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�is study presents new techniques based on the arti
cial intelligence neural network with Levenberg-Marquardt Scheme with
backpropagation (ANN-LMS). �e boundary value problem BVP is obtained from the governing equations of the �ow model.
Along with ANN-LMS, the semianalytical method namely the optimal homotopy analysis method (OHAM) is used for validating
the results. ANN-LMS optimized the absolute error and increased the accuracy of the solution.�e e�ect of physical parameters is
discussed with the help of plots and tables.

1. Introduction

�e squeezing �ow has many important applications in
engineering, material science, and physics. �e squeezing
�ow has captured the imagination of many scientists and
engineers in recent years due to its frequent applications in
industrial and engineering such as stirring pistons, squeezed

lm and polymer manufacturing, sweet 
llers, hydraulic lift,
electric motors, �ow within the nozzle and nasogastric tube,
power transmission, modeling of chewing and eating, heart
values and blood vessels [1–6]. Stefan [7] initiated pio-
neering works in this direction. Verma [8] examined the
numerical solution of squeezing �ow between the two plates.
Sheikholeslami et al. [9] used the Adomian decomposition
method (ADM) to explore the unsteady squeezing �ow of
nano�uids. Gupta and Ray [10] investigated the unsteady
squeezing �ow of nano�uid between two parallel plates
numerically. �e squeezing �ow of a second-grade �uid was

investigated by Rajagopal and Gupta [11]. Hayat et al. [12]
investigated the squeezing �ow of second-grade material by
two disks. Hayat et al. [13] presented a three-dimensional
squeezing �ow between two parallel plates with mixed
convection. �e squeezing �ow of electrically conducting
�uids between parallel plates under the in�uence of a
magnetic 
eld has been studied extensively in recent years.
Siddiqui et al. [14] adopted the homotopy perturbation
method and investigated the magnetic e�ect of squeezing
viscous magnetohydrodynamics (MHD) �uid �ow. Ahmed
et al. [15] investigated MHD squeezing �ow of Casson �uid
between parallel disks. For the solutions of the system of
ODEs/PDEs, both the analytical and numerical methods are
in practice. �e numerical methods required linearization
and discretization techniques which distress the accuracy.
�e AI-based numerical technique was frequently used in
di�erent applications to solve di�erential equations [16–18],
but there is a need to explore and exploit the stochastic
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numerical technique based on intelligent computing para-
digms to solve and analyze the problems given in Equations
(14)–(16). A few recently published studies of paramount
importance contain mathematical model solution in non-
linear optics [19], atomic physics [20], and 
nancial models
[21, 22], eye model [23], COVID-19 virus spread models
[24, 25], entropy generation system [26, 27], and �ow
problems [28–40]. According to our literature research, to
examine the SFNM between two circular plates, we apply the
AI technique through the ANN-LMS to realize nonlinear
backpropagation of neural network to Equations (14)–(16).
�is outlines the creative features of the emerging com-
puting model as follows:

(1) A unique two-layer feed-forward backpropagation of
ANN-LMS is proposed for the analysis of squeezed
�ow between two circular plates

(2) �e MSE-based merit function is planned for the
realization of ANN-LMS for estimated modeling of
squeezed �ow between two circular plates by means
of the PF, TT, FT, and VL reference dataset

(3) �e accurate, consistent, and convergent PR of the
constructed proposal ANN-LMS is authenticated for
the problem while the solver values are further au-
thorized by the error analysis and EH and RG studies.

2. Flow Analysis

Let us assume an incompressible squeezing �ow between two
circular disks with separation 2s(t). �e plane for the men-
tioned �ow is suggested as (z̃, r̃) plane, and the plate
movements are about the central axis z̃ � 0, and the axi-
symmetric is about r̃ � 0. �e plate movement is about the z
axis which is symmetric and nonrotating as shown in Figure 1.

�e velocity 
eld is given as V � (u(r, z, t), 0, w(r, z, t)).
�e governing equations are given as follows:

1
r
zr(ru) + zzw � 0,

ztu + uzru + wzzu( ) � −
zrp

ρ
+ ] ∇2u −

u

r2
( ),

ztw + uzrw + wzzw( ) � −
zzp

ρ
+ ] ∇2w( ).

