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'e global utilization of electric vehicles (EVs) is exponentially increasing due to the increased availability of cost-efficient EVs and
infrastructure managements for the EVs. In spite of the increasing usage of EVs, the problem of EV usage patterns’ analysis and
implementing sustainable infrastructure for the EV transportation is still under development. In addition to this, there is a
challenging problem of long waiting hours in traffic signals.'is study deals with these problems by proposing an architecture that
includes EV usage pattern analysis using nonnegative matrix factorization (NMF) technique and renewable solar-powered
wireless smart charging grid to effectively utilize or mitigate the long traffic signal waiting hours. 'e insights from the EV usage
patterns are analyzed and presented showing the importance of usage pattern analysis alongside to the presented architecture of
renewable solar-powered wireless EV-smart charging grid. 'ese implementations improvise the usage of the EVs and enhancing
the transportation experience, which in turn leads to the development of sustainable smart transportation.

1. Introduction

Intelligent transportation system (ITS) is one of the
emerging research topics due to its latest advancements and
technological developments [1–3]. 'ere are various aspects
in improvising ITS by means of implementing efficient
traffic management systems, congestion and collision con-
trol mechanism, sustainable transportation, etc., [4, 5].
Sustainability is one of the important factors that need to be
considered in this current scenario as it acts as the bridge
between the efficient usage of advanced technological de-
velopments and pollution-free environmental welfares
[6, 7]. 'is leads to the balanced usage of technology while
maintaining the eco-friendly environment for the welfare of
human life.

EVs [8] are a part of technological developments in ITS
that favors sustainable transportation [9–11], especially in

the field of ITS. Nowadays, the global usage of the EVs is
exponentially increasing as well as there is an increase in the
installation of various types of EV charging station/grids
[12]. Figure 1 shows the statistics of the worldwide usage of
the EVs from the year 2016 to 2020 [13]. According to these
statistics, there is an exponential increase in the worldwide
usage of the EVs in comparison to the previous years, i.e.,
only 1.2 million EVs in 2016, whereas nearly 6.8 million EVs
are in movement in 2020.

Despite these developments, the problem of longer
waiting time in traffic signals is also increasing in parallel
[14–16]. Many people including passengers and taxi drivers
are wasting time during long waiting hours in many traffic
signals. Considering this problem of long traffic signal
waiting hours, we propose the concept of utilizing those long
waiting time for powering up the EVs using the EV charging
grids installed underneath the roadway. To effectively
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implement the above, understanding the usage patterns of
the EVs is muchmore important so that efficient usage of EV
charging grid lines can be implemented accordingly.

Eliciting the usage patterns of the EVs helps to under-
stand the complete usage of the EV charging patterns, car
appliances usage, and number of passengers utilizing the
EVs. To elicit the patterns, we apply NMF, a dimensionality
reduction technique [17–20] on the EV usage dataset from
the smart-grid smart-city (SGSC) project [21, 22]. 'is
analysis helps to identify the EV usage patterns by the
passengers and business people involved in the SGSC
project. 'ese usage patterns not only help in understanding
various aspects such as understanding the charging patterns
and appliance usage patterns but also help for efficient
charging of the EVs from the grid installed underneath the
road during the long waiting hours in traffic signals.

'e rest of the paper is organized as follows. Section 2
contains related works. Section 3 contains the proposed
architecture that includes performing EV usage pattern
analysis using NMF technique and renewable solar-powered
wireless smart charging grid to effectively utilize or mitigate
the long traffic signal waiting hours. Section 4 contains EV
pattern elicitation that incorporates dataset description,
dataset representation, NMF for EV usage pattern and
analysis of EV usage data, and understanding the usage
patterns. Section 5 contains renewable solar-powered
wireless EV-smart charging in relation to the obtained EV
usage patterns during long traffic signal waiting time. Sec-
tion 6 concludes the study.

