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�e information �ow between BRIC and relevant volatilities constitutes a complex network, which needs comprehensive analysis.
We provide a rigorous investigation of information �ow among stock markets of BRIC and the US VIX in a frequency-domain
paradigm. Henceforward, the variation mode decomposition-based entropy approach is employed for the examination of diverse
investment horizons and market conditions. First, we �nd that under stressed market conditions (lower quantiles), signi�cant
negative information �ow exists between the BRIC constituents and the BRIC composite index. Also, under benign market
conditions, we reveal similar dynamics as found at the lower quantiles, which enhances diversi�cation. However, during market
booms, we document more positive information �ow between the assets and relevant to the redeployment of portfolios. Second, at
low probability events representing market stress, we document potential negative information �ow amid the stock markets and
the US VIX for most investment horizons. Notwithstanding, the US VIX has the potential of transmitting positive information to
the stock markets. However, at high market performance, we �nd more positive information �ow amid the BRIC markets and
VIX, generally implying long-term e�ciency. Investors, portfolio managers, risk managers, and policy-makers should be wary of
the heterogeneous and adaptive behaviour of BRIC stock markets with the VIX.

1. Introduction

�e potency of stock markets is critical for boosting eco-
nomic activity and driving growth and development among
economies ([1–3], the extant literature emphasises the
contribution of equities markets in enhancing the growth of
economies, demonstrating that exuberant equities markets
could promote liquidity in markets, lower the cost of
sourcing capital, fortify governance mechanisms of corpo-
rations, and arouse cross-border risk-sharing, all of which
help to support economic growth [4, 5]. Stock market
capitalisation, according to Khan et al. [6]; and Tsaurai [7],
characterises stock markets’ development.

In terms of commerce and investment, the BRIC na-
tions, which constitute Brazil, Russia, India, and China,
have risen signi�cantly and have become increasingly

intertwined with the industrialised world [8]. BRIC equities
(stock) markets have grown in terms of magnitude and
capacity of investments and have attracted a lot of attention
from local and foreign investors [9–11]. BRIC stock
markets have consistently produced strong average returns,
attracting the interest of investors looking to build globally
diversi�ed portfolios. �us, with intuitions from the �-
nancial market integration theory [12–14], & Darkwa,
2021), the potential of BRIC markets to be more integrated
cannot be shelved.

As the uncertainties surrounding the growth of emerging
�nancial markets such as the BRIC markets cannot be
downplayed [11, 15], several signi�cant question themes are
raised concerning the growth prospects and attractiveness of
BRIC markets to international portfolios. How do BRIC
markets observe each other through mutual information
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flow? Do the fundamental market dynamics apply to the
BRIC markets across diverse time scales? How does the
aggregate BRIC market respond to market shocks from one
of its constituents amid market uncertainties? Are there
significant prospects for portfolio diversification across
different investment horizons? +ese questions must be
empirically addressed using the appropriate technique(s)
(Appropriate techniques cover empirical methods which are
data-driven and could produce robust results for different
investment time scales). +e impetus of this study is hinged
on addressing these essential questions using the variational
mode decomposition (VMD)-based (VMD means Varia-
tional Mode Decomposition. +is is subsequently discussed
in this paper) entropy analysis.

Generally, the materialisation of economic projections is
hampered by tumult trading environments. +e world has
witnessed several financial market downturns over the last
few decades, and these were mostly occasioned by pan-
demics (For extended highlights on the history of pan-
demics, visit https://www.visualcapitalist.com/history-of-
pandemics-deadliest/) or the alike [15–18], which could
introduce significant changes in traditional market dy-
namics between and within market blocs. +e effect of such
significant changes may be attributable to the severity of the
pandemic and the deaths associated with these pandemics
(see Figure 1), causing a reduction in the labour force and
productivity levels across the global economy. +e fore-
running argument rekindles Bouri et al.’s [10, 19] conclusion
that external variables significantly predict the performance
of several economies, and the BRIC countries are no ex-
ception. BRIC markets are progressively gaining connec-
tions with industrialised markets, with indications of
considerable financial flows from the advanced markets [10].
It stands to reason, therefore, that deteriorating macro-
economic conditions impact the performance of BRIC stock
markets by lowering the volume of exports and capital
accumulation [20].

In reposeful and tumultuous epochs, the influence of the
economic circumstances of the US, particularly volatilities in
the US equities indices, on the equities markets of significant
frontier economies, like BRIC, has been widely documented
(see [21–23]; and the references therein). Consequently,
international shocks, especially those emanating from the
US equities market, could be transmitted to the BRIC eq-
uities markets but in diverse forms based on market con-
ditions. +e underlying discourse sheds light on the
concerns about asymmetric volatility transmission vis-à-vis
the US volatility index (VIX), which should not be over-
looked in the context of stock markets as volatilities may
erode investor confidence [24].