(1)

With BCs,

u � 0, w � vc z � h,
zzu � 0, w � 0 z � 0,

(2)

where vc is the velocity of circular plates and ∇ 2 as dell
operator also using the nondimensional variable η � z/h and
u � −rvc/2h(t)f′(η), w � vcf(η). �e governing equa-
tions becomes

f‴′ + R(η − f)f‴ + 2f″ − Qf″ � 0,

R �
hε
v
, Q �

h2

vc

dε
dt
,

f(1) � 1, f′(1) � 0,

f(0) � 0, f″(0) � 0.

(3)

3. Numerical Results and Explanation

�is section provides a concise explanation of the approach
used, and the results of the numerical simulations received
through the backpropagated supervised network ANN-LMS
designed for the �uid �ow system represented via 14–15
based on SFNM. �e six steps of the proposed method-
ology’s step-by-step process �ow are shown in Figure 2. �e
201 input grid between the closed intervals of 0 and 1 is used
to produce the proposal dataset for ANN-LMS for the
problem. Presently, 10% of the data are used for TT, 10% for
VL, and 80% of the data are used at random for TR. Neural
network-based supervised learning is constructed after
constructing the data through Equations (14)–(15). TR data
are utilized to formulate the estimated solution based on an
MSE-based merit function. �is article presents numerical
experimentation for the ANN-LMM for SFNM between two
plates that are circular. For one scenario, in the g, the design
of the ANN-LMM is used as shown in Tables 1 and 2. �e
“nts” method of Matlab’s neural network toolbox is used to
create ANN-LMS, which has a two-layer feed-forward
network structure with backpropagation. Figure 3 depicts
the structural layout for the designed network, which uses
the concept of the hidden layer through activation function
and appropriated adjustments of weights.

ε(t)

ε(t)

wz

wr

α

h(
t)

(r, z) = (0, 0)

Figure 1: Flow diagram.
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In Figures 4–7, for the scenario one case one of f and f′
results of ANN-LMS, error histogram, and FT are shown,
respectively. In Figure 8, the RG analysis of SFNM between
two plates that are circular is shown. For case one scenario

one, there is a convergence of MSE for TR, VL, and TT
progression in Figures 4(a) and 4(b). �is scenario involves
one SFNM between two circular plates. In Tables 3 and 4, for
the scenario one case, one di�erent numerical values are

ε(t)

ε(t)

wz

wr

α

h(
t)

(r, z) = (0, 0)
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Figure 2: (1–6): Operational �ow between two circular plates for the proposed ANN-LMS for SFNM.
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Figure 4: Case one of scenario one SFNM between two circular plates, PF result of MSE for proposed ANN-LMS.

Table 1: Values of physical quantities a�ecting f for the �uid �ow problem under consideration.

Physical quantities R Scenarios Cases
1

1
1

3 2
5 3

Table 2: Values of physical quantities e�ecting f′ for the �uid �ow problem under consideration.

Physical quantities R Scenarios Cases
1

1
1

3 2
5 3
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presented. We noticed that at epochs 170, the greatest
network PF are 1.176e− 9, and at epoch 19 1.2e− 9, respec-
tively. In Figures 5(a) and 5(b), the back-gradient

propagation’s and step size Mu are approximately (at the
epochs 25 and at the epochs 170) and (10−10, 10−9), re-
spectively. �e ANN-LMS′ PF-generated results are
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Figure 6: EH representation against 
rst scenario (case1).
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Figure 5: �e outcome of the intended ANN-state LMS’s transition dynamic for the 
rst scenario (case1).
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examined along with a numerical recommendation from the
OHAM technique against Scenario 1 (
rst case). Figures 7(a)
and 7(b) show the outcomes in terms of solution and errors.
Step size is 0.01 for the domain values lies between 0 and 1.
Figure 8 re�ects the outcomes of Regression for the scenario
1 of the �ow problem. Figures 6(a) and 6(b) corresponding

to scenario 1 (
rst case) represent the error analysis through
EH. �e maximum error that the intended ANN-LMS can
accomplish for TT, TR, and VL data is less than 1 e4 and 4 e4
for case one scenario one of the system model. R values for
correlations are always close to one. Tables 3 and 4 show the
results of the �uid �ow system ANN-LMS approach for

Table 3: Results for scenario 1 of the �ow problem for f.

