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Industrial control system (ICS) attacks are usually targeted attacks that use the ICS entry approach to get a foothold within a
system and move laterally throughout the organization. In recent decades, powerful attacks such as Stuxnet, Duqu, Flame, and
Havex have served as wake-up calls for industrial units. All organizations are faced with the rise of security challenges in
technological innovations. 'is paper aims to develop aggregation operators that can be used to address the decision-making
problems based on a spherical fuzzy rough environment. Meanwhile, some interesting properties of idempotence, boundedness,
and monotonicity for the proposed operators are analyzed. Moreover, we use this newly constructed framework to select ICS
security suppliers and validate its acceptability. Furthermore, a different test has been performed based on a new operator to
strengthen the suggested approach. Additionally, comparative analysis based on the novel extended TOPSIS method is presented
to demonstrate the superiority of the proposed technique. 'e results show that the conventional approach has a larger area for
information representation, better adaptability to the evaluation environment, and higher reliability of the evaluation results.

1. Introduction

Many governments are launching initiatives to encourage
the implementation of electronic and manufacturing in-
novations, including Germany’s industry 4.0 systems, the
United States’ reindustrialization, and China’s “Made in
China 2025” strategy to advance next-generation informa-
tion technology. All of these have has motivated the con-
tinuous development of industrial control systems (ICS). All
of these have prompted the development of industrial
control systems (ICSs) to proceed. Information technology,
while adding new development strength to ICS, it also in-
troduces new security flaws. ICS plays a crucial role in the
national economy and people’s livelihood of crucial national

infrastructure. Furthermore, in recent years, a number of
notable ICS attacks, such as Stuxnet, Duqu, Flame, and
Havex, have raised the concern for authorities and industry
sectors. As a result, manymanufacturers are working to keep
an increasingly open ICS safe. And evaluating ICS security
suppliers and selecting the best one are a vital part of
management decisions. A typical multi attribute decision-
making (MADM) problem is selecting an ICS security
supplier. MAGDM theories and approaches have stimulated
the interest of many researchers in the field of operational
research and decision sciences, and significant achievements
have been highlighted [1–8]. Scientists have developed
several techniques to address the MADM problem, such as
the TODIM (an acronym in Portuguese for Interative Multi-
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criteria Decision Making) method [9], MABAC (multi-at-
tributive border approximation area comparison) method
[10], EDAS (evaluation based on distance from average
solution) method [11], VIKOR (VIekriterijumsko KOm-
promisno Rangiranje) method [12], GRA (gray relative
analysis) method [13], CODAS (combinative distance-based
assessment) method [14], GLDS method [15], QUALIFLEX
(qualitative flexible multiple criteria) method [16], and so
on. However, as technology advances, experts have observed
that the decision-making environment has become more
complicated, increasing ambiguity and uncertainty. Trying
to solve MADM problems solely with standard tools would
fall short of the practical needs [17]. 'erefore, several re-
searchers address MADM challenges by combining fuzzy
numbers with classical MADM approaches [18]. In this
study by Zadeh [19] the fuzzy set syntax was introduced.'e
membership degree explains “obviously yes” and “certainly
no” in its feature. Afterward, the concept of FS has been
continually explored and expanded. Atanassov [20] intro-
duced intuitionistic fuzzy sets (IFS) and a novel extension of
IFSs known as Pythagorean fuzzy sets (PFSs) [21]. 'is is
well known that the limitation of IFSs is the sum of
membership and non-membership that must be less than or
equal to one, but PFSs fulfill the criteria that the square sum
of membership and non-membership must not be greater
than one. PFS provides a broader range of information than
IFSs, and PFS-based MAGDM approaches have become a
novel and active study field [22–25]. Yager [26] introduced
the concept q-rung orthopair fuzzy (q-ROF) set as an ex-
tension to the conventional IFS set. 'e limitation of the
q-ROF set is that the sum of the qth-power of membership
and non-membership is less than or equal to 1. Cong and
Kreinovich [27] established picture FSs and described op-
erations and relations on them. PFSs deal with three
functions: membership, neutral, and non-membership.
Manemaran et al. [28] developed a temporal picture fuzzy
soft set (PFSS) and addressed its related concepts. Khan et al.
[29] presented generalized PFSSs and their application in
DM systems. Further, Ashraf et al. [30] introduced the idea
of cubic PFSs. Abdullah et al. [31] implemented the cubic
PFS approach to address the MADM problem and show it
with a numerical example of a petroleum circulation center
evaluation problem to demonstrate the usage and applica-
tion of the proposed ranking technique. It should observe
that both IFSs and PFS still have some limitations, although
they have been efficient when dealing with complex fuzzy
information in some practical applications.'e novel idea of
spherical fuzzy sets (SFSs) was introduced by Ashraf et al.
[8], an advanced tool of FSs, IFSs, and PFSs. 'ey investi-
gated the fundamental characteristics of SFSs and compared
them with those of PFSs. Graphically, the spaces of spherical
and picture membership grades are investigated. 'ey
implemented the aforementioned concept as a practical
application to demonstrate the problem of evaluating a food
circulation center. Kutlu [32] extended the TOPSIS (Tech-
nique for Order of Preference by Similarity to Ideal Solution)
method to spherical fuzzy TOPSIS and presented an illus-
trative example in the MADM problem. Kahraman [33]
described q-spherical fuzzy sets and discussed their

application in the MADM problem. Zeng [34] discussed
T-spherical fuzzy Einstein interactive aggregation operators
and their application to selecting photovoltaic cells. Emer-
gency decision making based on SFSs to address the un-
certainty in COVID-19 situation is discussed in [6, 7].

'e rough set (RS) theory, proposed by Professor Pawlak
in 1982, is an essential mathematical tool for dealing with
ambiguous, inconsistent, and incomplete data and infor-
mation [35]. 'e fuzzy rough set (FRS) can be combined
with RSs to manage information with continuous attributes
and investigate data inconsistencies. 'e FRS model has
shown to be highly effective in many application areas
because it is a powerful tool for analyzing inconsistent and
ambiguous information. FRS set theory is a rough set theory
extension that handles continuous numerical attributes [36].
'e significance of the FRS theory may be observed in a
variety of applications. Pan et al. [37] established the additive
consistent fuzzy preference relation to improve the rough set
model of the fuzzy preference relation. Li et al. [38] sug-
gested a practical FRS approach for robust feature selection.
Feng et al. [39] reduced multi granulation using uncertainty
measures based on FRSs, eliminating the negative and
positive regions. Sun et al. [40] used a constructive technique
to provide three multi granulation FRSs over two universes.
In this study by Liu [41], in the framework of interval-valued
fuzzy and fuzzy probabilistic approximation space models, a
decision-theoretic RS model was investigated. Zhang used
axiomatic and constructive techniques to integrate rough set
theory and interval-valued fuzzy set theory and [42] pre-
sented a novel paradigm based on FRSs with extended in-
terval values. Zhang et al. [43] offered FR based feature
selection based on information entropy to minimize het-
erogeneous data. By combining granular variable precision
FRSs and general fuzzy relations, Wang and Hu [44] pro-
vided a random set of fuzzy relationships. Vluymans et al.
[45] introduced a new type of classifier for unbalanced
multi-instance data based on FRS theory. Shaheen et al. [46]
described the application of generalized hesitant fuzzy rough
sets (GHFRS) in risk analysis. Khan et al. [47] addressed the
use of a probabilistic hesitant FRS in a decision support
system. Tang et al. [48] proposed the decision-theoretic
rough set model with q-rung orthopair fuzzy information, as
well as its application in evaluating stock investments. Liang
et al. [49] suggested q-Rung orthopair fuzzy sets on decision-
theoretic rough sets for three-way decisions under group
DM. Zhang et al. [50] proposed group DM using incomplete
q-rung orthopair fuzzy preference relations. For MADM,
Hussain et al. [51] presented a covering-based q-rung
orthopair fuzzy rough set model hybrid with the TOPSIS
approach. In practice, these extensions of the q-rung
orthopair fuzzy rough set successfully handle DMs’ evalu-
ation values in MAGDM problems. Some decision-making
techniques are discussed in [53–58].

In this research, motivated by the above discussion, we
plan to introduce a new concept of spherical fuzzy rough set
(SFRSs). Also, the hybrid technique of aggregation operators
and expanded TOPSIS procedure under spherical fuzzy
rough setting is presented, in order to benefit of the ad-
vantages of the TOPSIS method and SFSs. As a consequence,
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the SFS is the generalized structure of fuzzy set like IF set and
PyF set. 'us SFRS is capable of handling more uncertainty
than FS, IF set, PyF set, and rough set. 'erefore, in this
paper, a novel improved TOPSIS-based method and novel
algebraic norm-based aggregation operators are established
to address with such circumstances of unknown weight
information of both DMs and criteria weights and to solve
the MAGDM problem after computing all the weights. In
order to solve the decision-making problems (DMPs),
choosing the ideal opinion, which is better connected to each
DMs matrix, is quite essential. In the presented procedure,
ideal opinion is nominated under the SFR average method.
Generalized distance measure is established to find the
differences between two SFRSs. In the presented SFR
TOPSIS and SFR aggregation operators for solving
MAGDM problems, generalized distance measures-based
entropy measure is introduced to find out the criteria
weights under SFR information used in this paper. 'e
challenges in the industrial control systems security and
sustainability are addressed by using proposed advance
methodology.

In summary, the main contributions of the present study
are follows:

(1) Novel idea of spherical fuzzy rough aggregation
operators namely spherical fuzzy rough weighted
averaging, spherical fuzzy rough ordered weighted
averaging and spherical fuzzy rough hybrid weighted
averaging operators is introduced and their basic
operational laws are investigated.

(2) A case study of industrial control security service
provider selection is also presented to demonstrate
the applicability of the established operators.

(3) To validate the findings, different test on aggregation
operators are implemented.

(4) Finally, comparisons with the spherical fuzzy rough
TOPSIS method are made to interpret the outcomes.
'e ranking of the obtained results is presented
graphically.

