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�e volatility of solar energy, geographic location, and weather factors continues to a�ect the stability of photovoltaic power
generation, reliable and accurate photovoltaic power prediction methods not only e�ectively reduce the operating cost of the
photovoltaic system but also provide reliable data support for the energy scheduling of the light storage microgrid, improve the
stability of the photovoltaic system, and provide important help for the optimization operation of the photovoltaic system.
�erefore, it is an important study to �nd reliable photovoltaic power prediction methods. In recent years, researchers have
improved the accuracy of photovoltaic power generation forecasting by using deep learning models. Compared with the tra-
ditional neural network, the Transformer model can better learn the relationship between weather features and has good stability
and applicability. �erefore, in this paper, the transformer model is used for predicting ultra-short-term photovoltaic power
generation, and the photovoltaic power generation data and weather data in Hebei are selected. In the experiment, the prediction
result of the transformer model was compared to the GRU and DNN models to show that the transformer model has better
predictive ability and stability. Experimental results demonstrated that the proposed Transformer model outperforms the GRU
model and DNNmodel by a di�erence of about 0.04 kW and 0.047 kW in theMSE value, and 22.0% and 29.1% of theMAPE error.
In addition, the public DC competition dataset is selected for control experiments to demonstrate the general applicability of the
transformer model for PV power prediction in di�erent regions.

1. Introduction

Traditional power production consumes fossil fuels such
as coal, oil, and natural gas and also leads to environ-
mental pollution in the form of carbon dioxide [1]. As a
simple, clean, and safe renewable energy, solar energy has
gradually become an important source of electricity
generation, which not only has the potential to produce
unlimited clean energy but also will certainly bring
considerable economic bene�ts and social bene�ts. In the
past two decades, the popularity of photovoltaic systems
in the energy market has continued to increase, and their
installed capacity has continued to grow. By July 2021,
China’s newly installed PV capacity was 17.94 million kW,
accounting for 26% of the total newly installed power
generation capacity [2]. In addition, China’s photovoltaic

power generation industry showed good momentum for
development momentum under policy support.

Since photovoltaic power generation mainly depends on
solar irradiance, temperature, humidity, and other weather
conditions and location conditions, it has strong uncertainty
and volatility. �e reliable photovoltaic power generation
forecast method will not only greatly reduce this uncertainty
and enhance the stability of system operation, but also
improve the reliability and penetration level of photovoltaic
systems, maintain power quality, and improve economic
feasibility. �erefore, an accurate photovoltaic power gen-
eration power forecast is a hot research topic.

Generally speaking, methods for ultra-short-term pho-
tovoltaic power generation power prediction are mainly
divided into physical methods and statistical methods [3]:
�e physical method relies on physical models established by
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detailed and accurate meteorological data, geographic in-
formation, and PV module parameters, but has poor anti-
interference ability and weak robustness. Statistical methods
are used to obtain patterns from a large number of weather
data and photovoltaic power output. Traditional statistical
methods are usually only suitable for digesting the linear
relationship between data. To accurately establish the
nonlinear relationship between data, artificial intelligence
algorithms are widely used by researchers in photovoltaic
power generation prediction. AI algorithms typically include
machine learning, deep learning, fuzzy logic, and heuristic
optimization. +ese methods have powerful feature ex-
traction and nonlinear mapping capabilities and good
compatibility, which can be flexibly embedded into various
[4]. However, the traditional machine learning methods
such as neural networks, have the disadvantages of difficult
training, complex algorithms, high computational cost, and
easy overfitting, which is not suitable for this study [5].

Compared with traditional neural networks, deep
learning breaks the limit on the number of layers. Deep
learning methods include deep neural networks(DNN),
recurrent neural networks(RNN), convolutional neural
networks (CNN), etc. [6], but these network models are
not good at establishing long-term dependencies between
data. Long Short-Term Memory (LSTM) and Gated Re-
current Unit (GRU) neural networks are two choices to
solve the problem, but they cannot analyze sample fea-
tures well.