2. Related Works

As usage of the EVs is exponentially increasing, the importance
of eliciting the usage patterns is much needed for effective
implementation of various user benefitable traffic enhance-
ment measures. In one of the recent works, the authors pro-
posed themethodology to carry out the driving pattern analysis
in the Nordic region [23]. 'eir analysis is more likely to be

concentrated only on the driving patterns of the vehicles on the
weekdays and weekends in the Nordic region. In another
research work, the authors presented the study on the various
factors that affect the intention of the consumer to use the EVs
in Malaysia [24]. 'eir study is focused on providing the di-
rections for the various policymakers and automotive manu-
facturers. However, these existing works did not focus on
providing the architecture that facilitates the behavioral
analysis and sustainable characteristics of the EV usage. In
another research work, the authors presented the report on
impact analysis of EV integration on the component and
system levels [25]. 'eir work mainly focused on the EV load
distribution. However, in order to effectively perform the load
distribution, it is important to analyse the EV usage patterns.
Authors of another recent work investigated the impact of
ambient temperature to increase the EV energy consumption
during cold weather conditions [26]. 'e outcome of their
study reveals the efficient utilization of the EVs in the urban
regions based on the ambient temperature. However, irre-
spective of the ambient temperature, efficient infrastructure is
needed to encourage the usage of the EVs in the roadways for
balancing the sustainable environment. In another research
work, authors performed the sensitivity analysis on EVs and its
impact on low-voltage distribution systems [27]. In this work,
the authors analyzed the impacts of modeling of the load of
EVs influencing flows and voltages in the grid using trans-
former and line loadings, and highest sensitivities are observed
for the vehicles in the grid. However, people’s charging be-
havior plays minor roles. In order to overcome the above-
mentioned challenges, in this study, we performed the EV
usage pattern elicitation and analysis using one of the di-
mensionality reduction techniques such as NMF to thoroughly
analyze the EV usage patterns and people’s charging and other
behaviors and proposed the architecture of renewable solar-
powered wireless smart charging grid in relation to the usage
pattern analysis to improve the usage of EVs with the thought
of achieving the sustainable smart transportation.

3. Proposed Architecture

'e proposed architecture is shown in Figure 2, which includes
EV usage pattern analysis using NMF technique and renewable
solar-powered wireless smart charging grid to effectively utilize
or mitigate the long traffic signal waiting hours. 'e archi-
tecture begins with the data processing layer in which pre-
processing on the EV usage data is performed. Following the
data processing layer, matrix generation and normalization are
performed on the normalization layer. Once the matrix is
normalized, NMF is performed on the normalized data matrix
in the dimensionality reduction layer. Based on the NMF
outputs, the similar data points are clustered and different
patterns are analyzed in the pattern analysis layer.'e analyzed
patterns and the pattern insights are sent to the control hub of
the traffic control monitoring center to perform various traffic
control measures related to the EV based on the pattern
analysis. Application of the solar-powered wireless EV-smart
charging is elaborated in Figure 2.
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Figure 1: Worldwide usage of the EVs from 2016 to 2020.
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4. EV Pattern Elicitation

4.1. Dataset. 'e analysis is performed on the dataset which
is downloaded from the data repository in the Australian
Government’s Department of Industry, Science, Energy, and

Resources data archive. 'e dataset includes the usage of the
EV by households and businesses in which the EV usage data
is a part of the smart-grid smart-city (SGSC) project [21].
'is project involves the trial of 20 Mitsubishi iMiEV cars of
the 2010 model and the trips’ details including the usage of
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Figure 2: Proposed architecture of renewable EV charging during traffic signal waiting time based on EV usage patterns.
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car appliances such as headlamp, air-conditioning, and state
of the battery charge during beginning and end of each trip.
'e entire data were collected during the period of August
2011 to May 2013.

