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�e damped Kawahara equation (KE) is nonintegrable equation and does not have analytical integration. In this work, the
powerful numerical method, which is the reduce di�erential transformation method (RDTM), is devoted to solve the damped KE.
�e accuracy of the method is proved. �e results are compared with the di�erent numerical methods. �e numerical solution is
axi-symmetric wave and shows the e�ect of damping term successfully. We con�rmed that the RDTM is useful for solving
nonintegrable equations.

1. Introduction

�e partial deferential equations (PDEs) describe several
important applications in many branches of science such as
physics, engineering, medicine, and �uid dynamic [1–4].
Mathematicians put forth high e�orts to develop methods
that are able to �nd solutions of these PDEs [5–8]. Usually,
as the PDEs describe a problem very well with taking all
issues in account, there are some terms appear and make the
PDEs are not solvable. �erefore, the mathematicians im-
proved the computational methods to �nd di�erent types of
solutions such as exact, approximate, equivalent, numerical,
and analytical.

One of the well-known PDEs is Korteweg-de Vries
(KdV) equation and its family. �e �fth order of KDV is also
known as Kawahara equation (KE). T. Ono and K. Ono [9]
were the �rst to discover this type of equation during the
study of magneto-acoustic waves in a cool collision-free
plasma. Kawahara numerically investigated this type of
equation and discovered that it has both oscillatory and
monotone solitary wave solutions [10]. In a �uid medium
like shallow water, the equation describes the propagation of
soliton waves. �e KE is governed by the following equation
[11]:

zta + αazxa + βz3xa − cz5xa � 0, (1)

where α, β, and c are constants. �e KE has been solved
analytically and numerically inmany researches [12–14].�e
obtained solutions are N-soliton solutions [15], various
solitons solutions [16], soliton and breathers [17], and dif-
ferent types of N-soliton and lump solutions [18]. �e
numerical solutions are obtained by using modi�ed varia-
tional iteration algorithm-I and II [19, 20], di�erential
quadrature [21], hybridizable discontinuous Galerkin
(HDG) [22], and others. However, if a collisional e�ect is
taken into account in applications of KE equation, we obtain
the damping term, and KE becomes damped KE with the
following form:

zta + αazxa + βz3xa − cz5xa + Ca � 0, (2)

where C � m/2 and m is the frequency of the ion-neutral
collision. �e damping term makes the (2) nonintegrable
equation. In order to obtain the solutions, we aim to use a
new improved technique.

�e di�erential transformation method (DTM) is based
on Taylor series expansion but di�ers from the typical high-
order Taylor series method, which takes a long time to
calculate [23]. �e DTM is one of the most powerful nu-
merical methods. Pukhov was the �rst who used the DTM to
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tackle linear and nonlinear initial value problems in electric
circuit analysis [24]. Chen and Ho developed the DTM for
solving PDEs and found closed form series solutions for a
variety of linear and nonlinear initial value problems [25].
Abdel-Halim Hassan demonstrated that the DTM can be
used on a wide range of PDES and easily obtain closed form
solutions [26–28].

If the series of the solution has a closed form, then the
numerical solution can be convergent to the exact solution,
but this is not usually the case, especially in most realistic
cases. (us, the obtained solution is in series form. Since it is
based on Taylor series, which is the local convergent [29], the
DTM finds the solutions in small domain and about the
initial point. It has been improved recently to reduce dif-
ferential transformation method (RDTM) [30]. Keskin was
the first who proposed the RDTM for finding exact solutions
to PDEs [31, 32]. Keskin and Oturanc created RDTM in
recent years, in which the differential transformation is
applied solely to one domain (time domain) [31].(e RDTM
is a very effective and powerful tool for solving exact or
approximate mathematical modeling solutions for a wide
range of problems in technology, economics, engineering
disciplines, and natural sciences such as biology, physics,
chemistry, and earth science. It can solve both linear and
nonlinear problems and provides results in the form of quick
convergent successive approximations. (e solutions by
RDTM can also be classified as semiapproximate solution
since the method applies the iteration only for the time
domain. (is technique is powerful compared to DTM and
other methods.

(e novelty of this paper is proving that the RDTM is
able to solve the class of nonintegrable equations, which does
not have exact solutions. Such equations appear usually in
physics applications when viscosity and ion-collisions are
taken into account. We chose damped KE as an example of

nonintegrable equations and devoted the RDTM to inves-
tigate the solution in long domain.

(e following is how the article is structured: Section 2
describes the used methods briefly, Section 3 presents the
numerical solutions for KE and damped KE by RDTM, and
Section 4 includes the conclusion of the work.