+e Transformer model uses the self-attention
mechanism to replace circulating neural units, to over-
come the shortcomings of system performance degra-
dation caused by increased input length, low
computational efficiency caused by unreasonable input
order, and lack of feature extraction [7]. +e influence of
weather elements such as time, surface temperature, total
cloud cover, wind speed, and historical power generation
power on the current photovoltaic power generation is
considered in this paper. +ese sample features and
photovoltaic power are used as the input and output of the
model to train the transformer model for ultra-short-term
photovoltaic power generation power prediction.

In addition, the DNN model and the GRU model are
compared with the transformer model in the experiments,
and the comparison results reveal the effectiveness and
accuracy of the prediction result.

In summary, the main contribution is summarized as
follows: (1) A PV power forecasting method for ultra-short-
term photovoltaic power generation based on the trans-
former model is proposed, and the feasibility of the model is
verified by experiments; (2) the proposed forecasting
method based on transformer is verified with the data of
different seasons, respectively. Analyzing the MAE value,
MSE value, and MAPE value of the experimental results
shows that the proposed method can better mine the cor-
relation between weather features and has a strong gener-
alization ability. (3) A real dataset and a public dataset were
used for experiments, and the experimental results indicated
that the Transformer model can be applied to different data
sets and has good applicability.

2. Related Work

Machine learning methods have been widely used in PV
power generation. To improve prediction performance,
significant attention has lately been drawn to SVM and deep
learning algorithms [8]. For example, Pan et al. optimized
the support vector machine (SVM) by using the global
search ability of the ant colony algorithm (ACO), which
greatly improved the prediction accuracy of the model, but
the ant colony algorithm is easy to fall into local optimum
[9]. +e authors combined the Artificial Bee Colony (ABC)
and the Support Vector Machine (SVM) to form the ABC-
SVM algorithm. Compared with the traditional SVM al-
gorithm, it has fewer control parameters, stronger optimi-
zation ability, and higher prediction accuracy [10].

Li et al. proposed an LSTM-FC deep learning algorithm
composed of long-term short-term memory (LSTM) and
fully connected (FC) layers, to further study the time cor-
relation for improving the prediction accuracy [11]. +e
simulation results show that the LSTM-FC is superior to
SVM, gradient boosting decision tree (GBDT), generalized
regression neural network (GRNN), and feedforward neural
network (FFNN). However, they only considered the time
correlation and did not catch the correlation between the
weather data and the PV power generation. Yongsheng et al.
established the ELM-LSTM model [12] and used the multi-
model univariate extreme learning machine(ELM) to screen
out the influential factors with high correlation with pho-
tovoltaic power generation, so the hybrid model could better
capture the characteristics of information and improve the
applicability. +is model has the characteristics of fast
running speed and low complexity, but it has the defects of
easy overfitting and being easy affected by outliers.

Abdel Basset et al. used convolutional layers to redesign
the gates of the GRU to enable efficient extraction of position
and temporal characteristics in the PV power sequences [13].
Sivakumar et al. used ANN and regression modeling to
develop a time series model. In those models, machine
learning can help forecast solar energy output [14]. Oth-
erwise, the authors combined LSTM with CNN, wavelet
packet decomposition (WPD), wavelet transform (WT), and
other methods, and combined the particle swarm algorithm
(PSO) with the adaptive neuro-fuzzy inference system
(ANFIS) to improve the performance, stability, and reli-
ability of model extraction data features [15–18].+e authors
applied the optimal frequency domain decomposition
method to deep learning and used correlation to obtain the
optimal frequency cutoff points of the decomposition
components [19].