4.2. Dataset Representation. 'e EV dataset that records the
overall vehicle trips alongside to the record of trip duration,
state of charging during start and end of the trip, average
velocity, AC ‘On’ duration, headlamp ‘On’ duration, dis-
tance travelled from source to destination, and number of
passengers occupied on the EV. Let us consider X ∈ RM×N is
the data matrix consisting of the above records. 'is matrix
can be factorized into two lower-dimensional factor ma-
trices, say, U ∈ RM×r and V ∈ RN×r using nonnegative
matrix factorization technique. Equation (1) represents the
factorization of the matrix:

X ≈ UV
T

s.t, U≥ 0 andV≥ 0,
(1)

whereas,

U ∈ RM×r
, (1a)

V ∈ RN×r
. (1b)

4.3. Nonnegative Matrix Factorization (NMF). In this sce-
nario of EV data, trip-feature matrix X ∈ RM×N is the
representation of the count of the vehicle trips with respect
to the feature records. M is the total number of trips by the
EV, i.e., 26150 trips, and N is the feature records, i.e., 8
features ranging from trip duration, state of charging during
start and end of the trip, average velocity, AC ‘On’ duration,
headlamp ‘On’ duration, distance travelled from source to
destination, and number of passengers occupied by the
vehicle. Implementation of NMF on this dataset is much
useful in separately extracting the usage patterns by the
representation of lower-dimensional factor matrices U (trips
× patterns) and V (features × patterns). As defined in
Equations 1(a) and 1(b), “r” distinctive patterns can be
obtained from X matrix during the factorization process
based on the rank “r.” Optimization problem is formulated,
in Equation (2), which is the minimization problem with
Euclidean distance as the cost function:

minU≥0, V≥0 f(U, V) � X − UV
T2

. (2)

'e cost function as defined in Equation (2) is a non-
convex optimization problem that can be solved using
factorization algorithms such as alternating least squares
(ALS), multiplicative update (MU) rule, and stochastic
gradient descent. In this study, we used MU rule to solve
Equation (2). Due to the nonconvex nature, we must fix U to
learn V and fix V to learn U. 'e NMF starts with randomly
initialized values for the factor matrices U and V. 'e MU
rules will then be applied to update the factor matrices using
gradient calculation. 'e MU rules will take the following
form:

U←U − μU.∇Uf(U, V), (3a)

V←V − μV.∇Vf(U, V), (3b)

where μU and μV indicate the learning rates for updating U

and V, respectively, and ∇Uf(U, V) and ∇Vf(U, V) rep-
resent the gradients (derivatives) of f(U, V) with respect to
U and V, respectively.

By substituting the derivatives of U and V in Equations
3(a) and 3(b), the MU rules will become

U←U − μU. XV − UVV
T

 ,

V←V − μV. U
T
X − U

T
UV .

(4)

'e simplest form of update rule avoids subtractions by
defining the learning rates μU and μV as (U/UVVT) and
(VT/UTUV). In this form, the positive component and
negative component of the derivatives are used as numerator
and denominator, respectively:

U←U.
XV

UVV
T
,

V←V.
U

T
X

U
T
UV

.

(5)

4.4. Evaluation Measures. As Equation (2) is a nonconvex
optimization problem, the choice of “r” is not straightfor-
ward. 'erefore, the rank “r” in Equations 1(a) and 1(b) is
determined using the various evaluation measures such as
within-cluster dispersion and between-cluster dispersion.
Based on the abovementioned evaluation measures, optimal
rank is determined on the clusters and data points, whereas
cluster is nothing but patterns. 'e determination of within-
cluster dispersion and between-cluster dispersion is to prove
that the clusters are well separated from the other data points
and clusters as well as the data points are grouped together
within the cluster, respectively. Figure 3 shows the rank
evaluation measures for the EV dataset, whereas 1e6 in
Figure 3(b) represents the unit of Y-axis in exponential
notation (1e6 is equivalent of 1 million). Equations (6) and
(7) show the within-cluster dispersion and between-cluster
dispersion, respectively:where Bd and Wd are between-
cluster and within-cluster dispersions, S shows the set of
data, clusters are represented as g, and the set of points in the
cluster are represented as Cg. cg and cs are the center of
cluster and center of data, respectively, while ng indicates the
number of points in the cluster.