Case
MSE

Performance Gradient (E) Mu (E) Epoch Time
Training Validation Testing

1 3.85913E− 10 8.05434E− 10 4.08718E− 10 8.61E− 11 9.81–8 1–9 270 0
2 1.744E− 9 6.13895E− 9 3.05430E− 8 1.74E− 9 9.99–8 1–8 245 0
3 4.408E− 10 6.56798E− 10 7.06632E− 10 4.41E− 10 9.98–8 1–9 241 0

Table 4: Results for scenario 1 of the �ow problem f ’.

Case
MSE

Performance Gradient (E) Mu Epoch Time
Training Validation Testing

1 8.60809E− 11 1.17599E− 9 4.08718E− 10 8.61E− 11 9.88–8 1E− 9 278 0
2 8.3733E− 9 5.74998E− 9 1.34309E− 8 5.81E− 12 1.00–8 1E− 11 220 0
3 7.891E− 11 5.34501E− 11 9.06819E− 11 4.789E− 11 1.43–8 1E− 9 1000 3
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Figure 7: FTs representation against 
rst scenario (case1).
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resolving Case 1 and scenario one of the SFNM. For sce-
narios one and case one of SFNM between two circular
plates, the PF of ANN-LMS is approximately 10−11, 10−12,
and 10−9 to 10−10. �ese results show that ANN-LMS can
solve SFNMbetween two circular plates with a reliable PF. In
light of this, scenario one’s velocity pro
les and ANN-LMS
results are calculated. Figures 9–10 are constructed for the
outcomes f(ζ) and f(ζ). As a consequence of the ANN-
coordination LMMs with standard OHAM solutions in Case
1 and Scenario 1, the absolute error from orientation

solutions has been determined, and the results are displayed
in Figures 9(b) and 10(b) for scenario one case one. Absolute
errors for the f(ζ) and f(ζ) are 10−4 to 10−7, 10 −3 to 10−05,
10−5 to 10−6, and 10−3 to 10−6, 10−4 to 10−6, 10−4 to 10−5,
respectively. �e absoulte errors ofscenario 1 for f and f' are
10-3 to 10-6, 10-4 to 10-6, 10-4 to 10-5, and 10-4 to 10-7, 10
-3 to 10-05 , 10-5 to 10-6, respectively. As the plates come
together, the pressure between them is greater than the
pressure in the center, and vice versa. �e pressure di�er-
ential for various values of R is shown in Figure.
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Figure 8: FTs representation against 
rst scenario (case1).
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4. Concluding Remarks

Intelligence-based intellectual computing backpropagation
provides an alternative environment for the solution of �uid
�ow problem under consideration in terms of performance
plots, regression metrics, gradient analysis, and error dy-
namics through histograms consisting of a variety of bins.
�e followings are the main results of the study:

(1) As the plates become closer to one another, the
pressure between them rises more than the pressure
in the centre and vice versa

(2) Velocity pro
le depicts the opposite trends corre-
sponding to positive and negative values of Reynolds
number

(3) �e selction of dataset such as 80% fortraining, 10%
for validation and 10% for testing proves that our
method is stable, relaiable, and fast convergent than
the other methods

(4) Pressure rises in the direction towards the middle
region between two plates when both plates get
closer to each other.

(5) By contrasting the results with a numerical method,
the method’s validity is established (Runge–Kutta
method having order 4)

(6) �e initial guess and linearization methods are not
necessary for ANN-LMS

(7) Due to its ability to reduce accuracy and absolute
error, ANN-LMS performs better than other
approaches

Future direction: the authors are motivated to work on
new unsupervised learning algorithms after successful
completion of work representing supervised learning
[34–36].

Nomenclature

ANNs: Arti
cial neural network
SF: Squeezing �ow
υ: Kinematic viscosity
NN: Neural network

BL: Boundary layer
k: �ermal conductive
BVP: Boundary value problem
Pr: Prandtl number
Eh: Epoch MSE mean square error
ρ: Fluid density
μ: Dynamic viscosity
PF: Performance
TT: Testing
TR: Training
VD: Validation
EB: Error bin
EH: Histogram
GD: Gradient
RG: Regression
AE: Absolute error
Ep: Epoch
MSE: Mean square error.
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