As shown in Table 1, the hybrid algorithm proposed by
researchers has different advantages and disadvantages. +e
purpose of the aforementioned methods is as follows: (1)
improve the ability of the model to analyze correlations
between sample features; (2) mprove the stability, reliability,
and applicability of the combined model by adjusting the
structure. Compared with these combined models, the
Transformer model used in this paper has a simpler
structure, can meet the experimental requirements, and has
good reliability and applicability.
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3. Proposed Method

+e whole structure of the method in this paper is shown in
Figure 1. Firstly, weather feature sequence and PV power
data are extracted from the original data, and then the data
are preprocessed.+en, the transformer model is utilized for
experiments to verify the advantages of the model under
different performance indicators. +is section mainly in-
troduces the self-attention mechanism and the Transformer
model. First, the input features and output of the model are
determined. +en the influence of the power generation at
the historical moment on the current generation power is
considered, and the input vector of the model is
x� (xt−t0,. . .,xt−1, xt, yt−1), where xt-t0 represents the weather
characteristics before t0, and yt-1 denotes the power gener-
ation power of the previous moment; +e output of the
model is y� yt, which is the PV power at the current mo-
ment. After training the weight of the transformer network,
the PV power at the t time period can be expressed as
yt � f(xt-t0,. . .,xt-1,xt,yt-1).

3.1. Self-Attention. Self-attention is an important part of
transformer, which is developed from the attention mech-
anism. +e attention mechanism is a mechanism that im-
itates the human brain to process information and enhances
a small part of useful information from a large amount of
information to improve the efficiency of the neural network.
With the development of deep learning, attention mecha-
nisms have been widely developed and applied in many
fields, such as computer vision, natural language processing,
and machine translation, which are usually composed of
decoder-encoder structures [20]. It can be regarded as a
combination function, which strengthens the influence of a
key input on the output by calculating the probability dis-
tribution of attention [21]. But the attention mechanism
ignores the internal features of the task, that is, the rela-
tionship between its internal elements [22].

Self-attention sometimes referred to as internal atten-
tion, is an attention mechanism that associates different
positions of a single sequence to compute a sequence rep-
resentation. It was first proposed by the Google machine
translation team in 2017, which used the query-key-value
(QKV) mode to propose an effective modeling method,
leading in the field of natural language processing [23]. +e
basic idea of the self-attention mechanism is to enhance

some parts of the input data while reducing others—the
motivation is that the network should pay more attention to
small but important parts of the data, and general archi-
tecture is shown in Figure 2[24].

+e specific calculation process of the self-attention
mechanism is as follows:

First, each value of the input vector sequence is mapped to
three different spaces, and then the matrix composed of the
query vector, key vector, and value vector is obtained as fol-
lows: Q＝[q1,. . ., qN], K＝[k1, . . ., kN], and V＝[v1,. . ., vN].

Next, as shown in the following equation, each query
vector qn is processed by the key-value pair attention
mechanism to obtain the output vector hn.

hn � 
N

j�1
softmax s kj, qn  vj, (1)

where n,j∈[1, N] is the position of the sequence of output
and input vectors, s(kj, qn) is the scoring function of
attention.

When the scaled dot product is used as the attention
scoring function, the output vector sequence is represented
as follows:

H � Vsoftmax
K

T
Q

���
Dk

 , (2)

where softmax(·) is a function normalized by column.
Besides, the self-attention model can be extended to the

multi-head attention (multi-head self-attention) model to
capture different interaction information in multiple dif-
ferent projection spaces, combining the multihead attention
model with a feedforward neural network, called the
transformer model.

3.2. PV Power Generation Prediction Based on Transformer.
As shown in Figure 3, the entire network architecture of the
transformer model consists of a self-attention mechanism
and a feedforward neural network (FNN), which are used for
self-learning and self-tuning parameters, respectively [25].
In this work, the input is composed of the current weather
characteristics and historical power generation data. +e
core idea is to calculate the relationship between each sample
in the input vector and all the other samples, utilize the
relationship to reflect the composition of different samples

Table 1: Advantages and disadvantages of several PV forecasting hybrid methods.

Advantages Disadvantages
ACO-
SVM It has good accuracy and good global search ability +e ant colony algorithm is easy to fall into the local optimum

ABC-SVM It has fewer control parameters, stronger
optimization ability, and higher prediction accuracy +ere are difficulties with the initialization parameter settings

LSTM-FC It further studies the time correlation for improving
the prediction accuracy

It only considers the time correlation and did not catch the correlation
between the weather data and the PV power generation.

