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“Vehicle damage insurance” in China, “Protection Plus Mobile Elite” launched by Samsung, “iPhone Apple Care +” offered by
Apple, and so on are special warranty services aiming at external shocks. -ese warranty terms, named accident insurance, exist
widely in the marketplace. Considering the effect of external shocks on degradation, a two-dimensional preventive maintenance
and replacement strategy for products, sold with a nonrenewing and two-dimensional rectangle warranty service, is proposed in
this paper. Under this strategy, preventive maintenance actions are scheduled based on units of age or usage, which occurs first.
-ere is a reduction in the intensity function after a preventive maintenance action. Each shock before the Nth shock causes a
failure of the product or an increase in product failure rate.-e product is replaced by a new one on theNth shock if it survives the
N − 1 shocks. From the view of manufacturers, the mean warranty servicing cost over the whole warranty region is obtained by
using the renewal theory. Based on direct numerical Riemann–Stieltjes integration, an approximation algorithm of the cost is also
given. -e mean cost is minimized by the optimization of preventive maintenance interval and the number of shocks N. A
numerical example is given to illustrate the feasibility of the proposed strategy. -e effects of maintenance cost, the arrival rate of
the shocks, and other model parameters on the optimal strategy are also investigated numerically.

1. Introduction

Due to the rapid technological development and fierce
competition in the marketplace, it is crucial for manufac-
turers to make scientific and reasonable decisions on
maintenance strategies. Modeling and optimization of
corrective maintenance (CM), preventive maintenance
(PM), and both of them have been carried out in one-di-
mensional and two-dimensional warranty services [1].

In the decision-making analysis of one-dimensional
warranty policies, combinations of minimal maintenance
and replacements, the preventive maintenance intervals, the
level of preventive maintenance [2, 3], and the length of the
residual warranty period [4] are optimized separately or
jointly to minimize the expected warranty servicing cost or
cost rate over the whole warranty coverage. Multiphase

warranty models, in which different repair strategies are
performed, have been proposed [5, 6]. Recently, warranty
policies for degrading products have been proposed. Under
the assumption that the failure time of a deteriorating
product depends both on its age and a stationary Wiener
process, Zheng and Zhou [7] analyzed the warranty ser-
vicing costs of three preventive maintenance policies (no
inspection, continuous inspection, and periodic inspection)
in the Markov decision process framework. Cha et al. [8]
focused on the product from a heterogeneous population
and discussed the inspection and replacement policies
during its warranty period. Li et al. [9] proposed three types
of warranty policy-free replacement for deteriorating
products with random failure threshold.

A two-dimensional warranty policy is characterized by a
region in a two-dimensional plane with one dimension
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representing time and the other representing usage. Wang
and Xie [10] gave a comprehensive review on the decision-
making analysis of two-dimensional warranty policies. On
the premise of ensuring the expected availability greater than
a preset value, Cheng et al. [11] discussed a warranty strategy
combining the imperfect preventive maintenance and
minimal repairs. Wang and Su [12] proposed a two-di-
mensional (2D) PM strategy for products sold with two-
dimensional warranty service. Under the 2D PM strategy,
the product is maintained preventively every K units of age
or L units of usage, whichever occurs first. Su andWang [13]
extended the 2D PM strategy to a two-stage preventive
maintenance optimization problem by taking into account
the moments that customers purchase two-dimensional
extended warranty. Huang et al. [14] proposed a customized
two-dimensional extended warranty with preventive
maintenance. Preventive maintenance optimization models
considering customer satisfaction were investigated by
Wang et al. [15]. To meet availability requirements of
complex equipment, Su and Cheng [16] investigated an
availability-based warranty policy. Under the policy, the
manufacturer guarantees a negotiated availability level of
products during the warranty period. Wang et al. [17]
studied the impact of customer unpunctuality and the shape
of failure rate function on the optimization of PM policy.
From the view of manufacturers, the coping strategies were
given. -e aforementioned decision-making research on
warranty strategies has been carried out under the as-
sumption that products are only subject to degradation
process.

However, most products are subject to degradation and
random shocks simultaneously, and a great deal of models
considering both of them has been proposed [18–21].
Wiener process [22] and Gamma process [23] are the most
commonly used to model products’ degradation. Poisson
process is proved to be appropriate for describing the arrival
of external shocks. Under the assumption of independence
[24], unilateral effect [18, 25–28], and mutual dependence
[29, 30] between degradation and shock process, reliability
analysis of those products has been made.

Warranty services aiming at external shocks exist widely
in marketplace. Some mobile phone manufacturers offer
mobile phone accident insurance such as “Protection Plus
Mobile Elite” launched by Samsung, “iPhone Apple Care +”
offered by Apple, and so on. Similar services are also pro-
vided by well-known domestic mobile phonemanufacturers,
Huawei and Xiaomi. In China, vehicle damage insurance, a
major automobile insurance, covers the loss of insured
vehicles caused by external shocks such as collision, over-
turning, falling, collapse, and so on. -ere are similar in-
surance items in Germany. Another two factors, the type of
vehicles and the type of drivers, need to be considered.