2. Preliminaries

In this section, we will put forward some basic literature
concerning IFS, PFS, SFS, relation and rough sets, which will
be helpful for subsequent sections.

Definition 1 (see [20]). Consider a universal setS. An IFSG
on a set S is defined as

G � s, ξG(s),ψG(s)|s ∈ S , (1)

where ξG: S⟶ [0, 1] and ψG: S⟶ [0, 1] denotes the
MemD andNMemD of an object s ∈ S to the setG such that
0≤ ξG(s) + ψG(s)≤ 1. For an alternative s ∈ S, πG(s) � 1 −

(ξG(s) + ψG(s)) is known as the degree of hesitancy.

Definition 2 (see [27]). Assume a universal set S. A PFS G

on a set S is of the form as follows:

G � 〈s, ξG(s), ηG(s), ψG(s)〉|s ∈ S , (2)

where ξG: S⟶ [0, 1], ηG: S⟶ [0, 1] and
ψG: S⟶ [0, 1] denotes the positive membership (PM),
neutral membership (NeuM) and negative membership
(NM) of an object s ∈ S to the set G such that 0≤ ξG(s) +

ηG(s) + ψG(s)≤ 1. For an alternative s ∈ S,
πG(s) � 1 − (ξG(s) + ηG(s) + ψG(s)) is known as the degree
of hesitancy.

Definition 3 (see [8]). Assume a universal setS. A SFSG on
a set S is of the form as follows:

G � 〈s, ξG(s), ηG(s), ψG(s)〉|s ∈ S , (3)

where ξG: S⟶ [0, 1], ηG: S⟶ [0, 1], and
ψG: S⟶ [0, 1] denote the PM, NeuM and NM of an
object s ∈ S to the setG such that 0≤ (ξG(s))2 + (ηG(s))2 +

(ψG(s))2 ≤ 1. For an alternative s ∈ S, the degree of hesi-
tancy is given as πG(s) ��������������������������������

1 − ((ξG(s))2 + (ηG(s))2 + (ψG(s))2)



.
Consider G � 〈 s, ξG(s), ηG(s), ψG(s)〉 denotes

G � (ξG, ηG, ψG) known as a SP values (SPV) if there is no
confusion. 'e family of subsets of SFS is represented by
(SFS(S)).

Definition 4 (see [8]). Let G1 � 〈ξG1
, ηG1

, ψG1
〉, and G2 �

〈 ξG2
, ηG2

, ψG2
〉 be any two SFVs. 'en the basic operations

are given as, for λ> 1.

(i) G1⋃

G2 � max〈ξG1

(s), ξG2
(s)〉, min〈ηG1

(s), η

G2
(s)〉, min〈ψG1

(s), ψG2
(s)〉|s ∈ S}.

(ii) G1 ∩  G2 � min〈ξG1
(s), ξG2

(s)〉, min〈η

G1
(s), ηG2

(s)〉, max〈ψG1
(s), ψG2

(s)〉|s ∈ S},
(iii) G1 ⊆G2 if for all s ∈ S, ξG1

≤ ξG2
, ηG1
≤ ηG2

, and
ψG1
≥ψG2

,
(iv) G1⊕G2 � (

���������������
ξ2G1

+ ξ2G2
− ξ2G1

ξ2G2


, ηG1

ηG2
, ψG1

ψG2
),

(v) G1 ⊗G2 � (ξG1
ξG2

, ηG1
ηG2

,�����������������
ψ2
G1

+ ψ2
G2

− ψ2
G1
ψ2
G2


),

(vi) λG1 � (
������������
1 − (1 − ξ2G1

)λ


, ηλG1
,ψλ

G1
),

(vii) Gλ
1 � (ξλG1

, ηλG1
,

������������
1 − (1 − ψ2

G1
)λ


).

Definition 5. Suppose a universal setS and let g ∈ S × S be
any binary relation. 'en

(i) g is reflexive if (s, s) ∈ g, ∀s ∈ S;
(ii) g is symmetric if ∀s, r ∈ S, (s, r) ∈ g then (r, s) ∈ g;
(iii) g is transitive if ∀s, r, t ∈ S, (s, r) ∈ g and (r, t) ∈ g,

then (s, t) ∈ g.

Definition 6. Let S be a universal set and g ∈ S × S be an
arbitrary binary relation on set S. 'en g∗ denotes the set
value mapping given as g∗: S⟶ P(S), where

g
∗
(s) � r ∈ S|(s, r) ∈ g , for s ∈ S. (4)
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'e set g∗(s) is said to be a successor neighborhood of an
element s with respect to g. 'e pair (S, g) represents the
approximation space with respect to g∗ Consider an ap-
proximation space (S, g) and b be any subset of S, then
lower and upper approximation of b is represented and
defined as follows:

g̲(b) � s ∈ S|g
∗
(s)⊆ b ,

gʹ(b) � s ∈ S|g
∗
(s)∩  b≠∅ .

(5)

'erefore, the pair (g̲(b), gʹ(b)) is called rough set.'en
the mapping gʹ(b),g̲(b): P(S)⟶P(S) denotes the ap-
proximation operators.

3. Spherical Fuzzy Rough Sets

SFS is the most significant generalization of IFS, PyFS and
PFS which provide more space for experts for assigning
values to PM, NeuM and NM. Here we will present the
hybrid notion of SFS and rough sets to get the novel concept
of SF rough set. 'e new score and accuracy mapping are
defined for the developed model and studied their desirable
properties of the presented model with detail.

Definition 7. Suppose a universal set S and let g∈SFS(S ×

S) be SF relation. 'en

(i) g is reflexive if ξg(s, s) � 1, ηg(s, s) � 0, and
ψg(s, s) � 0, ∀s ∈ S;

(ii) g is symmetric if ∀ (s, r) ∈ S × S,
ξg(r, s) � ξg(s, r), ηg(r, s) � ηg(s, r), and
ψg(r, s) � ψg(s, r);

(iii) g is transitive if ∀ (s, t) ∈ S × S,
ξg(r, t)≥ ∨

s∈S
[ξg(r, s)∧ξg(s, t)], ηg(r, t) � ∧

s∈S
[ηg(r, s)∨ηg(r, s)], and ψg(r, t) � ∧

s∈S
[ψg(r, s)∨

ψg(s, t)].

Alternatively, the relation g, is transitive if it holds the
following:

For all s, r ∈ S and λ1, λ2, λ3 ∈ [0, 1]

(a) ∀ t ∈ S, ξg(r, s)≥ λ1, and
ξg(s, t)≥ λ1⟹ξg(r, t)≥ λ1,

(b) ∀ t ∈ S, ηg(r, s)≤ λ2, and ηg(s, t)≤ λ2⟹ηg(r, t)≤
λ2,

(c) ∀ t ∈ S, ψg(r, s)≤ λ3, and ψg(s, t)≤ λ3⟹ψg(r, t)≤
λ3.

Definition 8. Suppose a universal set S and let
g ∈ SFS(S × S) be any SF relation.'e pair (S, g) denotes
a SF approximation space. Let b be any subset of SFS(S)

i.e. b⊆ IFS(S). 'en based on SF approximation space
(S, g), the upper and lower approximations of b are denoted
by gʹ(b) and g̲(b) and are given as follows:

gʹ(b) � 〈s, ξ gʹ(b)(s), η gʹ(b)(s),ψ gʹ(b)(s)〉|s ∈ S 

g̲(b) � 〈s, ξg̲(b)(s), ηg̲(b)(s),ψg̲(b)(s)〉|s ∈ S ,
(6)

where

ξ gʹ(b)(s) � ∨
t∈S

ξg(s, t)∨ξg(t) ,

η gʹ(b)(s) � ∧
t∈S

ηg(s, t)∧ηg(t) ,

ψ gʹ(b)(s) � ∧
t∈S

ψg(s, t)∧ψg(t) ,

ξg̲(b)(s) � ∧
t∈S

ξg(s, t)∧ξg(t) ,

ηg̲(b)(s) � ∧
t∈S

ηg(s, t)∧ηg(t) ,

ψg̲(b)(s) � ∨
t∈S

ψg(s, t)∨ψg(t) .

(7)

such that 0≤ (ξg(b)(s))2 + (ηg(b)(s))2 + (ψg(b)(s))2 ≤ 1
and0≤ (ξ ̲g(b)(s))2 + (ηg̲(b)(s))2 + (ψg̲(b)(s))2 ≤ 1. As gʹ(b)

and g̲(b) are SFSs, so gʹ(b),g̲(b): SFS(S)⟶SFS(S) are
upper and lower approximation operators. 'erefore, the
pair g(b) � (g̲ (b), gʹ(b)) � 〈s, (ξg̲ (b)(s), ηg̲(b)(s),

ψ ̲g(b)(s)), (ξ gʹ(b)(s), η gʹ(b)(s),ψ gʹ(b))〉|s ∈ b} is called SF
rough set. For simplicity g(b) � (g̲ (b), gʹ(b)) �

〈s, (ξ ̲g (b)(s),ψg̲(b)(s)), (ξ gʹ(b)(s),ψ gʹ(b))〉|s ∈ b  is denoted
as g(b) � (g (b), g(b)) � ((ξ, η,ψ), (ξ, η,ψ)) known as SF
rough number (SFRN).

Example 1. Consider a fixed set S � s1, s2, s3, s4, s5 . Let
(S, g) be an SF approximation space and let g ∈ SFS(S ×

S) be a SF relation which is given in Table 1,
Consider the professional experts presented the opti-

mum decision normal object in the form of SFS, that is,

b � 〈s1, 0.8, 0.1, 0.4〉, 〈s2, 0.6, 0.3, 0.5〉, 〈s3, 0.9, 0.2, 0.3〉, 〈s4, 0.7, 0.3, 0.4〉, 〈s5, 0.4, 0.3, 0.5〉 . (8)

Now to calculate g(b) and g(b), we have
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ξg(b) s1(  � ∨
t∈S

ξg(s, t)∨ξb(t) ,

� (0.6∨0.8)∨(0.7∨0.6)∨(0.6∨0.9)

∨(0.7∨0.7)∨(0.6∨0.4) � 0.9.