2. The Methodology

(e DTM and its improved version (RDTM) are based on
the following list of definitions.

Definition 1 (differential transformation in two
dimensions). (e basic concept of the two-dimensional
differential transform is as follows: let y(x, t) be analytic and
continuously differentiable with respect to t and x,

Y(k, h) �
1

k!h!

zk+h

zxkzth
y(x, t)􏼢 􏼣

x�x0 ,t�t0

. (3)

(e converted function is Y(k, h), where Y(k, h) is the
spectrum function [33]. (e original function (lower case)
y(x, t) is represented in this paper, whereas the converted
function (upper case) Y(k, h) is represented. Using the two-
dimensional differential transformation (3), we present the
differential transformation for several operators in Table 1.

Definition 2 (inverse differential transformation in two
dimensions). (e inverse differential transform of Y(k, h) is
defined as follows [33]:

y(x, t) � 􏽘
∞

k�0
􏽘

∞

h�0
Y(k, h) x − x0( 􏼁

k
t − t0( 􏼁

h
. (4)

Taking (3) and (4) together and assuming x0 � t0 � 0
yields to

y(x, t) � 􏽘
∞

k�0
􏽘

∞

h�0

1
k!h!

zk+h

zxkzth
y(x, t)􏼢 􏼣

x�0,t�0
x

k
t
h

� 􏽘
∞

k�0
􏽘

∞

h�0
Y(k, h)x

k
t
h
. (5)

Definition 3 (reduce differential transformation and its in-
verse in two dimensions). If a(x, t) is analytical function in
the domain of interest, then the spectrum function is used

Ak(x) �
1
k!

zk

ztk
a(x, t)􏼢 􏼣

t�t0

, (6)

where a(x, t) is reduced transformed function. Lowercase
a(x, t) refers to the original function, whereas uppercase
Ak(x) refers to the reduced transformed function. (e
differential inverse transformation of Ak(x) is defined as
[30]

a(x, t) � 􏽘
∞

k�0
Ak(x) t − t0( 􏼁

k
. (7)

Combining (6) and (7) gives

a(x, t) � 􏽘
∞

k�0

1
k!

zk

ztk
a(x, t)􏼢 􏼣

t�t0

t − t0( 􏼁
k
. (8)

Table 2 shows the list of reduce differential transfor-
mation for several operators.

3. Numerical Simulation

3.1.KawaharaEquation. (e first application is applying the
DTM and RDTM into KE (1) in order to prove the accuracy
of RDTM. In addition, we aim to prove the power of RDTM
comparing to other methods in literature. Let’s consider KE
(1) with α � β � c � 1 and subjects to the initial condition
[35].

a(x, 0) �
− 72
169

+
105
169

sech4(gx). (9)
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(e exact solution of this equation is given by

a(x, t) �
− 72
169

+
105
169

sech4(g(x + ft)). (10)

where g � 1/2√13 and f � 36/169.
We get the following scheme by using DTM in Defi-

nition 1 for k, h � 0, 1, 2, . . . , N, where N is the number of
iterations:

A(k, h + 1) �
1

h + 1
􏼢(k + 1)(k + 2)(k + 3)(k + 4)(k + 5)A(k + 5, h) − (k + 1)(k + 2)

·(k + 3)A(k + 3, h) − 􏽘

k

r�0
􏽘

h

s�0
(k − r + 1)A(r, h − s)A(k − r + 1, s)⎤⎦.

(11)

(e initial condition is transformed into the following:

A(k, 0) �
1
k!

zk

ztk
a(x, 0)􏼢 􏼣

x�x0 ,t�t0

. (12)

(e recursive equations deduced from (11) for different
values of k, h are obtained as [36]

k � 0, h � 0: A(0, 1) � 120A(5, 0) − 6A(3, 0) − A(0, 0)A(1, 0),

k � 1, h � 0: A(1, 1) � 720A(6, 0) − 24A(4, 0) − 2A(0, 0)A(2, 0) − A
2
(1, 0),

k � 2, h � 0: A(2, 1) � 2520A(7, 0) − 60A(5, 0) − 3A(0, 0)A(3, 0) − 3A(1, 0)A(2, 0),

⋮

(13)

We have noticed in Figure 1 that the numerical so-
lution converges to exact solution in small interval about
(− 4, 4) and diverges after that. Because of this disad-
vantage of DTM, the scheme is improved to RDTM as
follows:

Ak+1 �
1

k + 1
− 􏽘

k

r�0
Ar

z

zx
A(k− r) −

z
3

zx
3Ak +

z
5

zx
5Ak

⎡⎣ ⎤⎦. (14)

(e errors between the solution by RDTM and exact so-
lution in defferent time are shown in Table 3. (e solutions by
DTMandRDTMare comparedwith the numerical solutions by
optimal homotopy asymptotic method (OHAM) [35], homo-
topy perturbation and variational iteration method (VHPM)
[37], homotopy perturbation method (HPM) [38], and Laplace
homotopy perturbations method (LHPM) [39] in Table 4. (e
comparison reveals the accuracy of these methods. From

Table 1: (e fundamental operations by the two-dimensional differential transform method [33].