Wd � 
m

g�1


x∈Cg

x − cg  x − cg 
T
, (6)

Bd � 
m

g�1
ng cg − cS  cg − cS 

T
. (7)
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4.5. Analysis on EV Data. Elicitation of patterns from the
EV usage data helps to understand the EV usage patterns
based on the various features including trip duration, state of
charging during start and end of the trip, average velocity,
AC ‘On’ duration, headlamp ‘On’ duration, distance trav-
elled from source to destination, and number of passengers
occupied by the vehicle.

Figure 4 shows the heatmap representation of the EV
usage patterns based on various features. 'e heatmap
representation shows that there are 7 different patterns such
as P1 to P7, on the EV usage data with corresponding feature
representations. If we consider pattern P1, trip duration has
more dominance in comparison to other features. In pattern
P2, passenger occupancy is more. In pattern P3, there is no
dominance of trip duration and passenger occupancy;
however, distance travelled shows its dominance in P3
pattern. Likewise, pattern P4 shows average velocity is
dominating than other features. Pattern P5 is quite inter-
esting as this shows the dominance of AC Power-On du-
ration compared to others. Also, the state of charge during
the end of the trip is dominating in the P6 pattern while there
are no moderate changes in the P7 pattern.

'e above pattern analysis is very difficult to obtain from
the initial preanalysis of the dataset. Here comes the usage of
NMF technique in eliciting these latent pattern behaviors in
the EV usage dataset.

4.6. Understanding the EV Usage Patterns Based on Source/
Destination. As discussed in Section 4.5, it is important to
analysis the impact of the pattern variations based on the
source and destination of the EV. Figure 5 shows the pattern
analysis of the EV trips based on the origin (source) of the
trip. In Figure 5, X-axis shows the representation of cluster
IDs, which are the patterns ranging from P1 to P7, and Y-
axis shows the count of the total number of trips by the EV
based on the source such as home, work, or other locations.

'e analysis on Figure 5 shows that patterns P1 and P6
have the huge impact based on the EV trip origin, whereas
there is a moderate impact of patterns P3 and P7. On
considering pattern P6, it is very clear pattern P6 is more

concentrated to the other places as the origin of the trip such
that the usage of the EV from other places to either home or
work is preferred. 'is applies to almost all the patters
ranging from P1, P2, P3, and P7, whereas only moderate
usage of the EVs travelling from home to work or other
locations.

Figure 6 shows the pattern analysis of the EV trips based
on the trip end, i.e., destination. As discussed in Figure 5,
patterns P1 and P6 have more records of the EV usage based
on the trip destination. As similar to the trip source, the
usage of the EV from either home or work to other places is
more preferred. However, pattern P7 is quite different such
that the usage of vehicle is more preferred to home as the
destination irrespective of the trip origin which is either
from work or other places. From the analysis based on
Figure 4, Figure 5, and Figure 6, pattern P6 is more dom-
inating in which the EV users are travelling from home/work
to other places and vice versa. Also, on considering the
heatmap representation in Figure 4, pattern P6 is corre-
sponding to the high dominance of state of charge of EV
during trip end.

5. Renewable Solar-Powered Wireless EV
Charging during Traffic Signal Waiting Time

One of the problems identified from the analysis of the EV
usage patterns is that a greater number of EV travelling from
home/work to other places or vice versa are undergoing the
charging pattern during the end of most of the trips.'is can
be addressed using the proposed architecture in which the
solar-powered wireless EV charging grid installed under-
neath the roadway nearby to the traffic signal areas provides
the electric power needed to the EV during long traffic signal
waiting time. 'e power to the smart grid is obtained using
the solar panels installed alongside to the roadways. How-
ever, the length of the solar-powered wireless EV-smart
charging grid varies according to the respective landscape of
the regions.

Application of the solar-powered wireless EV-smart
charging is elaborated in Figure 7, which shows the sche-
matic representation of the implementation of the solar-
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powered wireless EV-smart charging grids installed un-
derneath the roadway of the traffic signal areas where there is
a long waiting time due to the heavy traffic scenarios. By this
implementation, it is very easy to tackle the problem of state
of charge of the EV during trip end from the dataset analyzed
in this study while utilizing the renewable resources as the
power source for efficiently powering up the smart grid
(Figure 7).