ηg(b) s1(  � ∧
t∈S

ηg(s, t)∧ηb(t) 

� (0.3∧0.1)∧(0.6∧0.3)∧(0.5∧0.2)

∧(0.3∧0.3)∧(0.3∧0.3) � 0.1.

ψg(b) s1(  � ∧
t∈S

ψg(s, t)∧ψb(t) 

� (0.1∧0.4)∧(0.2∧0.5)∧(0.5∧0.3)∧(0.6∧0.4)

∧(0.1∧0.5) � 0.1.

(9)

So, (ξ1, η1,ψ1) � (ξg(b)(s1), ηg(b)(s1),ψg(b)(s1)) �

(0.9, 0.1, 0.1).
Likewise, we can calculate the others values of upper and

lower approximation:

ξ2, η2,ψ2  �(0.9, 0.1, 0.2), ξ3, η3,ψ3  � (0.9, 0.1, 0.2), ξ4, η4,ψ4  � (0.9, 0.1, 0.2),

ξ5, η5,ψ5  �(0.9, 0.1, 0.3),

ξ1 , η1 ,ψ1  �(0.4, 0.1, 0.7),

ξ2 , η2 ,ψ2  �(0.4, 0.1, 0.5), ξ3 , η3 ,ψ3  � (0.3, 0.1, 0.6), ξ4 , η4 ,ψ4  � (0.4, 0.1, 0.6), ξ5 , η5 ,ψ5  � (0.2, 0.1, 0.6),

g(b) � s1, 0.9, 0.1, 0.1( , s2, 0.9, 0.1, 0.2( , s3, 0.9, 0.1, 0.2( , s4, 09., 0.1, 0.2( , s5, 0.9, 0.1, 0.3(  ,

g(b) � s1, 0.4, 0.1, 0.7( , s2, 0.4, 0.1, 0.5( , s3, 0.3, 0.1, 0.6( , s4, 0.4, 0.1, 0.6( , s5, 0.2, 0.1, 0.6(  ,

g(b) � g (b), g(b)  �
s1, (0.4, 0.1, 0.7), (0.9, 0.1, 0.1), s2, (0.4, 0.1, 0.5), (0.9, 0.1, 0.2), s3, (0.3, 0.1, 0.6), (0.9, 0.1, 0.2),

s4, (0.4, 0.1, 0.6), s4, 09., 0.1, 0.2( , s5, (0.2, 0.1, 0.6), (0.9, 0.1, 0.3)
 .

(10)

Definition 9. Assume two SFRNs g(b1) � (g(b1), g(b1))

and g(b2) � (g(b2), g(b2)). 'en some basic operations on
them are given as follows:

(i) g(b1)⋃

g(b2) � (g(b1)⋃


g(b2)), (g(b2)⋃




g(b2))};
(ii) g(b1)∩  g(b2) � (g(b1)∩  g(b2)), (g(b1)

∩  g(b2))};
(iii) g(b1)⊕g(b2) � (g(b1)⊕ g(b2)), (g(b1)⊕g(b2)) ;
(iv) g(b1)⊕g(b2) � (g(b1)⊕ g(b2)), (g(b1)⊕g(b2)) ;
(v) g(b1)⊆g(b2) � (g(b1)⊆g(b2)) and (g(b1)

⊆g(b2));
(vi) λg(b1) � (λg(b1), λg(b1))for λ≥ 1;

(vii) (g(b1))
λ � ((g(b1))

λ, (g(b1))
λ) for λ≥ 1;

(viii) g(b1)
c � (g (b1)

c, g(b1)
c)where g (b1)

c and
g(b1)

cdenotes the complement of SF rough ap-
proximation operators g(b1) and g(b1), i.e.
g(b1)

c � (ψ, η, ξ) and g(b1)
c � (ψ, η, ξ)

(ix) g(b1) � g(b2)iffg(b1) � g(b2) and g(b1) � g(b2).

Definition 10. Let the SFRN g(b) � (g (b), g(b)) �

((ξ, η,ψ), (ξ, η,ψ)). 'en the score function defined as:

S(g(b)) �
1
6

4 + ξ +ξ − η − ψ − η − ψ , S(g(b)) ∈ [0, 1].

(11)

Table 1: SF relation from set from S× S.

g S1 S2 S3 S4 S5
S1 (0.6, 0.3, 0.1) (0.7, 0.6, 0.2) (0.6, 0.5, 0.5) (0.7, 0.3, 0.6) (0.6, 0.3, 0.1)
S2 (0.7, 0.6, 0.2) (0.9, 0.1, 0.3) (0.8, 0.4, 0.3) (0.5, 0.2, 0.4) (0.5, 0.6, 0.3)
S3 (0.8, 0.3, 0.4) (0.3, 0.5, 0.6) (0.4, 0.7, 0.5) (0.6, 0.7, 0.3) (0.7, 0.6, 0.2)
S4 (0.5, 0.2, 0.6) (0.6, 0.4, 0.2) (0.8, 0.4, 0.3) (0.9, 0.2, 0.3) (0.8, 0.2, 0.4)
S1 (0.9, 0.2, 0.3) (0.7, 0.2, 0.6) (0.2, 0.5, 0.3) (0.4, 0.1, 0.3) (0.6, 0.5, 0.4)
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'e accuracy of the SFRNg(b) � (g (b), g(b)) �

((ξ, η, ,ψ), (ξ, η,ψ)) for g(b) is defined as:

A(g(b)) �
1
2

ξ + ξ − ψ − ψ , A(g(b)) ∈ [− 1, 1]. (12)

Consider two SFRNs g(b1) � (g(b1), g(b1)) and
g(b2) � (g(b2), g(b2)), then

(i) If S(g(b1))> S(g(b2)), then g(b1)>R(b2),
(ii) If S(g(b1))< S(g(b2)), then g(b1)<R(b2),
(iii) If S(g(b1)) � S(g(b2)), then

(a) If A(g(b1))>A(g(b2)), then g(b1)>R(b2),
(b) If A(g(b1))<A(g(b2)), then g(b1)<R(b2),
(c) If A(g(b1)) � A(g(b2)), then g(b1) � g(b2).

Proposition 1. Assume for any two SFRNs
g(b1) � (g(b1), g(b1)) and g(b2) � (g(b2), g(b2)) with
respect to SF approximation space (S, g). ;en the following
properties are hold for SFRNs.

(i) ∼(∼g(b1)) � b1, where ∼g(b1) is the complement of
g(b1);

(ii) g(b1)⋃

g(b2) � g(b2)⋃


g(b1) and g(b1)∩ 

g(b2) � g(b2)∩  g(b1)

(iii) ∼(g(b1)⋃

g(b2)) � (∼g(b1))∩  (∼g(b2));

(iv) ∼(g(b1)∩  g(b2)) � (∼g(b1))⋃

(∼g(b2));

(v) If b1⊆b2, then g(b1)⊆g(b2);
(vi) g(b1⋃


b2)⊇g(b1)⋃


g(b2);

(vii) g(b1 ∩  b2)⊆g(b1)∩  g(b2).

4. Spherical Fuzzy Rough Averaging
Aggregation Operators

Aggregation operators have the ability to aggregative the
collective information of several professional experts into a
single value. Here we will put forward the hybrid study of
SFRS and averaging aggregation operators to get SFR av-
eraging aggregation operators and presented their desirable
properties.

4.1. Spherical Fuzzy Rough Weighted Averaging Aggregation
Operators. 'is subsection is devoted for the study of
SPRWA aggregation operators and presented the funda-
mental properties of SFRWA operators.

Definition 11. Let g(bi) � (g(bi), g(bi)) (i � 1, 2, . . . , n) be
the collection of SFRNs. Assume u � (u1, u2, . . . , un)T be the
weight vectors with 

n
i�1 ui � 1 and 0≤ ui ≤ 1. 'en the

SFRWA aggregation operators are given as follows:

SFRWA g b1( , g b2( , . . . , g bn( (  � ⊕ni�1ui g bi( ,⊕ni�1uig bi(  .

(13)

'e aggregation result for the above definition is de-
scribed in 'eorem 1.

Theorem 1. Consider g(bi) � (g(bi), g(bi))(i � 1, 2, . . . ,

n) be the collections of SFRNs. Consider the weight vectors
u � (u1, u2, . . . , un)Twith 

n
i�1 ui � 1 and 0≤ ui ≤ 1. ;en the

aggregation result for SFRWA operator is given as follows:

SFRWA g b1( , g b1( , . . . , g bn( (  � ⊕ni�1ui g bi( ,⊕ni�1uig bi(  

�

���������������

1 − 
n

i�1
1 − ξi

2
 

ui




, 
n

i�1
ηi

ui

, 
n

i�1
ψi

ui

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

���������������

1 − 
n

i�1
1 − ξi

2
 

ui




, 
n

i�1
ηi

ui , 
n

i�1
ψi

ui

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠.

(14)

Proof. To get the required proof, we will use mathematical
induction.