ELM-
LSTM

+is model has the characteristics of fast running
speed and low complexity It has the defects of easy overfitting and easy to be affected by outliers.

PSO-
ANFISA

It improves the performance, stability, and reliability
of model extraction data features

+e algorithm needs to develop newmodels to improve the prediction
accuracy
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to a certain extent, and adjust the weight of each sample
through this relationship to obtain more global expressions.

+e Transformer model is essentially an encoder-de-
coder structure. As shown in Figure 3, the encoder on the left
contains multiheaded attention; on the right is the decoder,

which comprises two multiples of attention. A residual
connection and normalization module are also included in
each multiattention to prevent network degradation and
normalize each layer. During the training stage of the model,
the procedure is as follows:
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Step 1. +e input weather characteristics and historical
power generation data x� (xt−t0,. . .,xt−1,xt,yt−1) are encoded,
and then the position information is added to the encoder to
append the position to the input sample, which can be
expressed in the following equations:

PE pos, 2i(  � sin
pos

100002i/d , (3)

PE pos, 2i + 1(  � cos
pos

100002i/d , (4)

where pos is the position of weather features (or historical
energy yield) in the input vector, d represents the dimension
of input vector x, and i represents the dimension of weather
features (or historical energy yield) in the input vector.

Step 2. Multiattentional mechanism is applied in the en-
coder, as shown in Equations (5) and (6). Query vector Q,
key vector K, and value vector V are projected by h different
learned linear transformations, and the results of multiple
different attentional are splintered together to obtain the
output of multiattentional.+en is then residually connected
and normalized, and then the feedforward neural network
layer is calculated, as shown in Equation (7). Finally, the
processed samples are input into the decoder.

Multihead(Q, K, V) � concat head1, . . . , headh( W
O

, (5)

headi � Attention QW
Q
i , KW

K
i , VW

V
i , (6)

F(X) � max 0, XW1 + b1( W2 + b2, (7)

where WQ, WK, and WV are the linear transformation
matrix, b1, and b2 are the bias.

Step 3. +e information matrix in the decoder is processed
by multiple attention, feedforward neural network, and
normalization to get the output matrix.

Step 4. Finally, the relationship between input and output
yt � f(xt-t0,. . .,xt-1,xt,yt-1) is obtained by linear transformation
and softmax processing.

4. The Experiment Design

4.1. Experiment Process. +e flowchart of the proposed
method is shown in Figure 4. First, the meteorological data
and photovoltaic power generation data are extracted from
the historical data, and the data is preprocessed and divided
into the training set and test set. +e transformer model is
used in the experiment to train and predict the designed four
subsets. Comparing methods include the GRU model and
the DNN model.

4.2. Details of the Experimental Data. Two datasets are
chosen for experiments in this work. +e first dataset is the
real data collected from the upgraded household microgrid

in Hebei from March to November 2021 (referred to simply
as the “Household microgrid dataset”).

+e weather features include hours, north wind speed,
surface temperature, surface pressure, total cloud quan-
tity, total sunshine intensity, air temperature, relative
humidity, UV intensity, precipitation, snowfall, and dew
point temperature. 6600 data points were collected with a
one-hour temporal resolution. +e household microgrid
dataset is divided into three subsets based on different
seasons. Subset 1 contains data from March to May (the
spring), with a total of 2208 data points. +e data from
June to August (the summer) is included in subset 2,
amounting to 2208 data points. Subset 3 consists of au-
tumn data from September to November, with 2184 data
points in aggregate. +e second dataset is the public DC
competition data set, consisting of weather data and
photovoltaic power generation data in 2017 and 2018. +e
weather features include irradiance, wind speed, wind
direction, temperature, humidity, pressure, etc., with a 15-
minutes temporal resolution. In this dataset, the weather
features and the previous photovoltaic generation power
are used to input the experiment, and the current pho-
tovoltaic generation power is taken as the experiment
output.
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Figure 4: Experimental flow.
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+e details of the dataset and data partition in this paper
is shown in Figure 5 and Table 2.