However, a few studies have considered the effect of
external shocks on warranty decision-making. To our
knowledge, Wang et al. [17] is the most closely related to our
work. Wang et al. [17] proposed a performance-based
warranty for products subject to competing hard and soft
failures. Under the policy, the manufacturer not only pro-
vides free repair or replacement of any defect but also

guarantees the minimum performance level throughout the
warranty period. Considering the effect of external shocks
on products, a 2D PM and replacement strategy is proposed
in this paper. -e mean cost over the warranty region is
minimized by the optimization of the PM interval or the
joint optimization of the PM interval and the number of
shocks before replacing. Besides focusing on a performance-
based warranty, the work of Wang et al. [17] differs from
ours in two main aspects. (1) -e products in their work
exhibit two competing failure modes, hard and soft failures.
Whereas, the products in our work are subject to two kinds
of hard failures due to loss of functionality, such as product
defects, corrosion, fatigue fracture, and external shocks. (2)
In their work, if a hard failure or a soft failure occurs within
the warranty period, the failed unit will be replaced with a
new and identical one. Whereas, in our work, the product
fails with a certain probability on each shock and is replaced
after the failure. Furthermore, periodic preventive mainte-
nance policies are adopted and minimal repair actions are
performed on failures between PM actions. -e 2D PM
strategy adopted in this paper is the same as that of Wang
and Su [12], whereas the effect of external shocks is not
considered in their paper.

-e integral equation that the mean warranty servicing
cost satisfies is obtained by using the renewal theory. It is
shown that the mean cost exhibits increasing tendency when
the cost parameters, the arrival rate of shocks, and product
failure probability on shocks increase, respectively, whereas
it decreases when the reduction in the intensity function
after a PM action increases. -e impact of the increase of the
product failure rate on shocks and the replacement cost on
the optimal PM interval is insignificant. Furthermore, the
optimal 2D PM interval decreases with the increase of per
minimal repair cost and the reduction in the intensity
function after a PM action and increases with the increase of
the cost of per PM and the arrival rate of shocks.

-e reminder of this paper is organized as follows.
Section 2 provides the modeling assumptions and notations.
Section 3 focuses on the analysis of warranty servicing cost
and its numerical integration approximation. In Section 4, a
numerical example is provided to demonstrate the proposed
2D PM and replacement strategy. Finally, Section 5 con-
cludes this paper.

We shall use the following notations:

W: the age limit of the two-dimensional rectangle
warranty region
U: the usage limit of the two-dimensional rectangle
warranty region
K, L: the age and usage interval of the 2D PM
N: the number of shocks before the replacement
1 − p: the probability of failure on a shock
λ: the arrival rate of the shock
λs: the increase in intensity function on a shock
λp: the reduction of intensity function after a PM action
N(t): the number of shocks over (0, t]

Tj: the arrival time of jth shock (j � 1, 2, . . .)
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A0(t): the mean warranty servicing cost over (0, t) in
the case that no shock occurs
Bi(t): the mean total warranty cost over (0, t), given the
number of shocks over (0, t) in the case that at least one
shock occurs and the product is not replaced
(i � 1, 2,Λ, N − 1)

Ck(t): the mean total warranty cost over (0, t), given
the number of shocks on the first renew over (0, t) in
the case that at least one shock occurs and the product
is replaced (k � 1, 2, . . . , N)

H(t): the mean total warranty cost over (0, t)

C(N, K, L): the total mean warranty servicing cost over
the two-dimensional rectangle warranty region
Cr: average cost per replacement
Cm: average cost per minimal repair
Cp: average cost per PM

2. Modeling Assumptions

We first present some modeling assumptions for the model
building purpose.

(1) Suppose the product is sold with a two-dimensional
rectangle warranty region whose age and usage limits
of the region are W and U, respectively, that is, the
warranty term would be terminated when the age
reaches W or the total usage reaches U, whichever
occurs first. All failures during the warranty coverage
are statistically independent.

(2) A periodic two-dimensional preventive maintenance
strategy is adopted over the warranty region
(0, W] × t(0, U]. -at is, PM activities are sched-
uled every K units of age or L units of usage,
whichever occurs first (see [12]). After a preventive
maintenance action, there is a reduction of
λp(λp > 0) in the intensity function of the product.
Each failure occurs between two successive PM ac-
tivities is rectified by minimal repair.

(3) -e product is affected by the external shocks and
customers take out an insurance for the product.
According to terms of the insurance, the manufac-
turer bears the cost of external shocks over the
rectangle warranty region. Suppose that shocks ar-
rive in accordance with a homogenous Poisson
process with rate λ, λ> 0. When the ith (i≤N − 1)
shock arrives, the product either fails with proba-
bility 1 − p and is replaced by a new and identical
one, or the intensity function of the product in-
creases by λs with probability p and no maintenance
activities are performed. -e product is replaced on
the Nth shock. After replacements, the warranty
service is the same to a new one, but the warranty

region is not renewed (referred as “nonrenewing”
warranty [1].

(4) Marginal approach is used in this paper to model the
failure process of the product [31, 32]. Assuming that
the usage rate of the product R is a nonnegative
random variable with a known distribution function
G(r), 0≤ r<∞. Conditional on R � r, the total
usage u of a product at age t is given by u � rt and the
conditional intensity function form is given by
λ(t|r) � θ0 + θ1r + (θ2 + θ3r)t, with parameters
θi > 0(i � 1, 2, 3)[12].

(5) -e times of replacements or repairs are small rel-
ative mean time failure. -ey are ignored and treated
as instantaneous.

Most assumptions aforementioned can be justified either
by industrial practice or literature. Usually, the effects of PM
actions can be modeled through a reduction in the intensity
function or in the age [33]. We used the first one in As-
sumption (2). In the literature, the shock magnitude is
modeled by a random variable and the product fails once the
size of a single shock (known as “extreme shockmodel” [34])
or the accumulation of random shocks (known as “cumu-
lative shock model” [35]) exceeds the corresponding
thresholds. -e setting of failure probability p on a shock
and the maximal number of shocks before replacement, N,
in Assumption (4) matches with extreme and cumulative
shock models, respectively.