By using the operation law, we have

g b1( ⊕g b2(  � g b1( ⊕ g b2( , g b1( ⊕g b2(  

�

�������������

ξ1
2

+ ξ2
2

− ξ1
2
ξ2
2



, η1 η2 ,ψ1 ψ2
⎛⎝ ⎞⎠,

��������������

ξ1
2

+ ξ2
2

− ξ1
2
ξ2

2


, η1η2, ψ1ψ2 
⎧⎨

⎩

⎫⎬

⎭,

λg b1(  � λg b1( , λg b1(  

�

������������

1 − 1 − ξ1
2

 

λ




, η1
λ
η2
λ

,ψ1
λ
ψ1
λ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

������������

1 − 1 − ξ1
2

 
λ



, η1
λη2

λ
,ψ1

λψ2
λ⎛⎝ ⎞⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(15)
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Suppose n � 2, then

SFRWA g b1( , g b2( (  � ⊕2i�1ui g bi( ,⊕2i�1uig bi(  

�

���������������

1 − 
2

i�1
1 − ξi

2
 

ui




, 
2

i�1
ηi

ui

, 
2

i�1
ψi

ui⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

���������������

1 − 
2

i�1
1 − ξi

2
 

ui




, 
2

i�1
ηi

ui , 
2

i�1
ψi

ui
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(16)

'us, the result holds for n � 2. Now suppose that result is true for n � k

SFRWA g b1( , g b2( , . . . , g bk( (  �

���������������

1 − 
k

i�1
1 − ξi

2
 

ui




, 
k

i�1
ηi

ui

, 
k

i�1
ψi

ui⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

���������������

1 − 
k

i�1
1 − ξi

2
 

ui




, 
k

i�1
ηi

ui , 
k

i�1
ψi

ui
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(17)

Let us show that the result holds for n � k + 1, thus we
have

SFRWA g b1( , g b2( , . . . , g bk( ( , g bk+1(   � ⊕ki�1ui g bi(  ⊕ bk+1 g bk+1(   , ⊕ki�1uig bi(  ⊕ bk+1g bk+1( (   

�

���������������

1 − 
k+1

i�1
1 − ξi

2
 

ui




, 
k+1

i�1
ηi

ui

, 
k+1

i�1
ψi

ui⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

���������������

1 − 
k+1

i�1
1 − ξi

2
 

ui




, 
k+1

i�1
ηi

ui , 
k+1

i�1
ψi

ui
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(18)

'is show that the result is true for n � k + 1. 'erefore,
the result is hold for all n≥ 1.

Based on 'eorem 1, g(b) and g(b) are SFRNs.
'erefore, ⊕ni�1ui g(bi) and ⊕ni�1uig(bi) are also SFRNs.'us,
it is clear that SFRWA(g(b1), . . . , g(bn)) is also a SFRN
based on SF approximation space(S, g).

Some fundamental and desirable properties of SFRWA
operator are presented in 'eorem 2. □

Theorem 2. Let g(bi) � (g(bi), g(bi))(i � 1, 2, . . . , n) be
the collections of SFRNs with i � (i1, i2, . . . , in)T with


n
i�1 ui � 1 and 0≤ ui ≤ 1. ;en SFRWA operator satisfies the

following the properties.

(i) Idempotency: if g(bi) � g(L)for all i � 1, 2, . . . , n

whereg(L) � (g (L), g(L)) � ((r, s , t), (r , s,

t)), then SFRWA(g(b1), g(b2), . . . , g(bn)) � g(L).

(ii) Monotonicity: consider that g(Li) � (g(Li),

g(Li))(i � 1, 2, . . . , n) be another family of SFRVs
with g(Li)≤ g (bi) and g(Li)≤g(bi), then
SFRWA(g(L1), g(L2),

. . . , g(Ln))≤ SFRWA(g(b1), g(b2), . . . , g(bn)).

(iii) Boundedness: let(g(b))− � (mini g(bi), maxig(bi))

and (g(b))+ � (mini g(bi),maxig(bi)), then
(g(b))− ≤ SFRWA(g(b1), g(b2), . . . , g(bn))≤
(g(bi))

+.

Proof

(i) Idempotency: as g̲(bi) � g(L)(for all � 1, 2, . . . , n),
where g(L) � (g (L), g(L)) � ((r, s, t), (r, s,

t))

SFRWA g b1( , . . . , g bn( (  � ⊕ni�1ui g bi( ,⊕ni�1uig bi(  

�

���������������

1 − 
k

i�1
1 − ξi

2
 

ui




, 
k

i�1
ηi

ui

, 
k

i�1
ψi

ui⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

���������������

1 − 
k

i�1
1 − ξi

2
 

ui




, 
k

i�1
ηi

ui , 
k

i�1
ψi

ui
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(19)
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For all i, (bi) � g(L) � (g (L), g(L)) �

((r, s, t), (r, s, t)). 'erefore,

r, s, t( , (r, s, t)(  g, g

�

��������������

1 − 
k

i�1
1 − r

2
 

ui




, 
k

i�1
s
ui

, 
k

i�1
t
ui⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠,

��������������

1 − 
k

i�1
1 − r

2
 

ui




, 
k

i�1
s

ui , 
k

i�1
t
ui

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

� r, s, t( , (r, s, t)(  

� g (L), g(L)  � g(L).

(20)

Hence,

SFRWA g b1( , . . . , g bn( (  � g(L). (21)

(ii) Monotonicity: since g(Li) � (g(Li), g(Li)) �

((ri, si, ti), (ri, si, ti)) and g(bi) � (g(bi), g(Li))

and g(Li)≤ g(bi)and g(Li)≤g(bi)( for i � 1,

2, . . . , n),

ri ≤ ξi⟹1 − ξi

2
≤ 1 − ri

2
⟹

n

i�1
1 − ξi

2
 

ui

≤
n

i�1
1 − ri

2
 

ui

⟹1 − 
n

i�1
1 − ri

2
 

ui

≤ 1 − 
n

i�1
1 − ξi

2
 

ui

⟹

��������������

1 − 
n

i�1
1 − ri

2
 

ui




≤

���������������

1 − 
n

i�1
1 − ξi

2
 

ui




.

(22)

Further,

si ≤ ηi⟹si

ui

≤ ηi

ui

⟹
n

i�1
si

ui

≤
n

i�1
ηi

ui

. (23)

Next,

ti ≥ ψi⟹
n

i�1
ti

ui

≥
n

i�1
ψi

ui

. (24)

Similarly, we can show that

1 − 
n

i�1
1 − ri( 

ui ≤ 1 − 
n

i�1
1 − ξi 

ui
,



n

i�1
Si

ui ≤
n

i�1
ηi

ui ,



n

i�1
rij

ui ≥
n

i�1
ψij

ui .

(25)

'us, from the above calculation, it is cleared that

g Li( ≤ g bi(  an d g Li( ≤g bi( . (26)

'erefore,

SFRWA g L1( , g L2( , . . . , g Ln( ( 

≤ SFRWA g b1( , g b2( , . . . , g bn( ( .
(27)

(iii) Boundedness: proof is easy and follow from (i) and
(ii). □

4.2. Spherical Fuzzy Rough Ordered Weighted Averaging
Aggregation Operators. 'is subsection is devoted for the
study of SPROWA aggregation operators, which weigh the
ordered position of the argument. 'en we have presented
the fundamental properties of SFROWA operators.

Definition 12. Let g(bi) � (g(bi), g(bi)) (i � 1, 2, . . . , n) be
the collection of SFRNs. Assume u � (u1, u2, . . . , un)T be the
weight vectors with 

n
i�1 ui � 1and 0≤ ui ≤ 1. 'en the

SFROWA aggregation operators are given as follows:
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SFROWA g b1( , g b2( , . . . , g bn( ( 

� ⊕ni�1ui gδ bi( ,⊕ni�1uigδ bi(  .
(28)

'e aggregation result for the above definition is de-
scribed in 'eorem 3.

Theorem 3. Consider g(bi) � (g(bi), g(bi))(i � 1, 2,

. . . , n) be the collections of SFRNs. Consider the weight vectors
u � (u1, u2, . . . , un)Twith 

n
i�1 ui � 1 and 0≤ ui ≤ 1. ;en the

aggregation result for SFROWA operator given is as follows:

SFROWA g b1( , g b1( , . . . , g bn( (  � ⊕ni�1ui gδ bi( ,⊕ni�1uigδ bi(  

�

����������������

1 − 

n
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1 − ξδi
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ui
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n

i�1
ηδi

ui
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n

i�1
ψδi

ui
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⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

����������������

1 − 
n

i�1
1 − ξδi

2
 

ui




, 

n

i�1
ηδi

ui , 

n

i�1
ψδi

ui

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠,

(29)

wheregδ(bi) � (gδ (bi), gδ(bi)) denotes the largest value of
permutation from the collection g(bi).

Proof. Proof is easy and followed from 'eorem 1.
Some fundamental and desirable properties of SFROWA

operator are presented in 'eorem 4. □

Theorem 4. Let g(bi) � (g(bi), g(bi))(i � 1, 2, . . . , n) be
the collections of SFRNs with u � (u1, u2, . . . , un)Twith


n
i�1 ui � 1 and 0≤ ui ≤ 1. ;en SFROWA operator satisfies

the following the properties.

(i) Idempotency: if g(bi) � g(L)for all � 1, 2, . . . , n

where-
g(L) � (g (L), g(L)) � ((r, s, t), (r, s, t)).
;en SFROWA(g(b1), g(b2), . . . , g(bn)) � g(L).

(ii) Monotonicity: consider that g(Li) �

(g(Li), g(Li))(i � 1, 2, . . . , n) be another family of
SFRVs with g(Li)≤ g(bi) and g(Li)≤ g(bi), then

SFROWA g L1( , g L2( , . . . , g Ln( ( 

≤ SFROWA g b1( , g b2( , . . . , g bn( ( .
(30)

(iii) Boundedness: let (g(b))− � (min
i

g(bi), min
i

g(bi))

and(g(b))+ � (max
i

g(bi),max
i

g(bi)), then
(g(b))− ≤ SFROWA(g(b1), g(b2), . . . , g(bn))≤
(g(bi))

+.

Proof. Proofs directly followed from 'eorem 2. □

4.3. Spherical Fuzzy Rough Hybrid Averaging Aggregation
Operators. SFRHA operators are the significant general-
ization of SFRWA and SFROWA aggregation operators
because it has the ability to weight both the ordered position
and the argument itself. In this subsection, we will inves-
tigate the study of SPRHA aggregation operators and pre-
sented the fundamental properties of SFRHA aggregation
operators.