Rapach et al. [25] argue that stock market returns in the
US significantly predict those of both advanced and
emerging nations. Furthermore, Sarwar and Khan [26]
concluded that increases in uncertainties in the US market
reduce (increase) the stock market returns (return variance)
in frontier markets which is suggestive that the stock
markets of the BRIC economies could be affected by the
uncertainty in the US. From the existing literature, evidence
of how this may prevail across distinct scales and market

conditions is almost extinct, particularly in periods
extending into the COVID-19 health crisis. Junior et al.’s [9]
study provides evidence of the comovement dynamics be-
tween VIX and BRICmarkets in a time-frequency paradigm.
Heliodoro et al. [27] investigated the connectedness between
BRIC equities whiles Asafo-Adjei et al. [28] analysed the
dynamics of spillovers between BRIC and the US.We extend
this strand of literature by examining information flow
between VIX and BRIC equities in an asymmetric andmulti-
scale effective transfer entropy (ETE) approach.

ETEs result from the related information shared between
markets [29]. Quantification of the mutual information
between the US VIX and BRIC equities is made possible
using ETEs [15, 30–33].+at is, ETEsmeasure the amount of
information that travels across markets. To demarcate the
data series into their multi-scale components, we employ the
VMD, which is a completely inherent, adaptive, and quasi-
orthogonal decomposition approach [34]. After precisely
decomposing the time series data into their variational mode
functions (VMFs), the VMD-based entropy would give a
robust technique to evaluate information flow across mar-
kets across different scales and market conditions. Previous
studies on VIX and equities (see e.g., [9, 35–37]) have not
employed this method.

We contribute to the body of knowledge in four major
ways. First, using the VMD-based transfer entropy ap-
proach, we analyse the flow of information between the US
VIX and the BRIC constituents’ stock markets at multi-
scales and across different market conditions. Uniquely, this
enables us to unveil asymmetries in the effect of the US VIX
on developing markets’ equities. Note that we estimate ETEs
for both the aggregate BRIC Index and its constituents.
Hence, based on the market condition and investment scale,
our findings should influence investors in choosing between
investing in the overall BRIC index or specific constituents.
Second, novel to the existing works, we quantify the flow of
information between the BRIC constituents’ stock markets
and the aggregate BRIC index at multi-scales. +is would
disclose the level of heterogeneity among BRICs by deter-
mining the quota of each BRIC constituent to the growth of
the BRIC Composite Index. +e growth of a market index is
commensurate with a considerable information flow to its
constituents [9, 38]. Hence, the reverse causation from the
BRIC Composite Index to its constituents is analysed.

+ird, we cover the COVID-19 pandemic era, which is
noted to have caused significant changes in fundamental
market dynamics [14, 20, 31, 39–42]. As the pandemic
persists, covering this period is essential to produce findings
that would influence effective hedging strategies. Fourth, by
way of the econometric approach, because fat tails and
information spillovers are particularly predominant in crisis
periods, our VMD helps to curtail untrue signals by de-
lineating the original series into its multi-scale parts. Sim-
ilarly, specifying different weighting factors, to overcome
tailed distributions and unveil asymmetries, is achieved by
the transfer entropy paradigm.

At stressed market conditions, our results indicate sig-
nificant negative information flow between the BRIC con-
stituents and the BRIC Composite Index. Also, under benign
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market conditions, we find similar dynamics as found at the
lower quantiles which enhances diversification. However,
specifically, at quantiles 0.9 and 1.0, representing market
boom, we document more positive information flow between
the variables, and relevant in the redeployment of portfolios.
On the other hand, at low probability events representing
market stress, we document potential negative information
flow between the stock markets of BRIC and the US VIX at
most investment horizons. However, at quantile 1.0, repre-
senting market boom, we found more positive information
flow between the BRIC markets and the US VIX.

In addition to Section 1 are Sections 2–6. +e literature
review in Section 2, methodology in Section 3; empirical
results and discussion in Section 4, theoretical and practical
foundations in Section 5, and Section 6 concludes the study
and guides for further research are provided.

2. Literature Review

+eoretically, the fast advancement of BRIC economies and
their connectedness with developed markets is likely to
result in a high extent of financial market integration be-
tween and among the BRIC markets and their counterpart
developed markets [3, 16, 31, 43]. Inordinate integration of
financial markets has implications for portfolio construction
and thus, warrants that the diversification, safe haven, and
hedging prospects are examined [31, 39], and [14, 44]. While
BRIC markets have shown positive long-term prospects in

recent decades, they have also been impacted by the global
financial crisis, casting doubts on these expectations
[10, 19, 45]. +e turbulent market circumstances condi-
tioned by the recent COVID-19 pandemic further cause
doubts about these sweetening long-term prospects for the
BRIC markets.

Corollary to the doubts, introduced by market stress, on
these forecasts vis-à-vis the BRIC markets, empirical at-
tention has been paid to the BRIC markets in recent period
(see e.g., [3, 9–11, 23, 27, 31, 32, 45–49]) to examine plausible
changes in fundamental dynamics that apply to the BRIC
economies and their counterpart market blocs.

+e extant literature is populated by studies that prin-
cipally focus on the interconnection between the BRICs
equities [50–52], the returns and spillovers of the US and
BRIC equities markets [15], Owusu Junior, [53, 54], Rapach
et al. [25, 26], or the lead-lag dynamics between the BRIC
markets and the VIX [9]. Yet, a study that examines in-
formation flow between the fragments of BRIC and the
aggregated BRIC Composite Index while evaluating the
prospects and agitation of investors has gained a dearth of
attention. +e extant literature holds no record for a study
that examines the BRIC Composite Index’s integration with
its fragments while evaluating the flow of shocks between the
markets as well as how the constituents respond to shocks
from either of the markets.