3. Analysis of Shock Arrival and Warranty
Servicing Cost

-e cost over the warranty region is interest to manufac-
turers. It is also an important factor for pricing and accident
insurance of the product. -e cost is a random variable
because it depends on numbers of PM, minor repairs, and
shocks. In this section, we will derive the mean cost for the
strategy mentioned earlier.

3.1. )e Arrival Time Distributions of Shocks. Let
Tj(j � 1, 2, . . .) denote the arrival time of jth shock. Given
N(t) � n, then the joint probability density function of
T1, T2, . . . , Tn [36] is

f(1)(2)...(n) t1, t2, . . . , tn|N(t) � n( 􏼁 �
n!

t
n, 0< t1 < · · · < tn < t.

(1)

Given N(t) � n, we will derive the joint probability
density function of T1, T2, · · · , Tj,
f(1)(2)...(j)(t1, t2, . . . , tj|N(t) � n)(j � 1, 2, · · · n − 1), using
the mathematical induction, in the following. Integrating (1)
with respect tn, we can conclude that the joint probability
density function of T1, T2, . . . , Tn− 1, given N(t) � n, is
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f(1)(2)...(n− 1) t1, t2, . . . , tn− 1|N(t) � n( 􏼁 � 􏽚
+∞

− ∞
f(1)(2)...(n) t1, t2, . . . , tn|N(t) � n( 􏼁dtn

� 􏽚
t

tn− 1

n!

t
n dtn �

n!

t
n t − tn− 1( 􏼁, 0< t1 < · · · < tn− 1 < t.

(2)

Suppose that the joint probability density function of
T1, T2, . . . , Tj+1, given N(t) � n, is

f(1)(2)...(j+1) t1, t2, . . . , tj+1|N(t) � n􏼐 􏼑

�
n!

t
n

t − tj+1􏼐 􏼑
n− (j+1)

(n − (j + 1))!
, 0< t1 < · · · < tj+1 < t.

(3)

Integrating equation (3) with respect tj+1, we have the
joint probability density function of T1, T2, . . . , Tj, given
N(t) � n:

f(1)(2)...(j) t1, t2, · · · , tj|N(t) � n􏼐 􏼑 � 􏽚
+∞

− ∞
f(1)(2)...(j+1) t1, t2, . . . , tj+1|N(t) � n􏼐 􏼑dtj+1

� 􏽚
t

tj

n!

t
n

t − tj+1􏼐 􏼑
n− (j+1)

(n − (j + 1))!
dtj+1 �

n!

t
n

t − tj􏼐 􏼑
n− j

(n − j)!
,

(4)

where 0< t1 < · · · < tj < t. By the mathematical induction,
the joint probability density function of
T1, T2, · · · , Tj(j � 1, 2, . . . , n − 1), given N(t) � n, is

f(1)(2)...(j) t1, t2,...tj|N(t) � n􏼐 􏼑

�
n!

t
n

t − tj􏼐 􏼑
n− j

(n − j)!
, 0< t1 < · · · < tj < t.

(5)

From the property of the joint probability density
function, the probability density function of
Tk(k � 1, 2, . . . , n), given N(t) � n, is

f(k) tk( 􏼁 � 􏽚
tk

0
· · · 􏽚

t2

0
f(1)(2)...(k) t1, t2, . . . , tk( 􏼁dt1 · · · dtk− 1

�
n!

(n − k)(k − 1)!

tk

t
􏼒 􏼓

k− 1 t − tk

t
􏼒 􏼓

1
t
, 0< tk < t.

(6)

3.2. Analysis of the Warranty Servicing Cost. To obtain the
warranty servicing cost, let η � (U/W) and η1 � (L/K).
Considering various orderings between η1 and η, two cases,
η1 < η and η1 ≥ η, are needed to be investigated.

For the case of η1 < η, three subcases are considered,
i.e., r< η1, η1 ≤ r< η, and r≥ η, as shown in Figure 1. For
subcase r< η1, the warranty period ceases when the age
reaches W. -e usage corresponding to W is rW. Under
the proposed 2D PM strategy, PM activities are scheduled
every K units of age. For subcase η1 ≤ r< η, the warranty
ceases when the age reaches W and the interval of PM
activities is L units of usage (that is, L/r units of age). For
subcase r≥ η, the warranty ceases when the usage reaches

U, the corresponding age is U/r, and the interval of PM
activities is also L units of usage. Similar analysis can be
done for the case of η1 ≥ η.

For convenience of expression, let Y be the interval of
PM activities and T be the time instant that the two-di-
mensional rectangle warranty expires; then,

Y �

K, r< η1,

L

r
, r≥ η1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

T �

W, r< η,

U

r
, r≥ η.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

Let H(t) denote the mean total warranty servicing cost
over (0, t)(0< t≤W). We are interested in the renewal
equation in term of H(t). Considering various numbers of
shocks over (0, t) and their effects on the product, we need to
investigate three cases: no shock occurs, at least one shock
occur and the product is not replaced, at least one shock
occur and the product is replaced. Denote them as Cases 1, 2,
3, respectively.