4.3. Data Preprocessing. Due to abnormal instruments for
weather measurement, the experimental data has outliers or
missing values and needs to be preprocessed. First, outlier
handling is performed by setting it to zero when the number
of outliers is relatively small. Instead, the outlier is replaced
by the average value of the feature when the amount of
outlier data is large. After processing outliers and missing
values, data with too many large data values in the dataset
will affect the results of data analysis. To rescale different
features, minimum-maximum normalization is adopted to
map feature data to [0,1] as follows:

x
∗

�
x − min

max − min
. (8)

4.4. Experimental Settings. +e experiment in this paper is
implemented on a desktop with Intel Core I5-10400 CPU,
2.90GHZ frequency, RTX2060 GPU, and 16GB RAM. +e
methods are implemented in Python 3.6.5 with pycharm.
According to the size of the datasets, the model parameters
are set as shown in Table 3.

In this paper, mean absolute error (MAE) is mainly used
as a loss function, as shown in the following equation:

loss �


n
i�1 yi − xi




n
, (9)

where yi is the predicted value, and xi is the real value.

5. Case Study

5.1. Evaluation Criteria. Before analyzing the experimental
results, to reflect the experimental error directly, the dif-
ference between the predicted results and the real value is
calculated, and the Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Mean Squared
Error (MSE) are selected as the evaluation criteria. Smaller
errors indicate higher forecasting accuracy. As shown in
equations (10)–(12), MAE is a basic error evaluation index;
MSE will square the deviation, which will magnify the error
with a large deviation, which could evaluate the stability of a
model [26]. MAPE reflects the ratio between errors and real
values.

MAE �


n
i�1 yi − xi




n
, (10)

MAPE �
100%

n


n

i�1

yi − xi

xi




, (11)

MSE �


n
i�1 yi − xi( 

2

n
, (12)

where yi and xi are the predicted value and the real value,
respectively.

5.2. Experimental Results and Analysis. In the first experi-
ment, the household microgrid dataset is first trained and
tested to the transformer model, the experimental results are
shown in Table 4. To directly reflect the experimental results,
200 consecutive points are randomly selected as shown in
Figure 6. It can be seen from the figure that the trend of the
predicted values of the three models is consistent with the
real values, but the coincidence degree between the predicted
values and the real values of the transformer model is better
than that of the other two models. Besides, the MAE MSE
and MAPE of the Transformer model experimental results
are reduced by 43.5%, 19.4%, and 22.0% compared with the
GRU model, respectively. 51.1%, 38.9%, and 29.1%, re-
spectively, compared with the DNN model. +is indicates
that the transformer model achieved the best prediction
result among the three methods.

To explain the influence of weather factors on the
predicted results, transformer models are trained and tested
for the three subsets, respectively. +e experimental results
are shown in Table 5 and Figures 7–9, where the blue line is
the predicted value and the red line is the real value. It is
obvious that under the three subsets, the predicted value of
the transformermodel is basically consistent with the change
trend of the real value, and the three evaluation indexes are
all within the acceptable range, indicating that the trans-
former model has good applicability and reliability for
different seasons.

As seen from the experimental results, the experimental
results of subset 2 are superior to the other subsets under the
three evaluation criteria. More specifically, the MAE value of
subset 2 is 0.098, which is 0.089 smaller than subset 1 and
0.0441 smaller than subset 3. When under the MSE value,
subset 2 is 0.0696 smaller than subset 1 and 0.0281 smaller
than subset 3. +e MAPE value of dataset 2 is 0.2639 smaller
than subset 1 and 0.1749 smaller than subset 3. +e MAPE
values of the three subsets are too large, as the actual power
generation is too small at some time, so the error percentage
is too large. +e MAPE value of subset 2 is significantly
smaller than that of subsets 1 and 3, and the prediction effect
of subset 2 is the best when the photovoltaic power is small.
+e weather features of subsets 1, 2, and 3 are analyzed, as
shown in Figure 10. +e sunshine intensity and temperature
of subset 2 generally remain within a relatively gentle trend.
+e total sunshine intensity is greater, the temperature is
higher and more stable, and it can provide more stable
weather conditions for photovoltaic power generation.