Alongside to the above analysis, additional dataset
[28, 29] consisting of 24 hours traffic signal volume data
recorded on traffic signals in various places of Victoria is
analyzed.

Traffic signal volume data are recorded by utilizing the
detectors and installed into the road surface, which is ac-
tivated once the vehicle passes over it. 'e detector sends the
pulse signal to the traffic signal in this manner. 'e analysis
is conducted on the quarter Q1 of 2020 traffic signal volume
count data to get the insights of traffic signal volume data.
Figure 8 shows the pie-chart representation of the total

traffic signal volume counts data recorded during the Q1 of
2020, i.e., traffic signal volume count data from January to
April 2020. 'e representation shows that nearly 20 billion
of vehicles crossed the traffic signals per month in the Q1 of
2020.

Figure 9 shows the graphical representation of traffic
signal volume counts recorded on the respective regions of
Victoria location, whereas BBN, Blackburn, BEN, Bendigo,
BRI, Brighton, CA1, Carlton 1, CA2, Carlton 2, CRN,
Croydon, DIO, Dialin/Dialout, DON, Doncaster, ES2,
Essendon 2, ESS, Essendon, FR2, Frankston 2, FRA,
Frankston, FT1, Footscray 1, FT2, Footscray 2, FT3, Foot-
scray 3, GE2, Geelong2, GEE, Geelong, GLI, Glen Iris, GR2,
Greensborough 2, GRE, Greensborough, KEW, Kew, MC1,
Melbourne City 1, MC2, Melbourne City 2, MC3, Mel-
bourne City 3, MEN, Mentone, MNP, Moonee Ponds, PR2,
Preston 2, PRS, Preston, SK1, St Kilda 1, SK2, St Kilda 2, SP2,
Springvale 2, SPR, Springvale, VI2, regional Victoria 2, VIC,
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regional Victoria, WV1, Waverly 1, and WV2, Waverly 2.
'is analysis shows that passengers are spending long times
on traffic signals based on the traffic signal volume records.
In Figure 9, except few regions of Victoria, almost all the
regions are experiencing a greater number of traffic signal
volumes, which leads to long waiting hours in the traffic
signals. 'e similar pattern can be expected on the EV usage
as the growth of the EV usage is exponentially increasing.
'e proposed architecture of implementation of the solar-
powered wireless EV-smart charging grids installed un-
derneath the roadway of the traffic signal areas can be ef-
ficiently utilized on these kinds of use cases based on the
historical traffic signal volume records alongside to the
initial analysis of the EV usage patterns. In this manner, the
proposed architecture improves urban planning. Initial
installation cost of the wireless solar-powered EV charging
smart grids may seem to be challenging; however, the overall
usage is very effective which leads to the efficient utilization
of the traffic signal waiting time and improves the passen-
ger’s or driver’s overall transportation experience.

6. Conclusion

'is study analyses the usage patterns of the EV trips that
were recorded on the smart-grid smart-city EV trial data
project which utilizes 20 EVs used by households and
businesses. Also, the importance of NMF to elicit the latent
usage patterns of the EV trips from the outputs of NMF is
discussed. Alongside to this pattern analysis, impact of the
pattern variations based on the EV’s source and destination is
analyzed to have a clear picture on how the variation in the
patterns impacting the overall mobility. In addition, we
proposed the architecture that explains the usage of imple-
menting solar-powered wireless EV-smart charging grid

installed underneath the roadway of the traffic signal area to
mitigate the problems in traffic signal long waiting time in
relation to the obtained usage patterns. 'is implementation
also helps to encourage the use of a greater number of EVs in
the near future which leads to the development of efficient
and sustainable transportation to the mankind.

Data Availability

'e datasets used in the study are openly available to the
readers. Readers can access EV usage data and traffic signal
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data and https://discover.data.vic.gov.au/dataset/traffic-
signal-volume-data.
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