians for this problem and
many other similar problems in the estimation of parameters
of a natural population.

5. Limitations of Study

*e present study proposes a simple method to estimate
BMI. Although, the current methodology is confined to the
homogeneous population or natural population or pop-
ulation for close geographical areas. *e strengths contain
the fact that BMI is cheap and relatively easy to use. *e
weaknesses include the fact that BMI percentiles are not
extensively used, and the classification of BMI percentiles
may not satisfactorily define the risk of comorbid conditions.
In addition, for stratifying children and adolescents with a
very high BMI, percentiles are not optimal. In spite of
limitations, BMI and BMI percentiles have immense utility
in the clinical setting, and the impending to be even more
constructive as BMI is used more frequently and more
suitably by primary care providers.
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