Definition 13. Let g(bi) � (g(bi), g(bi)) (i � 1, 2, . . . , n) be
the collection of SFRNs with weight vector
v � (v1, v2, . . . , vn)T such that 

n
i�1 vi � 1and

0≤ vi ≤ 1.Consider u � (u1, u2, . . . , un)T be the associated
weight vectors with 

n
i�1 ui � 1and 0≤ ui ≤ 1. 'en the

SFRHA aggregation operators are given as follows:

SFRHA g b1( , g b2( , . . . , g bn( ( 

� ⊕ni�1ui gδ bi( ,⊕ni�1ui gδ bi(  .
(31)

'e aggregation result for above definition is described
in 'eorem 3.

Theorem 5. Consider g(bi) � (g(bi), g(bi))(i � 1, 2, . . . ,

n) be the collections of SFRNs with weight vector
v � (v1, v2, . . . , vn)T such that 

n
i�1 vi � 1and 0≤ vi ≤ 1.

Consider u � (u1, u2, . . . , un)T be the associated weight vec-
tors with 

n
i�1 ui � 1 and 0≤ ui ≤ 1. ;en the aggregation

result for SFRHA operator given as:

SFRHA g b1( , g b1( , . . . , g bn( (  � ⊕ni�1ui gδ bi( ,⊕ni�1ui gδ bi(  

�

����������������

1 − 

n

i�1
1 − ξδi

2
⎛⎝ ⎞⎠

ui




, 

n

i�1
ηδi

ui

, 

n

i�1

ψδi

ui

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

����������������

1 − 
n

i�1
1 − ξδi

2
 

ui




, 

n

i�1
ηδi

ui , 

n

i�1

ψδi

ui

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

(32)
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where gδ(bi) � (gδ (bi), gδ(bi)) denotes the largest value of
permutation from the collection g(bi).

Proof. Proof is easy and followed from 'eorem 1.
Some fundamental and desirable properties of SFRHA

operator is presented in 'eorem 6. □

Theorem 6. Let g(bi) � (g(bi), g(bi))(i � 1, 2, . . . , n) be
the collections of SFRNs with weight vector
v � (v1, v2, . . . , vn)T such that 

n
i�1 vi � 1and 0≤ vi ≤ 1.

Consider u � (u1, u2, . . . , un)T be the associated weight vec-
tors with 

n
i�1 ui � 1 and 0≤ ui ≤ 1. ;en SFRHA operator

satisfies the following the properties.

(i) Idempotency: if g(bi) � g(L)for all � 1, 2, . . . , n

whereg(L) � (g (L), g(L)) � ((r, s, t), (r,

s, t)), then SFRHA(g(b1), g(b2), . . . ,

g(bn)) � g(L).

(ii) Monotonicity: consider that
g(Li) � (g(Li), g(Li))(i � 1, 2, . . . , n) be another
family of SFRVs with g(Li)≤ g(bi) and
g(Li)≤g(bi), then SFRHA(g(L1), g(L2), . . . ,

g(Ln))≤ SFRHA(g(b1), g(b2), . . . , g(bn)).

(iii) Boundedness: let (g(b))− � (min
i

g(bi), min
i

g(bi))

and(g(b))+ � (max
i

g(bi),max
i

g(bi)), then (g(b))
− ≤ SFRHA(g(b1), g(b2), . . . , g(bn))≤ (g(bi))

+.

Proof. Proofs directly followed from 'eorem 2. □

5. Decision Support Algorithm

Here, we have developed a framework for addressing un-
certainty in decision making (DM) under spherical fuzzy
rough information. Consider a DM problem with
ℷ1, ℷ2, . . . , ℷg  be a set of alternative and ℸ1,ℸ2, . . . ,ℸh be
a set of attributes with (z1, z2, . . . , zh)be the weight vector,
such that each ztϵ[0, 1], 

n
t�1 zt � 1. To test the reliability of

kth alternative ℷk under the tth attribute ℸt, let a set of
decision makers (DMs) D1, D2, . . . , Dj  and
(η1, η2, . . . , ηj) be DMs weights such that
ηtϵ[0, 1], 

j
t�1 ηt � 1. 'e expert evaluation matrix is de-

scribed as follows:

M � g
j
(b) 

g×h
�

g b11( , g b11(   g b12( , g b12(   · · · g b1h( , g b1h(  

g b21( , g b21(   g b22( , g b22(   · · · g b2h( , g b2h(  

g b31( , g b31(  

⋮

g bg1 , g bg1  

g b32( , g b32(  

⋮

g bg2 , g bg2  

· · ·

⋱

· · ·

g b3h( , g b3h(  

⋮

g bgh , g bgh  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (33)

where the pair (g(b), g(b)) � (ξg(b)(s), ηg(b)(s),ψg(b)(s)),

(ξg(b)(s), ηg(b)(s),ψg(b))} such that 0≤ (ξg(b)(s))2 +

(ηg(b)(s))2 + (ψg(b)(s))2 ≤ 1 and 0≤ (ξg(b)(s))2 +

(ηg(b)(s))2 + (ψg(b)(s))2 ≤ 1.

Step 1: construct the experts evaluation matricesMj as
follows:

M
j

�

g b
j
11 , g b

j
11   g b

j
12 , g b

j
12   · · · g b

j

1h , g b
j

1h  

g b
j
21 , g b

j
21   g b

j
22 , g b

j
22   · · · g b

j

2h , g b
j

2h  

g b
j
31 , g b

j
31  

⋮

g b
j
g1 , g b

j
g1  

g b
j
32 , g b

j
32  

⋮

g b
j
g2 , g b

j
g2  

· · ·

⋱

· · ·

g b
j

3h , g b
j

3h  

⋮

g b
j

gh , g b
j

gh  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (34)

where j represents the number of considered decision
makers/experts.
Step 2: evaluate normalized experts’ matricesNj that is

N
j

�
g(b), g(b) , for benefit attributes,

g (b)
c
, g(b)

c
 , for cost attributes.

⎧⎪⎨

⎪⎩

(35)
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Step 3: compute the collective performance of the
experts using spherical fuzzy rough weighted averaging
aggregation operator.

SFRWA g b1( , g b1( , . . . , g bn( (  � ⊕ni�1ui g bi( ,⊕ni�1uig bi(  

�

���������������

1 − 
n

i�1
1 − ξi

2
 

ui




, 
n

i�1
ηi

ui

, 
n

i�1
ψi

ui

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

���������������

1 − 
n

i�1
1 − ξi

2
 

ui




, 
n

i�1
ηi

ui , 
n

i�1
ψi

ui

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠.

(36)

Step 4: utilizing the list of proposed aggregation op-
erators, compute the aggregated spherical fuzzy rough
information.
Step 5: compute the score (according to Definition 10)
of aggregated alternatives.
Step 6: according to Definition 10, rank the alternatives
ℷ1, ℷ2, . . . , ℷg  and choose the optimal one that has the
higher value.

5.1. Numerical Application. A practical problem concerning
decisions to evaluate industrial control system (ICS) security
suppliers and select the appropriate one is considered as an
example in this section to validate the applicability and
practicality of the developed methodology.

5.2. Real Life Case Study. An ICS is a large class of auto-
mation systems used in manufacturing and industrial fa-
cilities to provide monitoring and control functions. Since
more industrial control systems are connected to infor-
mation technology (IT) networks and more IT technologies
are implemented to industrial control systems to improve
production efficiency, network security has emerged as a
significant challenge. An ICS actually is the aggregate of a
variety of system which is a vital part of national infra-
structure such as electric power, transportation, energy,
aviation and aerospace, and so on. To protect these systems
from attack while maintaining normal operations, ICS-
aware control is essential. More than 80% of vital infra-
structure relevant to people’s livelihoods must depend on
ICS to operate automatically. With the advancement of
technology, ICS is increasingly facing more new threats like
as viruses, Trojans, and hackers. 'e scale level of ICS se-
curity manufacturers is currently irregular. Many ICS se-
curity manufacturers also provide security systems that
protect individual parts or groups of components, such as
the industrial firewall, industrial gate, and so on. 'e dif-
ference between ICS and traditional information security is
that ICS needs more necessary security rather than the
impregnability of a single point of protection. To ensure
comprehensive safety protection for ICS, an integrated
safety system is required that can run throughout the entire
manufacturing life cycle. Industrial control network security

analysis and decision-making is an effective approach for
resolving the problem because it can predict risks and help to
make decisions before the fault of the industrial control
network system. 'erefore, it is essential for industrial en-
terprises to evaluate the entire capability of ICS security
providers from various perspectives in order to select the
best supplier finally. A company must now select one of four
ICS security suppliers λi (i �1, 2, 3, 4) for better coordi-
nation. In addition, the invited decision makers are divided
into three expert panels whose weighting vector is {0.19,
0.35, 0.46} decided to evaluate the comprehensive capabil-
ities of these four suppliers from the following four aspects:

(1) I1 is the safety prevention and control capacity.
(2) I2 is the product fit
(3) I3 is the abnormal response time
(4) I4 is future development capability of the enterprise

Expert Information � (E)1, (E)2, (E)3 , where each
expert panel is required to provide unified evaluation results
in the form of q-rung orthopair fuzzy rough values with
unknown expert and criteria weight information.

Step 1. 'e expert evaluation matrices under spherical
fuzzy rough values are enclosed in Tables 2–4:
Step 2. 'e normalized experts’ matrices Nj are
enclosed in Tables 5–7:
Step 3. 'e collective performance of the experts using
spherical fuzzy rough weighted averaging aggregation
operator is enclosed in Table 8:
Step 4. In this step, we calculate the aggregated pref-
erence values of each alternative in the revised expert
ideal matrix using the proposed list of aggregation
operators as follows:
Case 1. Using SFRWA aggregation operator: 'e ag-
gregated preference values of each alternative using
SFRWA aggregation operator are enclosed in Table 9:
Case 2. Using SFROWA aggregation operator: 'e
aggregated preference values of each alternative using
SFROWA aggregation operator is enclosed in Table 10:
Case 3. Using SFRHWA aggregation operator: 'e
aggregated preference values of each alternative using
SFRHWA aggregation operator is evaluated as follows:
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Table 2: Expert-1 information.