+e prior works of Kwon and Yang [55] and Osei and
Adam [38] on the flow of information between aggregate

Figure 1: History of pandemics. Source: LePan, N. (2021, November 08). Visualizing the history of pandemics. Retrieved November 15,
2021, from https://www.visualcapitalist.com/history-of-pandemics-deadliest/.
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stock market indices and their fragments, however, have
underlined the relevance of settling this issue in various
equities markets and economic blocs; yet, none of the existing
studies has addressed information flow between the BRIC
Composite Index and its constituents, and the US VIX, which
quantifies investor sentiment and fear. +is is significant in
this circumstance because, in addition to the past financial
crises, the recent financial turmoil occasioned by the COVID-
19 pandemic has affected many financial and economic
operations [39, 56–58], and therefore, a study that indicates a
multi-scale discussion on stock markets cannot be unnoticed
[59–61], etc. Additionally, empirical investigations of stock
market volatilities generate reliable evidence that allows in-
vestors to modify their risk appetite, as advanced by Prasad,
Bakry, and Varua [62]. Notwithstanding, market volatilities
contribute to financial time series’ asymmetry, nonlinearity,
and nonstationarity [39, 44, 63, 64].

From a methodological perspective, the extant literature
holds that many naturally fluctuating signals tend to possess
important attributes [65]. Because it could break down a
multidimensional signal into numerous typical basic modes,
signal decomposition is a valuable approach for overcoming
nonstationary signals. Adam [63] and Owusu Junior et al.
[44] argue that financial time series are bounded by noise
and endure fast fluctuations as a result of the widespread
behaviour of fluctuating signals. +e cogency of the fun-
damental rule of scale-invariance belonging to a self-similar
process corroborates the hypothesis of heterogeneous
markets is catechised by the complication of the price
generation process [44, 66]. Market players react to infor-
mation at distinct periods; as a result, market data is often
noisy. Accordingly, stock price series are nonlinear and
nonstationary [2, 3, 15, 39]. +is shows that noise in the
market may introduce difficulties for investors in deter-
mining the driving factors of a trend and whether volatilities
in trends are a result of fundamental dynamics or they are
merely temporal volatilities in the short term.

Decomposition is an indisputably useful line of action to
pursue when working with financial data series due to the
aforementioned considerations. Corollary to this, we de-
compose the data to show stock market participants’ various
investing time scales, which is consistent with Müller et al.’s
[66] heterogeneous markets hypothesis (HMH). Also, the
adaptive market hypothesis (AMH) developed by Lo [67]
proposes that markets evolve, and market efficiency differs
in degree at separate periods, as a result of events and
structural transformations. Both the HMH and the AMH
corroborate the competitive market hypothesis engineered
by Junior et al. [9]. +e CMH suggests that there is an
increased intensity of information flow and spillover be-
tween markets of the same and other asset classes during
turbulent trading periods due to rational, albeit irrational,
investors who are always looking for competing rewards and
risks tomeet their portfolio goals. As a result, we evaluate the
level of competition in the BRIC markets incorporating
investor fears, which are measured by the US VIX, to see if
significant combinations may operate as a substitute or
complement to one another. To enhance the study’s con-
clusions, the application of decomposition approaches

would minimise noise (weak signals) while actual signals are
retained [39, 44]. +e use of decomposition techniques has
been prominent in recent finance literature (see e.g.,
[15, 17, 29, 32, 39, 40, 43]).

Dragomiretskiy and Zosso [34] devised the Variational
Mode Decomposition (VMD) approach, which we employ
in this paper. As Li et al. [68] and Isham et al. [69] argued, the
VMD is a viable approach for sampling and catering to
signal noise that outperforms both the EMD and EEMD
approaches (EMD—empirical mode decomposition;
EEMD—ensemble EMD) in respect of Huang et al. [70] and
Wu and Huang [71]. According to Wu and Huang [71];
mode mixing describes intra-mode functions (IMFs) that
comprise fluctuations of extremely divergent amplitude,
which is primarily generated by the driving mechanism’s
intermittency. +ese IMFs are thought to be time scales
(amplitude-modulated-frequency-modulated signals)
[39, 40, 72]. +e VMD decomposes input signals into main
modes, termed variational mode functions (VMFs) that
duplicate the input signal with changing sporadic quality.
VMFs represent different investment time scales of short-
term, intermediate-term, and long-term horizons in the
context of this study.

In sum, given the several projections of the development
of the BRICmarket [11, 47, 73, 74], coupled with the fact that
news items are more contagious in the few decades than ever
[18], resulting from financial market turbulence, there is the
need to assess the flow of information between this market
bloc (BRIC) whiles integrating investor fear and sentiments,
measured by the US VIX. +is would give insights to fa-
cilitate assessments of the operability of fundamental market
dynamics of the BRIC market, which would reveal the re-
lationships between the markets across diverse investment
horizons. +rough the revealed relationships and market
dynamics of the BRIC markets, reliable assessments of safe
haven, hedges, and diversification prospects could be
ascertained by investors (both individual and institutional),
portfolio, and fund managers.

3. Methodology

First, we show the Variational Mode Decomposition (VMD)
technique, and second, transfer entropy. +e result obtained
from the VMD will be used to conduct the effective transfer
entropy at various values of quantiles (q).