(1) Case 1. -e probability for Case 1 is e− λt. For this
case, periodic PM and minor repair activities are
performed over (0, t).
Let l be the number of PM activities over (0, t); then,

l � max j|jY≤ t, j≥ 0􏼈 􏼉. (8)

-e mean number of minor repair activities over
(0, t):
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E[M(t)] � 􏽚
Y

0
λ0(t|r)dt + 􏽚

2Y

Y
λ1(t|r)dt + · · · + 􏽚

lY

(l− 1)Y
λ(n− 1)(t|r)dt + 􏽚

t

lY
λn(t|r)dt

� 􏽘
l

j�1
􏽚

jY

(j− 1)Y
λ(j− 1)(t|r)dt + 􏽚

t

lY
λl(t|r)dt,

(9)

where λh(t|r) � λ(t|r) − hλp(h � 0, 1, . . . , l).
From equations (8) and (9), for Case 1, the mean
warranty servicing cost over (0, t) is

A0(t) � lCp + CmE[M(t)], (10)

where Cp and Cm are costs for per PM action and per
minor repair action.

(2) Case 2. In this case, suppose thatMT is the number of
shocks over (0, t). According to modeling assump-
tions, MT takes values 1, 2, . . . , N − 1 and the
probability is

P MT � i( 􏼁 � P(N(t) � i)p
i
, i � 1, 2, . . . , N − 1. (11)

Let Bi(t) denote the mean total warranty cost over
(0, t), given MT � i(i � 1, 2, . . . , N − 1). Given
MT � 1 and T1 � t1, B1(t) is the sum of warranty
servicing cost over (0, t1) (denoted by B11(t1)) and

that over (t1, t) (denoted by B12(t − t1)). Suppose
that nt1

is the number of PM activities over (0, t1);
then, nt1

� max j|jY≤ t1, j≥ 0􏼈 􏼉. From the modeling
assumptions, it follows that

B11 t1( 􏼁 � nt1
Cp

+ Cm 􏽘

nt1

j�0
􏽚

jy

(j− 1)y
λj− 1(t|r)dt + 􏽚

t1

nt1y
λnt1

(t|r)dt⎡⎢⎢⎣ ⎤⎥⎥⎦,

(12)

where the first term is the cost for the PM activities
over (0, t1) and the second one is for minor repairs.
-e conditional intensity function over (t1, t) in-
creases by λs because the first shock occurs at time t1.
Furthermore, no shock arrivals are over (t1, t).
-erefore,

B12 t − t1( 􏼁 � Cm 􏽚
nt1+1􏼐 􏼑y

t1

λn1
(t|r) + λs􏼐 􏼑dt + Cm 􏽘

n− 1

n1+1
􏽚

(j+1)y

jy
λj(t|r) + λs􏼐 􏼑dt

+ Cm 􏽚
t

ly
λl(t|r) + λsdt + l − nt1

􏼐 􏼑Cp.

(13)

Combining the terms on λs in equation (13), we have

0 t

u

U

W

L

KL/r3 U/r3L/r2

r2W

r1W
r1

r2

r3

r1K

η1

η

Figure 1: -ree subcases for the case of η1 < η.
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B12 t − t1( 􏼁 � Cm 􏽚
nt1+1􏼐 􏼑y

t1

λn1
(t|r)dt + 􏽘

n− 1

n1+1
􏽚

(j+1)y

jy
λj(t|r)dt + 􏽚

t

ly
λn(t|r)dt⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

+ Cmλs t − t1( 􏼁 + l − nt1
􏼐 􏼑Cp,

(14)

where the first term is the cost of minor repair ac-
tivities in the case that no shocks arrival are over
(t1, t) and the second one is that of minor repair
activities due to the increase in the intensity function.

From the law of total probability and using equation
(10) into equations (13) and (14), we can conclude
that

B1(t) � 􏽚
t

0
B11 t1( 􏼁 + B12 t − t1( 􏼁􏼂 􏼃f(1) t1( 􏼁dt1

� 􏽚
t

0
lCp + Cm 􏽘

l− 1

j�0
􏽚

jy

(j− 1)y
λj(t|r)dt⎛⎝ ⎞⎠ + 􏽚

t

ly
λl(t|r)dt⎛⎝ ⎞⎠ + Cmλs t − t1( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦f(1) t1( 􏼁dt1

� 􏽚
t

0
A0(t) + Cmλs t − t1( 􏼁􏼂 􏼃f(1) t1( 􏼁dt1.

(15)

Equation (15) states that, given T1 � t1, B1(t) is the
sum of the warranty servicing cost over (0, t) in the
case that no shock arrivals over (0, t) and that of

minor repair activities due to the increase in the
intensity function Cmλs(t − t1).
Similarly, for j � 2, · · · , N − 1,

Bj(t) � 􏽚

t

0

· · · 􏽚

t

tj− 1

A0(t) + 􏽘

j− 1

i�2
(i − 1)Cmλs ti − ti− 1( 􏼁 + jCmλs t − tj􏼐 􏼑⎡⎢⎣ ⎤⎥⎦f(1)...(j) t1, . . . , tj􏼐 􏼑dtj · · · dt1. (16)

(3) Case 3. In that case, let NT be the number of shocks
over (0, t) at the time of the first replacement. NT

takes values 1 , 2 , 3 , · · · , N and the probability is

P NT � i( 􏼁 � 􏽘

∞

j�i

P N(t) � j􏼈 􏼉p
i− 1

(1 − p)i � 1, 2, 3, . . . , N − 1,

P NT � N( 􏼁 � 􏽘
∞

j�N

P N(t) � j􏼈 􏼉p
N− 1

.