I1 I2 I3 I4

λ1
((0.84, 0.34, 0.40), (0.50, 0.80,

0.30))
((0.43, 0.39, 0.78), (0.46, 0.23,

0.51))
((0.67, 0.50, 0.30), (0.82, 0.12,

0.43))
((0.31, 0.21, 0.71), (0.55, 0.21,

0.63))

λ2
((0.60, 0.11, 0.53), (0.88, 0.23,

0.14))
((0.11, 0.21, 0.91), (0.48, 0.49,

0.56))
((0.72, 0.31, 0.41), (0.73, 0.13,

0.46))
((0.11, 0.25, 0.82), (0.19, 0.39,

0.88))

λ3
((0.79, 0.19, 0.39), (0.78, 0.38,

0.18))
((0.11, 0.21, 0.91), (0.48, 0.49,

0.56))
((0.71, 0.41, 0.13), (0.94, 0.04,

0.07))
((0.34, 0.25, 0.51), (0.39, 0.19,

0.61))

λ4
((0.63, 0.51, 0.13), (0.83, 0.39,

0.29))
((0.49, 0.33, 0.42), (0.29, 0.39,

0.83))
((0.61, 0.43, 0.45), (0.85,

0.25.0.15))
((0.49, 0.37, 0.59), (0.14, 0.23,

0.88))

Table 3: Expert-2 information.

I1 I2 I3 I4

λ1
((0.61, 0.15, 0.53), (0.59, 0.37,

0.49))
((0.16, 0.35, 0.62), (0.45, 0.43,

0.61))
((0.61, 0.35, 0.47), (0.42, 0.33,

0.49))
((0.55, 0.17, 0.74), (0.29, 0.39,

0.83))

λ2
((0.66, 0.11, 0.51), (0.51, 0.25,

0.34))
((0.43, 0.23, 0.77), (0.13, 0.41,

0.71))
((0.93, 0.08, 0.09), (0.91, 0.21,

0.11))
((0.02, 0.06, 0.99), (0.48, 0.49,

0.56))

λ3
((0.88, 0.09, 0.07), (0.82, 0.25,

0.11))
((0.05, 0.06, 0.89), (0.41, 0.31,

0.72))
((0.56, 0.21, 0.11), (0.59, 0.35,

0.23))
((0.43, 0.13, 0.61), (0.41, 0.13,

0.81))

λ4
((0.59, 0.32, 0.34), (0.71, 0.21,

0.31))
((0.24, 0.48, 0.51), (0.30, 0.50,

0.67))
((0.68, 0.53, 0.39), (0.78, 0.39,

0.43))
((0.34, 0.21, 0.61), (0.46, 0.23,

0.51))

Table 4: Expert-3 information.

I1 I2 I3 I4

λ1
((0.85, 0.25.0.15), (0.67, 0.50,

0.30))
((0.14, 0.23, 0.88), (0.42, 0.33,

0.49))
((0.78, 0.38, 0.18), (0.51, 0.48,

0.24))
((0.29, 0.39, 0.83), (0.34, 0.21,

0.61))

λ2
((0.94, 0.04, 0.07), (0.72, 0.31,

0.41))
((0.39, 0.19, 0.61), (0.11, 0.21,

0.91))
((0.63, 0.18, 0.35), (0.89, 0.06,

0.05))
((0.48, 0.49, 0.56), (0.43, 0.13,

0.61))

λ3
((0.73, 0.13, 0.46), (0.71, 0.41,

0.13))
((0.19, 0.39, 0.88), (0.23, 0.35,

0.59))
((0.87, 0.35, 0.18), (0.77, 0.23,

0.43))
((0.41, 0.13, 0.81), (0.02, 0.06,

0.99))

λ4
((0.82, 0.12, 0.43), (0.61, 0.43,

0.45))
((0.55, 0.21, 0.63), (0.43, 0.39,

0.78))
((0.53, 0.33, 0.47), (0.62, 0.35,

0.16))
((0.46, 0.23, 0.51), (0.55, 0.17,

0.74))

Table 5: Normalized Expert-1 information.

I1 I2 I3 I4

λ1
((0.84, 0.34, 0.40), (0.50, 0.80,

0.30))
((0.78, 0.39, 0.43), (0.51, 0.23,

0.46))
((0.67, 0.50, 0.30), (0.82, 0.12,

0.43))
((0.71, 0.21, 0.31), (0.63, 0.21,

0.55))

λ2
((0.60, 0.11, 0.53), (0.88, 0.23,

0.14))
((0.59, 0.35, 0.23), (0.81, 0.13,

0.41))
((0.72, 0.31, 0.41), (0.73, 0.13,

0.46))
((0.82, 0.25, 0.11), (0.88, 0.39,

0.19))

λ3
((0.79, 0.19, 0.39), (0.78, 0.38,

0.18))
((0.91, 0.21, 0.11), (0.56, 0.49,

0.48))
((0.71, 0.41, 0.13), (0.94, 0.04,

0.07))
((0.51, 0.25, 0.34), (0.61, 0.19,

0.39))

λ4
((0.63, 0.51, 0.13), (0.83, 0.39,

0.29))
((0.42, 0.33, 0.49), (0.83, 0.39,

0.29))
((0.61, 0.43, 0.45), (0.85,

0.25.0.15))
((0.59, 0.37, 0.49), (0.88, 0.23,

0.14))

Table 6: Normalized Expert-2 information.

I1 I2 I3 I4

λ1
((0.61, 0.15, 0.53), (0.59, 0.37,

0.49))
((0.62, 0.35, 0.16), (0.61, 0.43,

0.45))
((0.61, 0.35, 0.47), (0.42, 0.33,

0.49))
((0.74, 0.17, 0.55), (0.83, 0.39,

0.29))

λ2
((0.66, 0.11, 0.51), (0.51, 0.25,

0.34))
((0.77, 0.23, 0.43), (0.71, 0.41,

0.13))
((0.93, 0.08, 0.09), (0.91, 0.21,

0.11))
((0.99, 0.06, 0.02), (0.56, 0.49,

0.48))

λ3
((0.88, 0.09, 0.07), (0.82, 0.25,

0.11))
((0.89, 0.06, 0.05), (0.72, 0.31,

0.41))
((0.56, 0.17, 0.44), (0.59, 0.35,

0.23))
((0.61, 0.13, 0.43), (0.81, 0.13,

0.41))

λ4
((0.59, 0.32, 0.34), (0.71, 0.21,

0.31))
((0.51, 0.48, 0.24), (0.67, 0.50,

0.30))
((0.68, 0.53, 0.39), (0.78, 0.39,

0.43))
((0.61, 0.21, 0.34), (0.51, 0.23,

0.46))
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For SFRHWA operator, firstly the weighted collected
matrix is enclosed in Table 11:
Respected score value is evaluated in Table 12:
Ordered weighted metric by using score value is
enclosed in Table 13:
'e aggregated preference values of each alternative
using SFRHWA aggregation operator is evaluated in
Table 14:
Step 5. Score of aggregated overall preference values of
each alternative is enclosed in Table 15:
Step 6. Rank of the alternatives λk(k � 1, 2, . . . , 4) is
enclosed in Table 15:

From the above computational process, we concluded
that alternative λ3 is the best among others, and therefore it
is highly recommended.

'e ranking results of the alternative using proposed
aggregation operators are shown in Figure 1.

5.3. Reliability and Validity Test. In practice, selecting the
perfect option from the group’s decision matrices is a
challenging task. 'e approach for analyzing the reli-
ability and validity of DM systems was developed byWang
and Triantaphyllou [52]. 'e testing procedure is as
follows.

Test Step 1: the appropriate and effective MAGDM
technique is to present the appropriate choice without
modification and without changing the comparable
position of each decision criterion by substituting the
normalized element for the worse element of the
alternative.
Test Step 2: the transitive property must be satisfied
using an efficient and appropriate MAGDM approach.
Test Step 3: when a MAGDM problem is reduced to a
minor one. A combined alternative rating should be
similar to the original rating of the un-decomposed
problem. To rank the alternative, we utilize the same

Table 7: Normalized Expert-3 information.

I1 I2 I3 I4

λ1
((0.85, 0.25, 0.15), (0.67, 0.50,

0.30))
((0.88, 0.23, 0.14), (0.49, 0.33,

0.42))
((0.78, 0.38, 0.18), (0.51, 0.48,

0.24))
((0.83, 0.39, 0.29), (0.61, 0.21,

0.34))

λ2
((0.94, 0.04, 0.07), (0.72, 0.31,

0.41))
((0.61, 0.19, 0.39), (0.91, 0.21,

0.11))
((0.63, 0.18, 0.35), (0.89, 0.06,

0.05))
((0.56, 0.49, 0.48), (0.61, 0.13,

0.43))

λ3
((0.73, 0.13, 0.46), (0.71, 0.41,

0.13))
((0.88, 0.39, 0.19), (0.59, 0.35,

0.23))
((0.87, 0.35, 0.18), (0.77, 0.23,

0.43))
((0.81, 0.13, 0.41), (0.99, 0.06,

0.02))

λ4
((0.82, 0.12, 0.43), (0.61, 0.43,

0.45))
((0.63, 0.21, 0.55), (0.78, 0.39,

0.43))
((0.53, 0.33, 0.47), (0.62, 0.35,

0.16))
((0.51, 0.23, 0.46), (0.74, 0.17,

0.55))

Table 8: Experts collective matrix.