Original function Transformed function
y(x, t) � a(x, t) ± b(x, t) Y(k, h) � A(k, h) ± B(k, h)

y(x, t) � ca(x, t) Y(k, h) � cA(k, h)

y(x, t) � z/zxa(x, t) Y(k, h) � (k + 1)A(k + 1, h)

y(x, t) � z/zxa(x, t) Y(k, h) � (h + 1)A(k, h + 1)

y(x, t) � zr + s/zxrztsa(x, t) Y(k, h) � (k + r)!(h + s)!/k!h!A(k + r, h + s)

y(x, t) � a(x, t)b(x, t) Y(k, h) � 􏽐
k
r�0 􏽐

h
s�0 A(r, h − s)B(k − r, s)

y(x, t) � xmtn
Y(k, h) � δ(k − m, h − n) �

1 k � m, h � n

0 Otherwise􏼨

y(x, t) � z/zxa(x, t)z/ztb(x, t) Y(k, h) � 􏽐
k
r�0 􏽐

h
s�0 (k − r + 1)(h − s + 1)A(k − r + 1, s)B(r, h − s + 1)

Table 2: (e fundamental operations of the two-dimensional RDTM [30, 34].

Original function Reduced transformed function
a(x, t) � a(x, t) ± b(x, t) Ak(x) � Ak(x) ± Bk(x)

a(x, t) � ca(x, t) Ak(x) � cAk(x)

a(x, t) � z/zxa(x, t) Ak(x) � z/zxAk(x)

a(x, t) � z/zta(x, t) Ak(x) � (k + 1)Ak+1(x)

a(x, t) � r+sz/zxrztsa(x, t) A(k, h) � (k + s)!/k!zr/zxrAk+s(x)

a(x, t) � a(x, t)b(x, t) Ak(x) � 􏽐
k
r�0 Ar(x)Bk− r(x)

a(x, t) � xmtn
Ak(x) � xmδ(k − n) �

x
m

k � n

0 Otherwise􏼨
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Table 4, we realized that the accuracy of RDTM and LHAM is
better than that of the other methods, but RDTM is faster than
LHPM.(e speed of RDTM is 5.65 seconds, while for LHPM is
15.97 seconds for 6 iterations. (erefore, RDTM is the optimal
iteration method. Figure 2 shows the plot of the numerical
solution of KE with IC [9].

(e second example is, KE (1), where α � 3, β � 0.2, c �

0.4 and subjects to the IC [13].

a(x, 0) � Q sech4
x

w
􏼒 􏼓􏼒 􏼓,􏼒 (15)

where Q � 105β2/169αc and W �
�����
52c/β

􏽰
, and the exact

solution of this equation as follows [13]:

a(x, t) � Q sech4
1
W

x −
36β2

169c
t􏼠 􏼡􏼢 􏼣. (16)

(enumerical result is obtained by RDTM and proposed
in Figure 3.

3.2. Damped Kawahara Equation. Because there is
damping term in the Kawahara equation, the energy of
the soliton is not conserved and decays with increasing
both c and t, (2) is nonintegrable Hamiltonian system. We
consider damped Kawahara (2) with α � 3, β � 0.2, c �

0.4 and subject to the IC [13]. Since we do not have exact
solution, we can use the initial condition of Kawahara
equation as initial condition of the damped Kawahara
[13]. (e scheme of the damped KE by RDTM is as
follows:

Ak+1 �
1

k + 1
− α􏽘

k

r�0
Ar

z

zx
A(k− r) − β

z
3

zx
3Ak + c

z
5

zx
5Ak − CAk

⎡⎣ ⎤⎦.

(17)

(e numerical solution is shown in Figure 4. (e am-
plitude of the wave decrease as the damping parameter
increases.

100-5-10 5
X

0

1

2

3

4

A
 (1

, X
)

Numeric solution (DTM)
Exact solution

Figure 1: (e comparisons of the solution by differential transform method with exact solution.