3.1.VMD. According to Dragomiretskiy and Zosso [34], the
kth mode uk(t) is shown as

uk(t) � Ak(t)cos ϕk(t)( 􏼁, (1)

where Ak(t) is the instant amplitude and ϕk(t) is the in-
stantaneous phase, and its derivative ωk(t) � ′ϕk(t) is the
instant scale.

+e VMD generates, for every mode uk(t), the logical
signal and approximates the independent frequency spec-
trum using the Hilbert transform. From the displacement
property of the Fourier transform, there is a relocation to the
baseband of the mode’s spectrum. +en, the bandwidth is
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proposed by the H1 Gaussian smoothness. +ere is an
optimization whose existence is to minimise the addition of
the entire spectral widths of the mode functions to an in-
finitesimal value as

min
uk{ }, ωk{ }

􏽘

k

k�1
zt δ(t) +

j

πt
􏼒 􏼓∗ uk(t)􏼔 􏼕e

−jωkt

�������

�������

2

2

⎧⎨

⎩

⎫⎬

⎭,

s.t. 􏽘
k

k�1
uk � f,

(2)

where uk􏼈 􏼉 is mode ensemble, ωk􏼈 􏼉 is the comparable centre
frequency ensemble K is the mode observation. See [33, 44]
and Adam et al. [14] for a detailed presentation of the
technique. Hamilton and Ferry’s [75] package “VMD”
contains the VMD code.

3.2. Rényi Transfer Entropy. +e TE is a nonparametric
measure of directed, asymmetric information flow between
two processes. Prior to the highlights on the Rényi transfer
entropy (RTE), it is important to understand Shannon
entropy, which measures the uncertainty that transfer en-
tropy (TE) is based on [63, 76]. We investigate a probability
distribution with a variety of experiment pj. From Hartley
[77], the mean information of every symbol is provided as

H � 􏽘
n

j�1
Pjlog2

1
Pj

􏼠 􏼡bits, (3)

where the number of diverse symbols regarding the prob-
abilities Pj is represented by n.

+e Shannon entropy (SE) (1948) provides for a discrete
random variable (J) with probability distribution (P(j)),
the mean number of bits desirable for encoding independent
draws at the maximum [76] can be presented as

HJ � − 􏽘
n

j�1
P(j)log2 P(j). (4)

SE draws on the Kullback-Leibler distance (1951) con-
cept to quantify information transmission between two-time
series under the Markov framework, for two discrete ran-
dom variables, I and J, having respective marginal proba-
bilities of P(i) and P(j). +e joint probability is thus P(i, j),
with dynamic structures that resemble a stationary Markov
process of order k(Process I) and I(process J). +e Markov
property implies that the probability of observing I at time
t + 1 in state i dependent on the k prior observations is
p(it+1|it, . . . , it−k+1) � p(it+1|it, . . . , it−k). In encoding the
observation in t + 1, the mean number of bits needed given
that the ex-ante k observations are known can be presented
in the form

hj(k) � − 􏽘
i

P it+1, i
(k)
t􏼐 􏼑log P it+1|i

(k)
t􏼐 􏼑, (5)

where i
(k)
t � (it, . . . , it−k+1) (compatibly for process J). Under

the Kullback-Leibler distance phenomenon in the context of
two random variables, the flow of information from process

J to process I is estimated through quantification of the
deviation from the generalized Markov property
P(it+1|i

(k)
t ) � P(it+1|i

(k)
t , j

(I)
t ). +e SE can thus be presented

as

TJ⟶I(k, l) � 􏽘 P it+1, i
(k)
t , j

(I)
t􏼐 􏼑log

P it+1|i
(k)
t , j

(I)
t􏼐 􏼑

P it+1|i
(k)
t􏼐 􏼑

, (6)

where TJ⟶I computes the flow of information from J to I.
Correspondingly, the information flow TI←J, can be de-
duced as from I to J. Quantifying the differential can divulge
the dominant direction of the information transmission
between TJ⟶I and TI⟶J.

Following the SE, we now discuss the Rényi Transfer
Entropy (RTE) (1970). +e RTE is conditioned on a
weighting factor q, which is estimated as

H
q
J �

1
1 − q

log􏽘
j

P
q
(j). (7)

With q> 0. For q⟶ 1, RTE converges to SE. For
0< q< 1, hence, extra weights are attributed to low proba-
bility events, while for q> 1 the weights benefit outcomes j

with a higher original probability. Consequently, based on
factor q, RTE allows accentuating varied distribution areas
[63, 76].

Applying the escort distribution [78]
∅q(j) � pq(j)/􏽐jp

q(j) with q> 0 to normalize the
weighted distributions, the resultant RTE is expressed as

RTJ⟶I(k, l) �
1

1 − q
P it+1, i

(k)
t , j

(I)
t􏼐 􏼑

log
􏽐i∅q i

(k)
t􏼐 􏼑P

q
it+1|i

(k)
t􏼐 􏼑

􏽐i,j∅q i
(k)
t , j

(I)
t􏼐 􏼑P

q
it+1|i

(k)
t , j

(I)
t􏼐 􏼑

.

(8)

It is important to keep in mind that the computation of
the RTE can produce negative findings. Based on this,
knowing the record of J presents noticeably more indecision
than knowing the record of I only would present.