I1 I2 I3 I4

λ1
((0.78, 0.22, 0.31), (0.59, 0.52,

0.35))
((0.78, 0.31, 0.20), (0.54, 0.32,

0.44))
((0.69, 0.40, 0.29), (0.63, 0.27,

0.34))
((0.76, 0.23, 0.37), (0.71, 0.26,

0.37))

λ2
((0.80, 0.07, 0.27), (0.74, 0.26,

0.27))
((0.67, 0.24, 0.34), (0.82, 0.22,

0.17))
((0.81, 0.16, 0.22), (0.86, 0.11,

0.13))
((0.91, 0.18, 0.09), (0.72, 0.29,

0.34))

λ3
((0.81, 0.12, 0.22), (0.77, 0.33,

0.13))
((0.89, 0.16, 0.09), (0.63, 0.37,

0.35))
((0.74, 0.28, 0.22), (0.83, 0.15,

0.19))
((0.67, 0.15, 0.39), (0.91, 0.11,

0.14))

λ4
((0.70, 0.26, 0.27), (0.73, 0.32,

0.34))
((0.53, 0.32, 0.39), (0.76, 0.42,

0.33))
((0.61, 0.42, 0.43), (0.76, 0.32,

0.22))
((0.57, 0.25, 0.42), (0.75, 0.20,

0.33))

Table 9: Aggregated information using SFRWA.

λ1 ((0.7559, 0.2808, 0.2865), (0.6312, 0.3164, 0.3763))
λ2 ((0.8260, 0.1582, 0.1950), (0.7923, 0.2109, 0.2163))
λ3 ((0.7937, 0.1689, 0.2064), (0.8211, 0.2020, 0.1897))
λ4 ((0.5997, 0.3034, 0.3806), (0.7515, 0.2977, 0.3023))

Table 10: Aggregated information using SFROWA.

λ1 ((0.7584, 0.2793, 0.2805), (0.6151, 0.3439, 0.3738))
λ2 ((0.8164, 0.1549, 0.2073), (0.7907, 0.2159, 0.2167))
λ3 ((0.8107, 0.1663, 0.1859), (0.7956, 0.2315, 0.1956))
λ4 ((0.5984, 0.3064, 0.3795), (0.7519, 0.3067, 0.3023))
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methods adopted in the MAGDM problem on minor
issues.

'e MAGDM problem was scaled down to achieve the
best results, and the same suggested DM technique was
applied. If the same procedure is applied to a small problem,
the result will be the same as the MAGDM problem.

5.4. Validity Test (Proposed Numerical Illustration). 'e
collected expert information in proposed case study is
enclosed in Table 8:

Test Step 1: we replace the worst component of the
alternative by presenting the effective choice without a
modification and also without changing the

Table 11: Weighted collected matrix.

I1 I2 I3 I4

(0.4039, 0.7500, 0.8005,
0.2794, 0.8832, 0.8192)

(0.4729, 0.7289,
0.6476, 0.2981, 0.7352, 0.8012)

(0.3717, 0.8100, 0.7522, 0.3314,
0.7400, 0.7803)

(0.4842, 0.6341, 0.7348, 0.4421,
0.6586, 0.7348)

(0.4200, 0.6033, 0.7798, 0.3740,
0.7742, 0.7798)

(0.3855, 0.6802,
0.7473, 0.5101, 0.6644, 0.6198)

(0.4666, 0.6561, 0.7059, 0.5159,
0.6019, 0.6255)

(0.6486, 0.5877, 0.4740, 0.4502,
0.6813, 0.7157)

(0.4284, 0.6684, 0.7500, 0.3962,
0.8101, 0.6787)

(0.5879, 0.6097,
0.5220, 0.3572, 0.7646, 0.7532)

(0.4084, 0.7462, 0.7059, 0.4853,
0.6464, 0.6825)

(0.4107, 0.5554, 0.7468, 0.6486,
0.5045, 0.5436)

(0.3465, 0.7742, 0.7798,
0.3670, 0.8053, 0.8147)

(0.2919, 0.7289, 0.7755, 0.4556,
0.7352, 0.7413)

(0.3186, 0.8191, 0.8236, 0.4240,
0.7695, 0.7059)

(0.3386, 0.6507, 0.7642, 0.4755,
0.6072, 0.7092)

Table 12: Score of weighted matrix.

I1 I2 I3 I4

λ1 0.2384 0.3097 0.2701 0.3607
λ2 0.3095 0.3640 0.3988 0.4400
λ3 0.3196 0.3826 0.3521 0.4515
λ4 0.2566 0.2944 0.2708 0.3471

Table 13: Ordered weighted collected matrix.

I1 I2 I3 I4

(0.4842, 0.6341, 0.7348, 0.4421,
0.6586, 0.7348)

(0.4729, 0.7289, 0.6476, 0.2981,
0.7352, 0.8012)

(0.3717, 0.8100, 0.7522, 0.3314,
0.7400, 0.7803)

(0.4039, 0.7500, 0.8005, 0.2794,
0.8832, 0.8192)

(0.6486, 0.5877, 0.4740, 0.4502,
0.6813, 0.7157)

(0.4666, 0.6561, 0.7059, 0.5159,
0.6019, 0.6255)

(0.3855, 0.6802, 0.7473, 0.5101,
0.6644, 0.6198)

(0.4200, 0.6033, 0.7798, 0.3740,
0.7742, 0.7798)

(0.4107, 0.5554, 0.7468, 0.6486,
0.5045, 0.5436)

(0.5879, 0.6097, 0.5220, 0.3572,
0.7646, 0.7532)

(0.4084, 0.7462, 0.7059, 0.4853,
0.6464, 0.6825)

(0.4284, 0.6684, 0.7500, 0.3962,
0.8101, 0.6787)

(0.3386, 0.6507, 0.7642, 0.4755,
0.6072, 0.7092)

(0.2919, 0.7289, 0.7755, 0.4556,
0.7352, 0.7413)

(0.3186, 0.8191, 0.8236, 0.4240,
0.7695, 0.7059)

(0.3465, 0.7742, 0.7798, 0.3670,
0.8053, 0.8147)

Table 14: Aggregated information using SFRHWA.

λ1 ((0.4338, 0.7338, 0.7332), (0.3342, 0.7633, 0.7888))
λ2 ((0.4842, 0.6312, 0.6839), (0.4641, 0.6816, 0.6857))
λ3 ((0.4740, 0.6456, 0.6701), (0.4747, 0.6920, 0.6701))
λ4 ((0.3248, 0.7466, 0.7855), (0.4276, 0.7369, 0.7485))

Table 15: Ranking of alternative.

Proposed operators
Score values of alternatives

Ranking
λ1 λ2 λ3 λ4

SFRWA 0.6878 0.8063 0.8080 0.6779 λ3 > λ2 > λ1 > λ4
SFROWA 0.6827 0.8020 0.8045 0.6759 λ3 > λ2 > λ1 > λ4
SFRHWA 0.2915 0.3777 0.3785 0.2892 λ3 > λ2 > λ1 > λ4
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comparable position of each decision criterion. Ta-
ble 16 contains the most recent expert decision matrix
compilation.
Case 1: using SFRWA aggregation operator: the ag-
gregated preference values of each alternative in the
updated collected expert’s decision matrix using
SFRWA aggregation operator are enclosed in Table 17:
Case 2: using SFROWA aggregation operator: the ag-
gregated preference values of each alternative in the
updated collected expert’s decision matrix using
SFROWA aggregation operator are enclosed in
Table 18:

Rank of the alternatives λk(k � 1, 2, . . . , 4) is enclosed in
Table 19:

When we use Test Step 1, we get the same result λ3, which
is also the case when we use our established method.

'e ranking results of the alternative in the validity test
under proposed aggregation operators are shown in
Figure 2.

Test Step 2 and 3: Steps 2 and 3 of the validity tests is
now being tested to indicate that the presented method
is reliable and valid. To accomplish this, we first divided
the MAGDM problem into three smaller sub-prob-
lems, such as λ3, λ2, λ1 , λ2, λ1, λ4 , and λ3, λ1, λ4 .
We now implement our presented DM approach to the
smaller problems that have been converted and give us
the ranking of alternatives as: λ3≻λ2≻ λ, λ2≻ λ1≻λ4 and
λ3≻ λ1≻λ4 respectively. We analyzed that λ3≻λ2≻ λ1≻λ4
is the same as the standard decision-making approach
results when assigning a detailed ranking.

6. TOPSIS Methodology

We present a strategy for dealing with uncertainty in DM
under the presence of SFR information. Consider a DM
problem with ℷ1, ℷ2, . . . , ℷg  be a set of alternative and
ℸ1,ℸ2, . . . ,ℸh  be a set of attributes with (z1, z2, . . . , zh) be
the weight vector, such that each ztϵ[0, 1], 

n
t�1 zt � 1. To

test the reliability of kth alternative ℷk under the tth attribute
ℸt, let a set of decision makers (DMs) D1, D2, . . . , Dj and
(η1, η2, . . . , ηj) be DMs weights such that
ηtϵ[0, 1], 

j
t�1 ηt � 1. 'e expert evaluation matrix is de-

scribed as follows:

M � g
j
(b) g×h �

g b11( , g b11(   g b12( , g b12(   · · · g b1h( , g b1h(  

g b21( , g b21(   g b22( , g b22(   · · · g b2h( , g b2h(  

g b31( , g b31(  

⋮

g bg1 , g bg1  

g b32( , g b32(  

⋮

g bg2 , g bg2  

· · ·

⋱

· · ·

g b3h( , g b3h(  

⋮

g bgh , g bgh  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

where the pair (g(b), g(b)) � (ξg(b)(s), ηg(b)(s),ψg(b)(s)),

(ξg(b)(s), ηg(b)(s),ψg(b))} such that 0≤ (ξg(b)(s))2 +

(ηg(b)(s))2 + (ψg(b)(s))2 ≤ 1 and 0≤ (ξg(b)(s))2 +

(ηg(b)(s))2 + (ψg(b)(s))2 ≤ 1.

Step 1: construct the experts evaluation matrices Mj.

M
j

�

g b
j
11 , g b

j
11   g b

j
12 , g b

j
12   · · · g b

j

1h , g b
j

1h  

g b
j
21 , g b

j
21   g b

j
22 , g b

j
22   · · · g b

j

2h , g b
j

2h  

g b
j
31 , g b

j
31  

⋮

g b
j
g1 , g b

j
g1  

g b
j
32 , g b

j
32  

⋮

g b
j
g2 , g b

j
g2  

· · ·

⋱

· · ·

g b
j

3h , g b
j

3h  

⋮

g b
j

gh , g b
j

gh  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (38)
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1 2 3 4

Figure 1: Graphical representation of alternatives using EWA,
EOWA and EHWA operators.
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Table 16: Updated Expert’s collective matrix.