(17)

-e event NT � 1 occurs when the product is replaced
on the first shock over (0, t). Given T1 � t1, the warranty
servicing cost over (0, t) and C1(t), consists of the following
three parts: the warranty servicing cost (0, t) for the case that
no shocks arrivals over A0(t1), the cost of a replacement Cr,
and the warranty servicing cost over (t1, t), H(t − t1).
-erefore,

C1(t) � 􏽚
t

0
A0 t1( 􏼁 + Cr + H t − t1( 􏼁􏼂 􏼃f

(1)
t1( 􏼁dt1. (18)

Similarly, given NT � k (k � 2, . . . , N), the warranty
servicing cost over (0, t) is

Ck(t) � 􏽚
t

0
· · · 􏽚

t

tk− 1

A0 tk( 􏼁 + 􏽘
k− 1

i�1
iCmλs ti+1 − ti( 􏼁 + Cr + H t − tk( 􏼁⎡⎣ ⎤⎦f(1)...(k) t1, . . . , tk( 􏼁dtk · · · dt1. (19)

Changing the order of integration and substituting
equation (6) into the preceding yield that
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Ck(t) � 􏽚
t

0
􏽚

tk

0
· · · 􏽚

t2

0
A0 tk( 􏼁 + 􏽘

k− 1

i�1
iCmλs ti+1 − ti( 􏼁 + Cr + H t − tk( 􏼁⎡⎣ ⎤⎦f(1)...(k) t1, . . . , tk( 􏼁dt1 · · · dtk− 1dtk

� 􏽚
t

0
A0 tk( 􏼁 + H t − tk( 􏼁􏼂 􏼃f(k) tk( 􏼁dtk + Cr + Cmλs

k
2

− k

2(n + 1)
t.

(20)

By taking the expectation for the conditional expectation
of H(t), we have

H(t) � P N(t) � 0{ }A0(t) + 􏽘
N− 1

j�1
P N(t) � j􏼈 􏼉p

j
Bj(t)

+ 􏽘

N− 1

k�1
􏽘

∞

j�k

P N(t) � j􏼈 􏼉p
k− 1

(1 − p)Ck(t)

+ 􏽘
∞

j�N

P N(t) � j􏼈 􏼉p
N− 1

CN(t),

(21)

or equivalently,

H(t) � 􏽘
N− 1

k�1
􏽘

∞

j�k

P N(t) � j􏼈 􏼉p
k− 1

(1 − p) 􏽚
t

0
H t − tk( 􏼁dF(k) tk( 􏼁

+ 􏽘
∞

j�N

P N(t) � j􏼈 􏼉p
N− 1

􏽚
t

0
H t − tN( 􏼁dF(N) tN( 􏼁 + J(t),

(22)

where F(k)(t) � 􏽒
t

0 f(k)(u)du (k � 1, 2, . . .) and

J(t) � P N(t) � 0{ }A0(t) + 􏽘

N− 1

j�1
P N(t) � j􏼈 􏼉p

j
Bj(t)

+ 􏽘
N− 1

k�1
􏽘

∞

j�k

P N(t) � j􏼈 􏼉p
k− 1

(1 − p) 􏽚
t

0
A0 tk( 􏼁f(k) tk( 􏼁dtk + Cr + Cmλs

k
2

− k

2(n + 1)
t􏼠 􏼡

+ 􏽘
∞

j�N

P N(t) � j􏼈 􏼉p
N− 1

􏽚
t

0
A0 tN( 􏼁f(N) tN( 􏼁dtN + Cr + Cmλs

N
2

− N

2(n + 1)
t􏼠 􏼡.

(23)

Note J(t) is a function of t. By the method of integration
by parts, equation (22) reduces to

H(t) � 􏽘
N− 1

k�1
􏽚

t

0
F(k) t − tk( 􏼁d 􏽘

∞

j�k

P N(t) � j􏼈 􏼉p
k− 1

(1 − p)H tk( 􏼁⎛⎝ ⎞⎠

+ 􏽚
t

0
F(N) t − tN( 􏼁d 􏽘

∞

j�N

P N(t) � j􏼈 􏼉p
N− 1

H tN( 􏼁⎛⎝ ⎞⎠ + J(t).

(24)

For the case of η1 < η, removing the conditioning on R,
the total mean warranty servicing cost over the two-di-
mensional rectangle warranty region [0, W) × t[0, U) can
be given by

C(N, K, L) � 􏽚
η1

0
H(W)g(r)dr + 􏽚

η

η1
H(W)g(r)dr

+ 􏽚
∞

η
H

U

r
g(r)dr.

(25)

Similarly, for the case of η1 ≥ η,

C(N, K, L) � 􏽚
η

0
H(W)g(r)dr + 􏽚

η1

η
H

U

r
g(r)dr

+ 􏽚
∞

η1
H

U

r
g(r)dr.

(26)

3.3. Numerical Integration Approximation Algorithm of the
Warranty Servicing Cost. Although the renewal equation
about the warranty servicing cost is obtained in Section 3.2,
the analytic solution cannot be given. Based on direct nu-
merical Riemann–Stieltjes integration, an approximation
algorithm of the cost will be given in this section (see [37]).
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By the idea of the usual midpoint method in numerical
analysis,

􏽚
b

a
f(x)dg(x) ≈ 􏽘

n

i�1
f x(i− 1/2)􏼐 􏼑 g xi( 􏼁 − g xi− 1( 􏼁( 􏼁, (27)

where x(i− 1/2) � (xi + xi− 1)/2.