+e estimations from transfer entropies could be biased
in tiny samples [79]. +is bias could be possibly corrected,
from which the effective transfer entropy can be computed
as

ETEJ⟶I(k, l) � TJ⟶I(k, l) − TJshuffled⟶I(k, l), (9)

where TJshuffled⟶I(k, l) represents the transfer entropy using
a shuffled version of the time series J; that is, through a
random selection of observations from the actual time series
J and adjusting them to produce a fresh time series,
destroying the dependencies in time series J, but not
overlooking the statistical reliance between J and I. +is
charges TJshuffled⟶I(k, l) to approach zero as the sample size
increases, and any nonzero value of TJshuffled⟶I(k, l) is at-
tributable to tiny sample effects. Recurring shuffles and the
total replications of the mean of the transfer entropy shuffled
estimates act as the small sample bias estimator, which is
deducted from the estimated ETE(s), to yield a bias-adjusted
ETE estimate.
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To assess the statistical significance of the TE estimates,
the study relies on the Markov block bootstrap [80]. +e
Markov block bootstrap maintains the dependencies within
each time series, in contrast to shuffling. It produces the
distribution of transfer entropy estimates under the null
hypothesis of no information transfer as a result, using
blocks of a random process J are readjusted to form a
simulated series, which maintains the univariate depen-
dencies of J but eradicates the statistical dependencies be-
tween J and I. +e RTE is calculated under the simulated
time series. +e information flow has a null hypothesis of no
information movement which is ascertained by repeated
estimation of the RTE. Hence, the p-value linked to the null
hypothesis of no information flow is shown as 1 − 􏽣qTE

suggesting the quantile of the simulated distribution that
links the unusual TE estimates.

+e transfer entropy algorithms also rely on discrete
data. +e continuous data used in the study must be dis-
cretised to achieve this. To solve this problem, symbolic
encoding is used, which divides the data into a limited
number of bins [76]. For a given number of bins n, with
bounds q1, q2, q3, q4 . . . , qn−1(q1 < q2 < q3 < q4 . . . < qn−1)

and a continuous observed time series data yt, its parti-
tioning is given by

st �

1, yt ≤ q1

2, q1 <yt < q2

·

·

n − 1, qn−2 <yt < qn−1

n, yt ≥ qn−1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

+e number of bins is determined by the size and dis-
tribution of the observed time series. Binning is typically
based on the left tail and right tail quantiles in empirical
investigations that emphasise tail findings [9]. +e process is
made simpler by choosing the 5% and 95% empirical
quantiles to represent the lower and upper boundaries of the
bin, respectively. +is results in three symbolic encodings: a
lower tail with negative volatility shocks (5%), and upper tail
with positive shocks (95%) and a normal shock in the second
bin (middle 90%).

3.3. Data Sources and Description. We utilized daily prices
made up of six indices. +ey include the US Volatility Index
(VIX), ’Brazil’s Ibovespa Index, ’Russia’s Moscow Exchange
Russia Index, ’India’s NIFTY 500 Index, ’China’s Shanghai
Stock Exchange Composite Index, and the BRIC Composite
Index. After removing missing data, the daily data ranges
from 2012/12/11 to 2021/05/28, producing a total of 1733
observations. +e recommended time frame includes the
aftermath of the 2008 Global Financial Crisis (GFC), the
Eurozone crisis, and the COVID-19 pandemic. +e Equi-
tyRT database was used to compile daily data on the BRIC.
+e data was executed on daily returns as
rt � ln Pt − ln Pt−1, where rt is the outcome of the log
returns, Pt and Pt−1 are current and past prices respectively.

We provide both the time-varying prices and returns as
shown in Figure 2. +e price series show that following a
downward spike in the early part of 2020, the price series for
all markets trend upwards. +at is, BRIC prices are rapidly
increasing, which supports Zhang et al.’s [81] argument that
markets will revive far along the COVID-19 period because
most enterprises and economies have figured out how to
survive. +e VIX price series, on the other hand, is trending
lower after a downward jump in the second half of 2020. +e
inverse association between stock prices and VIX is depicted
graphically here. As a result, the financial markets examined
in this study are critical to investigate, particularly, depicting
heterogeneous dynamics. Figure 2 shows how the log-
returns series is in line with the stylized facts of asset returns,
demonstrating volatility clustering.

+e summary of the statistical analysis of the variables is
shown in Table 1. +e skewness values indicate asymmetry,
whilst the kurtosis values indicate leptokurtic market be-
haviour and investor concern.+is indicates that the ’study’s
data is not regularly distributed. +e Augmented Dicky-
Fuller (ADF) and the Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) stationarity tests are utilised. All of the data series
expressly meet the stationarity requirements, according to
both the ADF and the KPSS observations. +is is consistent
with numerous autoregressive studies’ assumptions, which
assume global stationarity.

4. Results and Discussion

+e study presents the flow of information between the
BRIC Composite Index and its constituents, as well as
information flow between the US VIX and the BRIC
markets. Since information flow among BRIC constitutes a
complex network, which needs comprehensive interpre-
tations and analysis, we account for several quantiles to
reveal different market conditions as provided in other
techniques such as the quantile regression (see [57]). +e
selection of the quantiles for the information flow is made
possible due to the RTE technique. +e quantiles are
presented from 0.3 to 1.0 with a step of 0.1. We do this to
provide a potpourri of outcomes at various market con-
ditions. At quantiles less than 0.5, we account for low
probability events, which reveal a crash in the markets,
quantiles above 0.5 indicate a boom, and at 0.5, benign
market condition is experienced.