I1 I2 I3 I4

λ1
((0.78, 0.22, 0.31), (0.59, 0.52,

0.35))
((0.20, 0.31, 0.78), (0.44, 0.32,

0.54))
((0.69, 0.40, 0.29), (0.63, 0.27,

0.34))
((0.37, 0.23, 0.76), (0.37, 0.26,

0.71))

λ2
((0.80, 0.07, 0.27), (0.74, 0.26,

0.27))
((0.34, 0.24, 0.67), (0.17, 0.22,

0.82))
((0.81, 0.16, 0.22), (0.86, 0.11,

0.13))
((0.09, 0.18, 0.91), (0.34, 0.29,

0.72))

λ3
((0.22, 0.12, 0.81), (0.13, 0.33,

0.77))
((0.89, 0.16, 0.09), (0.63, 0.37,

0.35))
((0.22, 0.28, 0.74), (0.19, 0.15,

0.83))
((0.67, 0.15, 0.39), (0.91, 0.11,

0.14))

λ4
((0.27, 0.26, 0.70), (0.34, 0.32,

0.73))
((0.53, 0.32, 0.39), (0.76, 0.42,

0.33))
((0.43, 0.42, 0.61), (0.22, 0.32,

0.76))
((0.57, 0.25, 0.42), (0.75, 0.20,

0.33))

Table 17: Aggregated information using SFRWA.

λ1 ((0.5644, 0.2808, 0.5172), (0.5101, 0.3164, 0.4867))
λ2 ((0.6151, 0.1582, 0.4798), (0.6302, 0.2109, 0.4175))
λ3 ((0.6835, 0.1689, 0.3495), (0.7074, 0.2020, 0.3733))
λ4 ((0.4882, 0.3034, 0.4943), (0.6385, 0.2977, 0.4649))

Table 18: Aggregated information using SFROWA.

λ1 ((0.5465, 0.2793, 0.5392), (0.5422, 0.3439, 0.4644))
λ2 ((0.6165, 0.1549, 0.4779), (0.6176, 0.2159, 0.4321))
λ3 ((0.7474, 0.1663, 0.2724), (0.5809, 0.2315, 0.3918))
λ4 ((0.4862, 0.3064, 0.4928), (0.6391, 0.3067, 0.4649))

Table 19: Ranking of alternative.

Proposed operators
Score values of alternatives

Ranking
λ1 λ2 λ3 λ4

SFRWA-test 0.5789 0.6631 0.7162 0.5944 λ3 > λ2 > λ1 > λ4
SFROWA-test 0.5770 0.6589 0.7111 0.5924 λ3 > λ2 > λ1 > λ4

1 2 3 4

0.74

0.72

0.7

0.68

0.66

0.64

0.62

0.6

0.58

Figure 2: Graphical representation of alternatives using test EWA and EOWA operators.

16 Mathematical Problems in Engineering



where j represents the number of considered decision
makers/experts.
Step 2: evaluate normalized experts’ matricesNj that is

N
j

�
g(b), g(v) , for benefit attributes,

g (b)
c
, g(v)

c
 , for cost attributes.

⎧⎪⎨

⎪⎩

(39)

Step 3: compute the collective performance of the
experts using spherical fuzzy rough weighted averaging
aggregation operator.

SFRWA g b1( , g b1( , . . . , g bn( (  � ⊕ni�1ui g bi( ,⊕ni�1uig bi( , 

�

���������������

1 − 
n

i�1
1 − ξi

2
 

ui




, 
n

i�1
ηi

ui

, 
n

i�1
ψi

ui

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

���������������

1 − 
n

i�1
1 − ξi

2
 

ui




, 
n

i�1
ηi

ui , 
n

i�1
ψi

ui

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠.

(40)

Step 4: determine the positive and negative ideal so-
lutions I+ and I− for DM’s by using normalized de-
cision matrix are defined as follows:

I
+

� N
(j)

 :
i
max SC N

(l)
ij   , (j � 1, 2, . . . , n),

I
−

� N
(j)

 :
i
min SC N

(l)
ij   , (j � 1, 2, . . . , n).

(41)

Step 5: by using equation (14) the WGDM from
DM (N∗)(l) to P∗IS(l) and N∗IS(l), are computed as
follows:

DI S
+(l)
i �

1
4n



n

j�1
cj

μ
DM N∗( )(l) 

q

− μ
P∗IS(l) 

q




λ
+ ]DM N∗( )(l) 

q
− ]P∗IS(l)( 

q



λ

μDM N∗( )(l) 
q

− μP∗IS(l)( 
q




λ

+ ]DM N∗( )(l) 
q

− ]P∗IS(l)( 
q




λ
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/λ

DI S
− (l)
i �

1
4n



n

j�1
cj

μ
DM N∗( )(l) 

q

− μ
N∗IS(l) 

q




λ
+ ]DM N∗( )(l) 

q
− ]N∗IS(l)( 

q



λ

μDM N∗( )(l) 
q

− μN∗IS(l)( 
q




λ

+ ]DM N∗( )(l) 
q

− ]N∗IS(l)( 
q




λ
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/λ
(42)

and for each i � 1, 2, ..., m.

Step 6: the closeness indices denoted by ( _C
∗
Ii) are

calculated as follows:

_C
∗
Ii �

DIS− (l)
i

DIS+(l)
i + DIS− (l)

i

. (43)

In ascending order, rank themeasured ( _C
∗
Is) values; the

alternative with the greatest value is our best choice.

6.1. Numerical Illustration

Step 1: the expert evaluation matrices under spherical
fuzzy rough values are enclosed in Tables 2–4 which is
given in real life case study.
Step 2: the normalized experts’ matricesNj is enclosed
in Tables 5–7 which is given in real life case study.

Step 3: the collective performance of the experts using
spherical fuzzy rough weighted averaging aggregation
operator is enclosed in Table 20:
Step 4: the positive and negative ideal solutions I+ and
I− for DM’s by using normalized decision matrix are
evaluated in Table 21:
Step 5: by using equation (14) the WGDM from
DM (N∗)(l) to P∗IS(l) and N∗IS(l), are computed as
follows:

0.3327 0.2680 0.0302 0.3501

0.2256 0.3442 0.3490 0.0651
(44)

Step 6: the closeness indices denoted by ( _C
∗
Ii) are

calculated in Table 22.

Ranking results using SFR-TOPSIS methodology is
shown in Figure 3:
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7. Conclusion

'e application of the Internet in industry has broken down
the conventional industry’s heavily regulated industrial
environment, allowing for intelligent manufacturing. Uti-
lizing information technologies to improve conventional
industrial organizations has been an essential trend in in-
dustrial enterprise development. Simultaneously, it implies
that industrial firms would face new safety challenges. Since
enterprise is more closely linked to the national economy
and people’s livelihoods, the authorities and the public focus

primarily on ICS safety. In this paper, a new approach of
spherical fuzzy rough aggregation operators has been de-
veloped to successfully resolve the issue of ICS security
supplier selection. To demonstrate the applicability and
rationality of the suggested approach, different test based on
the aforementioned operators has been performed.
According to the experimental findings, using the proposed
technique to evaluate the ICS supplier is reasonable and
acceptable. An addition, the comparison analysis performed
by the developed models with the SFR-TOPSIS technique
validates the capability, superiority, and reliability of the
presented techniques.

In the future, we will aim to use the developed approach
in more domains, as well as investigate advanced theories
and algorithms in diverse fields.
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Table 20: Experts collective matrix.

I1 I2 I3 I4

λ1
((0.78, 0.22, 0.31), (0.59, 0.52,

0.35))
((0.78, 0.31, 0.20), (0.54, 0.32,

0.44))
((0.69, 0.40, 0.29), (0.63, 0.27,

0.34))
((0.76, 0.23, 0.37), (0.71, 0.26,

0.37))

λ2
((0.80, 0.07, 0.27), (0.74, 0.26,

0.27))
((0.67, 0.24, 0.34), (0.82, 0.22,

0.17))
((0.81, 0.16, 0.22), (0.86, 0.11,

0.13))
((0.91, 0.18, 0.09), (0.72, 0.29,

0.34))

λ3
((0.81, 0.12, 0.22), (0.77, 0.33,

0.13))
((0.89, 0.16, 0.09), (0.63, 0.37,

0.35))
((0.74, 0.28, 0.22), (0.83, 0.15,

0.19))
((0.67, 0.15, 0.39), (0.91, 0.11,

0.14))

λ4
((0.70, 0.26, 0.27), (0.73, 0.32,

0.34))
((0.53, 0.32, 0.39), (0.76, 0.42,

0.33))
((0.61, 0.42, 0.43), (0.76, 0.32,

0.22))
((0.57, 0.25, 0.42), (0.75, 0.20,

0.33))

Table 21: Ideal solution.

I+ I−

λ1 ((0.81, 0.12, 0.22), (0.77, 0.33, 0.13)) ((0.78, 0.22, 0.31), (0.59, 0.52, 0.35))
λ2 ((0.89, 0.16, 0.09), (0.63, 0.37, 0.35)) ((0.53, 0.32, 0.39), (0.76, 0.42, 0.33))
λ3 ((0.81, 0.16, 0.22), (0.86, 0.11, 0.13)) ((0.61, 0.42, 0.43), (0.76, 0.32, 0.22))
λ4 ((0.67, 0.15, 0.39), (0.91, 0.11, 0.14)) ((0.57, 0.25, 0.42), (0.75, 0.20, 0.33))

Table 22: Ranking results.

Score values of alternatives
Ranking

λ1 λ2 λ3 λ4
TOPSIS technique 0.5959 0.4378 0.0796 0.8432 λ3 < λ2 < λ1 < λ4

1 2 3 4
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Figure 3: Graphical representation of alternatives SFR-TOPSIS
method.
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