Based on equation (27), H(t) can be approximated by
the following recursive algorithm.

For given t and r, dividing the interval (0, t) into n1 equal
subintervals, the endpoints vi (0≤ i≤ n1) satisfy the con-
dition 0 � v0 < v1 < · · · < vi < · · · vn1

� t. By equation (24),
we have

H vi( 􏼁 � 􏽘
N− 1

k�1
􏽘

∞

j�k

P N vi( 􏼁 � j􏼈 􏼉p
k− 1

(1 − p) 􏽚
vi

0
F(k) vi − tk( 􏼁dH tk( 􏼁

+ 􏽘

∞

j�N

P N vi( 􏼁 � j􏼈 􏼉p
N− 1

􏽚
vi

0
F(N) vi − tN( 􏼁dH tN( 􏼁 + J vi( 􏼁.

(28)

Using equation (27),

H vi( 􏼁 ≈ 􏽘
i− 1

m�1
􏽘

N− 1

k�1
􏽘

∞

j�k

P N vi( 􏼁 � j􏼈 􏼉p
k− 1

(1 − p)F(k) vi −
vm + vm− 1

2
􏼒 􏼓 H vm( 􏼁 − H vm− 1( 􏼁( 􏼁

+ 􏽘
i− 1

m�1
􏽘

∞

j�N

P N vi( 􏼁 � j􏼈 􏼉p
N− 1

F(N) vi −
vm + vm− 1

2
􏼒 􏼓 H vm( 􏼁 − H vm− 1( 􏼁( 􏼁 + J vi( 􏼁.

(29)

From equation (29), H(vi) can be obtained recursively
through

H vi( 􏼁 �
J vi( 􏼁 + Si − F vi − vi + vi− 1/2( 􏼁H vi− 1( 􏼁

1 − F vi − vi + vi− 1/2( 􏼁
, (30)

where

J vi( 􏼁 � P N vi( 􏼁 � 0􏼈 􏼉A0 vi( 􏼁 + 􏽘
N− 1

j�1
P N vi( 􏼁 � j􏼈 􏼉p

j
Bj vi( 􏼁

+ 􏽘
N− 1

k�1
􏽘

∞

j�k

P N vi( 􏼁 � j􏼈 􏼉p
k− 1

(1 − p) 􏽚
vi

0
A0 tk( 􏼁f(k) tk( 􏼁dtk + Cr + Cmλs

k
2

− k

2(n + 1)
vi􏼠 􏼡

+ 􏽘
∞

j�N

P N vi( 􏼁 � j􏼈 􏼉p
N− 1

􏽚
vi

0
A0 tN( 􏼁f(N) tN( 􏼁dtN + Cr + Cmλs

N
2

− N

2(n + 1)
vi􏼠 􏼡,

Si � 􏽘
i− 1

m�1
􏽘

N− 1

k�1
􏽘

∞

j�k

P N vi( 􏼁 � j􏼈 􏼉p
k− 1

(1 − p)Fk vi −
vm + vm− 1

2
􏼒 􏼓 H vm( 􏼁 − H vm− 1( 􏼁( 􏼁

+ 􏽘
i− 1

m�1
􏽘

∞

j�N

P N vi( 􏼁 � j􏼈 􏼉p
N− 1

FN vi −
vm + vm− 1

2
􏼒 􏼓 H vm( 􏼁 − H vm− 1( 􏼁( 􏼁,
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F vi −
vi + vi− 1

2
􏼒 􏼓 � 􏽘

N− 1

k�1
􏽘

∞

j�k

P N vi( 􏼁 � j􏼈 􏼉p
k− 1

(1 − p)Fk vi −
vi + vi− 1

2
􏼒 􏼓

+ 􏽘

∞

j�N

P N vi( 􏼁 � j􏼈 􏼉p
N− 1

FN vi −
vm + vm− 1

2
􏼒 􏼓.

(31)

-e total mean warranty servicing cost C(N, K, L) can
be approximated by equations (25) and (26), depending on
the relationships between the ratios η1 � (K/L) and
η � (W/U).

4. A Numerical Example

In this section, a numerical example is presented to illustrate
the applicability of the proposed model above.

Suppose a repairable product is sold with a free repair
rectangle warranty period. -e age and usage limits of the
two-dimensional warranty are W � 3 years and U � 3 × 104
km, respectively. Given the usage rate R � r, the original
conditional failure intensity function E[C∗(Ω)], where
θ0 � 0.1, θ1 � 0.2, θ2 � 0.7, and θ3 � 0.7. Suppose that the
usage rate R is uniformly distributed in the interval (0.1, 2.9).
-e other parameters of the model are listed in Table 1
(see [12]).

4.1. Optimization of the Decision Variables. Assuming such
parameter values aforementioned, given N � 3, we can
obtain the mean servicing cost over the whole warranty
coverage for various 2D PM interval (K, L) and their cor-
responding cost, C(3, K, L), by using Matlab software. See
Table 2, for detail. -e results are illustrated in Figure 2. -e
table and figure indicate that the mean cost is minimized
when (K, L) � (1.8, 1.6) and mean cost is $78.5762.

In a similar method, we can obtain the optimal 2D PM
interval (K∗, L∗) for various N. -e results are listed in
Table 3 and illustrated in Figure 3. -e table and figure
indicate that the mean cost is minimized when
(N∗, K∗, L∗) � (6, 1.6, 1.6). -e corresponding mean cost is
$68.6760, which is smaller than that of N � 3.