4.1. Information Flow between Stock Markets of BRIC Con-
stituents and the BRICComposite Index. Figure 3 depicts the
information flow between stock markets of BRIC constit-
uents and the BRIC Composite Index at diverse market
conditions illustrated by the quantiles from 0.3 to 1.0. We
notice that when there is stress in the markets (at q< 0.5),
significant negative information flows between the BRIC
constituents (except Russia) and the BRIC Composite Index
in the original series (signals) and short-term of the
decomposed data (M1). Notwithstanding, there exist the
potential for negative flows of information in the medium-,
and long-term (M2, M3, & MAgg). +is implies that, in
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times of chaotic conditions, the stock markets of BRIC
respond negatively to the BRIC Composite Index and vice
versa. Also, under benign market conditions, we notice
similar dynamics as found at the lower quantiles. +us,
information flow between the BRIC constituents (except
Russia) and the BRIC Composite Index is negative, mostly
from the original series (signal) and in the short-term (M1).
At that point, investors who wish to diversify their portfolios
may easily do so, especially in the short-term.

+e consistency and persistence of similar dynamics of
information flow occur until the extreme upper quantiles.
Specifically, at quantiles 0.9 and 1.0, representing high
market performance or market boom, we notice more
positive information flow between the variables. +is
suggests that positive information flow increases mono-
tonically with increases in quantiles with quantile 1.0 re-
cording more positive information flow between the
variables. +is is not surprising because BRIC stock

markets have been flaunted to be well developed
[11, 47, 73, 74] and well-integrated, to exhibit self-similar
behaviour. Accordingly, when the markets are highly
performing, the contribution of each market towards the
BRIC Composite Index is positive irrespective of the in-
trinsic time dimension: short-, medium-, and long-term,
and vice versa. As a result, knowing the history of the BRIC
constituents indicates considerably less uncertainty than
knowing the history of the BRIC Composite Index alone,
and vice versa, which could be relevant in the redeployment
of portfolios. As found by Junior et al. [9]; the contribution
of the stock markets of the BRIC constituents to the BRIC
Composite Index is positive and significant, which is partly
in line with the outcome of the current study in that their
finding was revealed only at market boom from this study.
+is may be a result of differences in the estimation
techniques, rendering our approach more robust to non-
linear, asymmetric, and nonstationary relationships by
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Figure 2: Plots of price and returns series. (a) Price; (b) returns.

Table 1: Summary statistics.

Mean SD Skewness Kurtosis Normtest W ADF KPSS
BRIC 0.0002 0.0126 −0.6276 6.0673 0.9296∗∗∗ −10.429∗∗∗ 0.0860
Russia 0.0000 0.0176 −0.9869 9.6720 0.9132∗∗∗ −11.1400∗∗∗ 0.1614
India 0.0004 0.0146 −1.1346 11.3683 0.9023∗∗∗ −10.8560∗∗∗ 0.0548
China 0.0003 0.0161 −1.3376 13.8307 0.8744∗∗∗ −11.1930∗∗∗ 0.0740
VIX 0.0000 0.0888 1.0615 7.9000 0.9063∗∗∗ −12.7400∗∗∗ 0.0118
∗, ∗∗, and ∗∗∗ Significance at 10%, 5%, and 1% levels respectively.
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Figure 3: Continued.
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Figure 3: Continued.
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Figure 3: Continued.
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Figure 3: Information flow between stock markets of BRIC constituents and index.
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Figure 4: Continued.

12 Mathematical Problems in Engineering



Flow towards VIX Flow towards BRIC

Renyi's Effective Transfer Entropy between BRIC and VIX (Signal)

Eff
ec

tiv
e T

ra
ns

fe
r E

nt
ro

py

0.00

-0.05

-0.10
BR

IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

Flow towards VIX Flow towards BRIC

Renyi's Effective Transfer Entropy between BRIC and VIX (Signal)

Eff
ec

tiv
e T

ra
ns

fe
r E

nt
ro

py

0.000

0.025

-0.025

-0.050

-0.075

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

Flow towards VIX Flow towards BRIC

Renyi's Effective Transfer Entropy between BRIC and VIX (M1)

Eff
ec

tiv
e T

ra
ns

fe
r E

nt
ro

py

0.05

0.10

0.00

-0.10

-0.05

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

Flow towards VIX Flow towards BRIC

Renyi's Effective Transfer Entropy between BRIC and VIX (M1)

Eff
ec

tiv
e T

ra
ns

fe
r E

nt
ro

py

0.04

0.00

-0.04

-0.08

Flow towards VIX Flow towards BRIC

Renyi's Effective Transfer Entropy between BRIC and VIX (M2)

Eff
ec

tiv
e T

ra
ns

fe
r E

nt
ro

py

0.00

-0.10

-0.05

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

Flow towards VIX Flow towards BRIC

Renyi's Effective Transfer Entropy between BRIC and VIX (M2)