Subsequently, the comparison methods such as the GRU
and DNN are tested on the three subsets. To demonstrate the
superiority of the proposed method, the experimental results
are compared with those of the proposed method, as shown
in Table 6. And 200 consecutive data points are randomly
selected for plotting in Figure 11. Figure 11 shows that the
predicted value of these methods has the same fluctuation
trend as the actual value. Among the three models, the
prediction results of the transformer model are closest to the
actual values. Compared with the GRUmodel, the MAE and
MSE values are reduced by 0.117 and 0.051 at the highest
level, and by 0.118 and 0.068 at the highest level on the basis
of the DNN model. It is indicated that when a variety of
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different weather features are used as input, the transformer
model can better learn the correlation between sample
features and make more accurate predictions than the GRU
model and the DNN model.

As shown in Figure 12, MAE values, MSE values, and
MAPE values of subsets 1, 2, and 3 under different models
are compared, and the reduction rates of different indicators
of the Transformer model compared with the other two
models are shown in Table 7. It is obvious that the exper-
imental results of the transformer model are the smallest of
all three groups of data in terms of all evaluation criteria. For
subsets 2, the prediction accuracy of the transformer model
increased dramatically. Compared with the GRU model, the
MAE MSE and MAPE values decreased by 54.4%, 55.9%,

and 55.9%, respectively. Compared with the DNN model,
the MAEMSE andMAPE values decreased by 54.6%, 65.4%,
and 41.7%, respectively. Above all, the transformer model
has better forecasting ability and more stable performance
compared with the other two methods in different seasons.

In addition, to verify the generalization capabilities of the
transformer model, the experiment is tested on the DC
competition dataset. In the experiment, the parameters of
the transformer model are adjusted by the size of the dataset.
In detail, the multiattention node number, batch size,
number of iterations and the step of sliding value are set as
20, 200, 100, and 1. Similar to the Household microgrid
dataset, the GRU and DNN models are chosen for com-
parsion. As depicted in Figure 13, the experimental results of
the three models are compared, and the 4000th to 4500th
data points are drawn.+ese results show that the forecasted
results of the three models are consistent with the changing
trend of the real values. However, it is obvious from Table 8
that the MAE, MSE, and MAPE values of the Transformer
model experimental results are 7.2%, 2.5%, and 60.5% lower
than those of the GRU model, and 16.4%, 5.9%, and 105.1%
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Figure 5: +e specific division of the dataset. (a) +e specific division of the project dataset. (b) Data division of subsets 1, 2, 3, and the DC
competition dataset.

Table 2: Dataset.

Training set Test set
Household microgrid dataset From 1 March to 31 August 2021 From 1 September to 30 November 2021
Subset 1 From 1 March to 15 April 2021 From 16 April to 31 May 2021
Subset 2 From 1 June to 15 July 2021 From 16 July to 31 August 2021
Subset 3 From 1 September to 15 October 2021 From 16 October to 30 November 2021
DC competition dataset From 1 January to 31 December 2017 From 1 January to 31 December 2018

Table 3: Model parameters.

Parameter Transformer GRU DNN

Model parameter setting

Number of nodes 40 40 40
Each batch sample size 32 32 32
+e number of iterations 100 100 100

+e steps of the sliding value 1 1 1

Model structure
Number of parameters of encoding layer (input layer) 571378 6600 560

Number of hidden layer parameters 20 410 410
Number of output layer parameters 11 11 11

Table 4: Experiment results of the household microgrid dataset.

+e evaluation index MAE MSE MAPE
Transformer 0.092 0.036 0.8079
GRU 0.132 0.043 0.9853
DNN 0.139 0.050 1.043
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lower than those of the DNNmodel. +at means, for the DC
competition dataset, the transformer model also achieved
better forecasting performance than the GRU and DNN
models.