4.2. )e Effects of Model Parameters on the Optimal 2D PM
Interval. To gain more insights into the model, the effects of
product parameters, such as Cm, Cp, Cr, λ, λs, and λp, on the
optimal 2D PM interval and the mean cost rates over the
warranty region are given in this section.

Setting N � 3, let average cost per minor repair, Cm,
change from 4 to 12 by Step 2 and the other product pa-
rameters be the same to those in Section 4.1. -e optimal
strategies (K∗, L∗) and its corresponding mean cost
C(3, K∗, L∗) are presented in Table 4 and illustrated in
Figure 4. -e table and figure indicate that the mean cost

increases and the optimal age and usage PM intervals de-
crease with the increase of Cm. It is consistent with intuition
that the mean cost increases with the increase of the average
cost per minor repair. With the decrease of the length of 2D
PM interval, the frequency of PM activities increases and the
number of minor repairs decreases according. Hence, the
mean cost can be minimized by decreasing PM intervals as
Cm increases.

Similarly, the optimal strategies (K∗, L∗) and its cor-
responding mean cost C(3, K∗, L∗) for various average cost
per PM Cp are presented in Table 5 and illustrated in
Figure 5. -e table and figure indicate the optimal age PM
interval increase slowly with the increase of Cp. It is natural
that the mean cost can be optimized by decreasing the
frequency of PM, that is, by increasing the length of PM
interval, as Cp increases.

-e optimal strategies (K∗, L∗) and the corresponding
mean cost C(3, K∗, L∗) for various cost of per replacement,
Cr, are listed in Table 6 and illustrated in Figure 6. -e table
and figure indicate that Cr has little effects on the optimal 2D
PM interval. According to the model assumption, a re-
placement occurs with probability p when a shock arrives.
Hence, for the fixed number of shocks before replacement
N � 3, the mean servicing cost increases with the increase of
Cr; on the contrary, the optimal 2D PM interval remains
static.

-e optimal strategies (K∗, L∗) and the corresponding
mean cost C(3, K∗, L∗) for λ, λs, and λp are listed and il-
lustrated in Table 7–9 and Figures 7–9, respectively.

Table 7 and Figure 7 indicate that the optimal age PM
interval increases with the increase of arrival rate of
shocks λ. An intuitive explanation of this trend is as
follows. -e higher λ is, the higher the frequency of re-
placements is. By reducing the frequency of PM activities,
that is, extending the PM interval, the mean servicing cost
may be reduced.

With the increase of λs, the number of minor repairs
increases; therefore, the mean servicing cost increases, as
shown in Table 8 and Figure 8. -e constant 2D PM
interval in Table 8 may be caused by the parameter
setting.

Table 9 and Figure 9 indicate that themean servicing cost
decreases with the increase of λp. -e trend is due to the
decrease of minor repairs caused by the increase of λp. To
some extent, the decrease trend of the optimal age PM
interval (in other words, the increase in the frequency of PM

Table 1: -e parameters of the model.

λp λs p Cm Cp Cr

0.5 0.02 0.85 $8 $10 $200
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Table 2: -e mean cost for various (K, L) (N � 3).

K L C(3, K, L) K L C(3, K, L) K L C(3, K, L)

0.2

0.2 147.7801

0.4

0.2 140.9630

0.6

0.2 140.4417
0.4 122.9759 0.4 109.4775 0.4 108.2251
0.6 119.9012 0.6 98.5383 0.6 95.9022
0.8 119.9012 0.8 96.1114 0.8 92.6010
1.0 119.9012 1.0 96.0579 1.0 92.2928
1.2 119.9012 1.2 94.9622 1.2 89.8861
1.4 119.9012 1.4 94.9622 1.4 89.9341
1.6 119.9012 1.6 94.9622 1.6 88.5788
1.8 119.9012 1.8 94.9622 1.8 88.5892
2.0 119.9012 2.0 94.9622 2.0 88.5892
2.2 119.9012 2.2 94.9622 2.2 88.5892
2.4 119.9012 2.4 94.9622 2.4 88.5892
2.6 119.9012 2.6 94.9622 2.6 88.5892
2.8 119.9012 2.8 94.9622 2.8 88.5892
3.0 119.9012 3.0 94.9622 3.0 88.5892

0.8

0.2 139.5827

1.0

0.2 139.6552

1.2

0.2 139.5289
0.4 106.3715 0.4 106.5164 0.4 106.1375
0.6 92.7894 0.6 93.0359 0.6 92.2441
0.8 88.9886 0.8 89.3238 0.8 88.4248
1.0 88.8392 1.0 89.0301 1.0 87.8702
1.2 85.7088 1.2 85.8045 1.2 84.5662
1.4 85.7655 1.4 85.8727 1.4 84.6695
1.6 82.9178 1.6 82.1352 1.6 80.5538
1.8 82.9627 1.8 82.1893 1.8 80.6122
2.0 83.0109 2.0 82.2878 2.0 80.7487
2.2 83.0232 2.2 82.3203 2.2 80.7876
2.4 83.0299 2.4 82.3417 2.4 80.8281
2.6 83.0299 2.6 82.3803 2.6 80.9063
2.8 83.0299 2.8 82.3979 2.8 80.9163
3.0 83.0299 3.0 82.4838 3.0 81.8319