Eff
ec

tiv
e T

ra
ns

fe
r E

nt
ro

py

0.00

-0.03

-0.06

-0.09

Flow towards VIX Flow towards BRIC

Renyi's Effective Transfer Entropy between BRIC and VIX (M3)

Eff
ec

tiv
e T

ra
ns

fe
r E

nt
ro

py

0.05

0.00

-0.05

-0.10

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

Flow towards VIX Flow towards BRIC

Renyi's Effective Transfer Entropy between BRIC and VIX (M3)

Eff
ec

tiv
e T

ra
ns

fe
r E

nt
ro

py

0.050

0.025

0.000

-0.025

-0.050

-0.075

Flow towards VIX Flow towards BRIC

Renyi's Effective Transfer Entropy between BRIC and VIX (MAgg)

Eff
ec

tiv
e T

ra
ns

fe
r E

nt
ro

py

0.05

0.00

-0.05

-0.10

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

BR
IC

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

BR
IC

In
di

a

Ch
in

a

Br
az

il

Ru
ss

ia

Flow towards VIX Flow towards BRIC

Renyi's Effective Transfer Entropy between BRIC and VIX (MAgg)

Eff
ec

tiv
e T

ra
ns

fe
r E

nt
ro

py

0.05

0.00

-0.05

At q=0.5 At q=0.6

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

(b)

Figure 4: Continued.
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Figure 4: Continued.
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Figure 4: Information flow between BRIC stock markets and VIX.
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revealing diverse market conditions. +e heterogeneity in
the study’s outcome confirms the findings of prior studies
such as Tilfani et al. [61]; Asafo-Adjei et al. [54].

4.2. Information Flow between Stock Markets of BRIC and
Investor Fear. +is section shows the information flow
between the stock markets of BRIC, in addition to the BRIC
Composite Index and the CBOE Volatility Index (VIX). We
do this to account for the nonlinear, asymmetric, and
nonstationary relationship that exists between the stock
markets of BRIC and the US VIX as an investor fear and
expectation indicator. A recent study by Junior et al. [9]
indicated that the US VIX transmits negative shocks to the
BRIC stock markets at all time-frequency domains as the
principal outcome. However, in this study, we investigate the
extent, to which both BRIC and VIX transmit information
among themselves due to irrational behaviours of investors
rendering the markets competitive, adaptive, and hetero-
geneous at various investment horizons.

From Figure 4, at low probability events representing
market stress (at q< 0.5), we notice potential negative infor-
mation flow between the BRIC stock markets and the US VIX
atmost investment horizons: short-, medium-, and long-terms.
Notwithstanding, the US VIX has the potential to transmit
positive information to the stock markets of BRIC, mostly for
Russia and China. +is implies that, in times of chaotic
conditions, the stock markets of BRIC respond positively to
shocks from the VIX. It is not daunting to see information flow
between the BRIC stock markets and VIX depict self-similar
behaviour at quantiles 0.3 and 0.4. +is is because, despite
capital flight due to tapering by the US Federal Reserve, BRIC
nations foresee greater supremacy in the international arena, as
well as significant shifts in the capital flow into their markets
[8, 82, 83]. According to Piper [84], BRIC financialmarkets also
share a development philosophy that is more partnership-
oriented than donor-recipient-focused.

At normal market conditions (at q� 0.5), we document
similar dynamics as found at the lower quantiles. +us,
information transmission between the stock markets of
BRIC and the US VIX is mostly negative, but the US VIX
transmits potential positive information to BRIC, especially
for China and Russia (at M1 and MAgg). +is suggests that
existing investors of the US VIX may less likely diversify
from including stock markets of China and Russia in the
short-, and long-term, but existing investors of BRIC
markets (except India in the short-term) can at most times
(except in the long-term at MAgg) rebalance their portfolios
by including the USVIX under benignmarket phenomenon.

Similarities in the behaviour of information flow at the
quantiles occur except at quantile 1.0 where the RTE ap-
proaches the Shannon entropy. +us, at quantile 1.0, rep-
resenting highmarket performance or market boom, we find
more positive information flow between the BRIC markets
and VIX. +is is to say, knowing the history of one market
indicates considerably less uncertainty than knowing the
history of the other. +is is strongly pertinent for the
rebalancing of portfolios as diversification potentials during
this point may be hindered.

5. Theoretical and Practical Underpinnings

We find that information flow between the markets is
heterogeneous and adaptive regarding diverse investment
horizons and market conditions to reveal the HMH [66] and
AMH [67]. Also, as postulated by Junior et al. [20], “in part,
the intensity of information flow and spillover between
markets of the same and differing asset classes are exacer-
bated by rational, albeit irrational investors’ relentless search
for competing rewards and risks to satisfy the portfolio
goals,” the concentration of information flow between
markets may lead to high uncertainties. +is was mainly
found in diverse market conditions except at the upper
quantiles, and with varying sparsity of investment horizons.
+is is a result of the behavioural intentions of investors,
varying risk preference, relative optimism, and information
perception which impact the willingness to invest.