In addition, the experimental results of the DC com-
petition dataset are compared with the household microgrid
dataset. It is obvious that under the Household microgrid
dataset, the predictive results of the three models are better

than those of the DC competition dataset. +e reason is that
the weather features in the DC competition dataset are fewer
than the household microgrid dataset, indicating that rea-
sonable and sufficient data selection and design are neces-
sary before training and prediction.

According to the above experimental results, the
transformer model has better forecasting ability than the
traditional neural network models.

Comparison of experimental results under different loss functions
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Figure 6: Comparison of Household microgrid dataset experiments in different model.

Table 5: Experiment results of subset 1,2,3.

+e evaluation index MAE MSE MAPE
Subset 1 0.187 0.1061 0.8321
Subset 2 0.098 0.0365 0.5682
Subset 3 0.1331 0.0646 0.7431
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Figure 7: Experimental results of subset 1.
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Figure 8: Experimental results of subset 2.
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Figure 9: Experimental results of subset 3.
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Figure 10: Sunshine strength and temperature comparison between subsets 1, 2, and 3.

Table 6: Different model experiment results.

Subset Model MAE MSE MAPE

Subset 1
Transformer 0.187 0.106 0.832

GRU 0.256 0.157 1.549
DNN 0.256 0.153 1.698

Subset 2
Transformer 0.098 0.036 0.568

GRU 0.215 0.081 1.289
DNN 0.216 0.104 0.974

Subset 3
Transformer 0.133 0.065 0.743

GRU 0.158 0.079 0.754
DNN 0.194 0.110 1.032

Mathematical Problems in Engineering 11



Transformer
GRU
DNN
True value

0

1

1.5

0.5

2

2.5
G

en
er

at
ed

 o
ut

pu
t (

KW
)

50 100 150 2000
Data points (pieces/hour)

(a)

Transformer
GRU
DNN
True value

0

0.5

1

1.5

2

G
en

er
at

ed
 o

ut
pu

t (
KW

)

50 100 150 2000
Data points (pieces/hour)

(b)

Transformer
GRU
DNN
True value

0

0.5

1

1.5

2

G
en

er
at

ed
 o

ut
pu

t (
KW

)

50 100 150 2000
Data points (pieces/hour)

(c)

Figure 11: Experimental results of subsets 1, 2, and 3 in different models (a) subset 1, (b) subset 2, (c) subset 3.
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Figure 12: Continued.
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Table 7: Different model experimental results error comparison (%).

Transformer vs GRU Transformer vs DNN
MAE MSE MAPE MAE MSE MAPE

Subset 1 −27.0 −32.7 −46.3 −27.0 −30.7 −51.0
Subset 2 −54.4 −55.5 −55.9 −54.6 −65.4 −41.7
Subset 3 −15.8 −17.7 −1.46 −31.4 −40.9 −28.0
(Note. If the value is negative, it means that the evaluation index of the experimental results decreases by the corresponding percentage.).
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Figure 13: Comparison of DC competition dataset experiments in different model.

Table 8: Experiment results of the DC competition dataset.

+e evaluation index MAE MSE MAPE
Transformer 1.085 4.042 0.332
GRU 1.163 4.142 0.533
DNN 1.263 4.281 0.681
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6. Conclusion

Based on the characteristics of photovoltaic power gener-
ation input features, a power prediction method for ultra-
short-term photovoltaic power generation based on the
Transformer model is proposed in this paper. According to
the experimental results of the household microgrid dataset
and DC competition dataset, it is obvious that the Trans-
former model has excellent generalization capabilities,
which can be well applied to different datasets. Besides,
compared with GRU and DNN models, the transformer
model can better adapt to the changes in weather charac-
teristics. In addition, through the analysis of the experi-
mental results of three subsets of the household microgrid
dataset, the model achieves better prediction results when
the sunshine intensity and temperature are relatively stable.
+e limitations of the proposed methods are that the high
computation cost of the training stage leads to huge resource
consumption.

In summary, the proposed ultra-short-term photovoltaic
power generation forecasting method based on the trans-
former model has better and more stable time series fore-
casting ability and generalization ability, which is of great
significance for practical engineering applications.
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