Table 3: Absolute error of the RDTM at time t � 2, 4, 6, 8, 10 and 1≤x≤ 10.

x/t 2 4 6 8 10
1 8.1981 × 10− 8 5.0281 × 10− 6 5.7678 × 10− 5 3.3236 × 10− 4 1.3115 × 10− 3

2 7.1506 × 10− 8 4.4635 × 10− 6 5.2118 × 10− 5 3.0536 × 10− 4 1.2212 × 10− 3

3 7.7606 × 10− 8 4.9584 × 10− 6 5.8989 × 10− 5 3.5029 × 10− 4 1.4145 × 10− 3

4 8.6109 × 10− 8 5.3515 × 10− 6 6.1119 × 10− 5 3.4313 × 10− 4 1.2843 × 10− 3

5 7.6421 × 10− 8 4.5042 × 10− 6 4.8623 × 10− 5 2.5813 × 10− 4 9.2089 × 10− 4

6 5.9589 × 10− 8 3.4236 × 10− 6 3.6229 × 10− 5 1.8994 × 10− 4 6.7507 × 10− 4

7 4.6679 × 10− 8 2.6715 × 10− 6 2.8250 × 10− 5 1.4850 × 10− 4 5.3085 × 10− 4

8 3.8055 × 10− 8 2.1839 × 10− 6 2.3184 × 10− 5 1.2249 × 10− 4 4.4052 × 10− 4

9 3.2162 × 10− 8 1.8529 × 10− 6 1.9753 × 10− 5 1.0484 × 10− 4 3.7888 × 10− 4

10 2.7982 × 10− 8 1.6178 × 10− 6 1.7310 × 10− 5 9.2209 × 10− 5 3.3450 × 10− 4

Table 4: When the proposed method’s finding are compared to the results in at time t � 0.1 and 0.1≤x≤ 0.5.

x OHAM VHPM HPM LHPM DTM RDTM
0.1 1.58 × 10− 6 2.18 × 10− 9 5.00 × 10− 5 3.05 × 10− 16 1.08 × 10− 5 4.44 × 10− 16

0.2 2.10 × 10− 6 4.24 × 10− 9 1.89 × 10− 4 4.16 × 10− 16 1.06 × 10− 5 4.44 × 10− 16

0.3 2.62 × 10− 6 6.28 × 10− 9 2.18 × 10− 4 1.17 × 10− 15 1.04 × 10− 5 1.22 × 10− 15

0.4 3.13 × 10− 6 8.28 × 10− 9 9.01 × 10− 5 6.11 × 10− 16 1.01 × 10− 5 7.77 × 10− 16

0.5 3.63 × 10− 6 1.02 × 10− 6 1.31 × 10− 3 8.88 × 10− 16 9.75 × 10− 6 8.88 × 10− 16
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Figure 2: Compression between the numerical solutions by RDTM and exact solution of Kawahara equation, where α � β � c � 1. (a) t� 1;
− 10≤ x≤ 10. (b) − 10≤ x≤ 10 and 0≤ t≤ 10.
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Figure 3: Compression between the numerical solutions by RDTM and exact solution of Kawahara equation where α � 3, β � 0.2, c � 0.4.
(a) − 15≤ x≤ 15 and t� 2. (b) − 15≤ x≤ 15 and 0≤ t≤ 2.
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Figure 4: (e plot of numerical solution of damped Kawahara equation via RDTM. (a) For t� 2 and − 15≤ x≤ 15. (b) For c� 0.7,
− 15≤ x≤ 15 and 0≤ t≤ 3.
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4. Discussion and Conclusion

(is paper studies the KdV-fifth order (Kawahara equation)
within two cases: integrable KE and nonintegrable KE. (e
integrable KE has been solved in literature via different
methods such as OHAM, VHPM, HPM, and LHAM. In this
article, it is solved by DTM and RDTM to prove that RDTM
converges to the solution faster than other methods with
high accuracy. (e new contribution in this work is solving
nonintegrable KE, which includes damping term by RDTM.
(e two-dimensional DTM obtains the solutions in series
form, but it is different from the traditional high-order
Taylors series method, because it does not need symbolic
computation of derivative for each term. Also, it does not
require linearization, discretization, or other complected
computation process. (erefore, the DTM is faster than the
Taylors series method. (e DTM has been developed for
solving ordinary and partial differential either linear or
nonlinear equations. (e improved version of the DTM is
theRDTM, which is powerful to find numerical solutions for
integrable equations as well as nonintegrable equations in
several branches of science. MATLAB has been used for
computations in this article. In future work, the RDTM can
be applied to solve different new systems in physics and
engineering that generate nonintegrable equations.
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