It is worthy of notice that while our findings support
Müller et al.’s [66] HMH, Lo’s [67] AMH, and the CMH of
Junior et al. [9] at diverse scales (except at upper quantiles),
they are highly opposing the efficient market hypothesis
(EMH) of Fama [85, 86]. Intuitively, varying direction and
significance of transfer entropies across the short- and
midterm horizons (M1–M3) as well as across quantiles
suggests that BRIC markets are characterized by heteroge-
neous and adaptive dynamics, which oppose the principles
of market efficiency propagated by Fama [85]. Notwith-
standing, given that almost all markets respond similarly
(positive, suggesting low risk) to information flow in the
long-term (MAgg), the BRIC markets could be regarded as
saturated with shocks emanating from information flow and,
hence, the fundamental market dynamics are at play in the
long-term. +is reiterates the long-term efficiency of Fama
[86].

From the Modern Portfolio theory of Markowitz [87];
investors who seek to minimise their portfolio risks can do so
aside from a market boom (upper quantiles). Global and do-
mestic investors of BRIC can find a safe haven with the BRIC
composite index, especially in the short-term during chaotic
market outcomes or stress as provided by Junior et al.
[20, 33, 88] and Adam [14]. Existing investors of the US VIX
may less likely diversify from including stock markets of China
andRussia in the short-, and long-term, but existing investors of
BRIC markets (except India in the short-term) can at most
times (except in the long-term at MAgg) rebalance their
portfolios by including theUSVIX at normalmarket outcomes.
Generally, we advocate that redeployment of portfolios at high
markets performance irrespective of the investment horizons
should be an appropriate course of action for investors of BRIC
financial markets. We support the finding that stock markets of
BRIC economies are highly integrated, but when impacted by a
significant market force, arbitrage and diversification potentials
may be hindered [89]. Notwithstanding, as averred by Junior
et al. [9], BRIC markets have a distinguishing economic and
financial system, capacities, and capabilities to withstand such
shocks.We add that investors of BRICmarkets can still find safe
haven, hedge, or diversification benefits depending on the
market outcomes, from these shocks, as long as they emanate
from other financial markets, due to contagion.
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6. Conclusions

+is study offers new and abundant evidence on the di-
rectional nonlinear, nonstationary, and asymmetric cau-
sality between the Chicago Board Options Exchange
(CBOE) Volatility Index (VIX) of the US and the stock
markets of BRIC. +e VMD-based RTE is employed to
examine the flow of information between the variables from
a frequency-domain paradigm, through the intrinsic time.
We set q from the RTE from 0.3 to 1.0 with an increment of
0.1 to account for several quantiles to reveal different market
conditions. With this, we document low-, normal, and high-
probability events at various intrinsic times. Specifically, the
objectives of the study are to, examine the flow of infor-
mation between the BRIC Composite Index and its con-
stituents and the flow of information between the stock
markets of BRIC and the VIX.

We found some interesting results for all financial in-
struments when we considered various quantiles to reveal
the nature of market conditions at different intrinsic times,
which is lacking in the most empirical literature on the RTE.
We revealed that under stressed market conditions (at
q< 0.5), significant negative information flow between the
BRIC constituents (except Russia) and the BRIC composite
index in the original series and short-term. Notwithstand-
ing, there is potential for negative flows of information in the
medium- and long-term. Also, under benign market con-
ditions, we find similar dynamics as found at the lower
quantiles. +is implies that, in times of chaotic conditions,
the stockmarkets from BRIC respond negatively to the BRIC
Composite Index, which provides diversification advan-
tages. However, specifically, at quantiles 0.9 and 1.0, rep-
resenting a high market boom, we document more positive
information flow between the variables, which are relevant
to the redeployment of portfolios.

Moreover, at low probability events representing market
stress (at q< 0.5), we notice potential negative information
flow between the stock markets of BRIC and the US VIX at
most investment horizons. Notwithstanding, the US VIX has
the potential to transmit positive information to the stock
markets of BRIC, mostly for Russia and China. At normal
market conditions (at q� 0.5), we document similar dynamics
as found at the lower quantiles. However, at quantile 1.0,
representing high market performance, we find more positive
information flow between the BRIC markets and VIX.

We contribute to the extant literature on the integration
of BRIC markets by inferring from the similar dynamics
most BRIC constituents exhibited regarding the bidirec-
tional causality with the BRIC composite index. Moreover,
we found that BRIC economies are not only well integrated
but also demonstrate self-similar behaviour from one
quantile to another at various investment horizons. +is
implies that the stock markets of BRIC do not instanta-
neously respond to market changes, but exhibit some
delayed responses to market conditions. We advocate that
investors, portfolio managers, and risk managers, among
others, should be wary of the heterogeneous and adaptive
behaviour of BRIC stock markets under diverse market
conditions to appropriately rebalance portfolios as

diversification potentials may vary between the constituents
of BRIC, and the US VIX and BRIC Composite Index.

+e study was limited to the use of one volatility index;
however, future studies can employ other uncertainty in-
dicators to assess their information flow with the BRIC stock
markets with interesting dynamics. Also, the patterns of
information flow could be assessed before and during the
COVID-19 pandemic to reveal its impact on the BRIC
markets and volatility dynamics. +e current study con-
sidered the outcome of each VMF but did not account for
the aggregated impact of the VMFs based on multi-fre-
quencies via the cluster analysis approach as employed by
extant literature [14, 90]. Studies can also be conducted on
other emerging markets whose financial markets are inte-
grated for comparison within the emerging markets region.
To cater for the time dimension in such analysis, the sliding
window approach (see [61]) may be considered [68, 91–96].
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