1.4

0.2 139.5237

1.6

0.2 139.3684

1.8

0.2 139.3630
0.4 106.1164 0.4 105.8058 0.4 105.7950
0.6 92.1810 0.6 91.5508 0.6 91.5345
0.8 88.3882 0.8 87.6117 0.8 87.5900
1.0 87.8034 1.0 86.8782 1.0 86.8571
1.2 84.5140 1.2 83.4499 1.2 83.4277
1.4 84.6259 1.4 83.2242 1.4 83.1997
1.6 80.1514 1.6 78.6036 1.6 78.5762
1.8 80.2097 1.8 78.6671 1.8 78.5954
2.0 80.3775 2.0 78.8598 2.0 78.8083
2.2 80.4272 2.2 78.9109 2.2 78.8501
2.4 80.4743 2.4 78.9555 2.4 78.9040
2.6 80.5848 2.6 79.0916 2.6 79.0624
2.8 80.6034 2.8 79.1092 2.8 79.0837
3.0 81.7422 3.0 80.5098 3.0 80.0259

2.0

0.2 139.3792

2.2

0.2 139.3792

2.4

0.2 139.3792
0.4 105.8274 0.4 105.8241 0.4 105.8388
0.6 91.5831 0.6 91.5765 0.6 91.6059
0.8 87.6548 0.8 87.6449 0.8 87.6890
1.0 86.9382 1.0 86.9249 1.0 86.9837
1.2 83.5250 1.2 83.5084 1.2 83.5819
1.4 83.3132 1.4 83.2933 1.4 83.3767
1.6 78.7059 1.6 78.6827 1.6 78.7773
1.8 78.7414 1.8 78.7148 1.8 78.8215
2.0 78.9720 2.0 78.9421 2.0 79.0615
2.2 79.0147 2.2 78.9816 2.2 79.1140
2.4 79.0632 2.4 79.0314 2.4 79.1786
2.6 79.2395 2.6 79.2224 2.6 79.3817
2.8 79.2695 2.8 79.2580 2.8 79.4205
3.0 80.7800 3.0 80.7843 3.0 80.7595
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Table 2: Continued.

K L C(3, K, L) K L C(3, K, L) K L C(3, K, L)

2.6

0.2 139.3792

2.8

0.2 139.3792

3.0

0.2 139.3792
0.4 105.8386 0.4 105.8419 0.4 105.8548
0.6 91.6055 0.6 91.6122 0.6 91.6379
0.8 87.6884 0.8 87.6997 0.8 87.7253
1.0 86.9762 1.0 86.9862 1.0 87.0247
1.2 83.5812 1.2 83.5946 1.2 83.6459
1.4 83.3757 1.4 83.3925 1.4 83.4438
1.6 78.7761 1.6 78.7974 1.6 78.8615

1.82.0 78.7414 79.0531 1.82.0 78.714879.0766 1.82.0 78.8215 79.1572
2.2 79.1016 2.2 79.1252 2.2 79.2150
2.4 79.1630 2.4 79.1943 2.4 79.2969
2.6 79.3797 2.6 79.4099 2.6 79.5182
2.8 79.4191 2.8 79.4526 2.8 79.5679
3.0 81.5805 3.0 82.4474 3.0 82.5756
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Figure 2: -e mean cost for various (K, L) (N � 3).

Table 3: -e minimal mean cost for various N.

N K∗ L∗ C(N, K∗, L∗)

1 2.8 2.8 140.4017
2 1.8 1.8 120.7821
3 1.8 1.6 78.5762
4 1.6 1.6 71.5773
5 1.6 1.6 69.4185
6 1.6 1.6 68.6760
7 1.6 1.6 68.7176
8 1.6 1.6 68.7256
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Figure 3: -e minimal mean cost for various N.
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activities) with the increase of λp in Table 9 is affected by the
assumption that the average cost per PM is constant and
does not vary with the increase of λp.

Table 4: -e minimal mean cost for various Cm.

Cm 4 6 8 10 12

K∗ 1.8 1.8 1.8 1.6 1.6
L∗ 1.8 1.8 1.6 1.6 1.6
C(3, K∗, L∗) 67.7266 73.1610 78.5762 83.9356 89.2677
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Figure 4: -e minimal mean cost for various Cm.

Table 5: -e minimal mean cost for various Cp.

Cp 5 10 15 20 25

K∗ 1.6 1.8 1.8 1.8 1.8
L∗ 1.6 1.6 1.6 1.6 1.6
C(3, K∗, L∗) 74.7829 78.5762 82.3027 86.0292 89.7557
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Figure 5: -e minimal mean cost for various Cp.

Table 6: -e minimal mean cost for various Cr.

Cr 100 200 300 400

K∗ 1.8 1.8 1.8 1.8
L∗ 1.6 1.6 1.6 1.6
C(3, K∗, L∗) 53.7591 78.5762 103.3932 128.2103
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Figure 6: -e minimal mean cost for various Cr.

Table 7: -e minimal mean cost for various λ.

λ 0.25 0.55 0.85 1.15
K∗ 1.6 1.8 1.8 1.8
L∗ 1.6 1.6 1.6 1.6
C(3, K∗, L∗) 53.7052 78.5762 109.3083 135.6483

Table 8: -e minimal mean cost for various λs.

λs 0.02 0.04 0.06 0.08

K∗ 1.8 1.8 1.8 1.8
L∗ 1.6 1.6 1.6 1.6
C(3, K∗, L∗) 78.5762 78.6994 78.8226 78.9458

Table 9: -e minimal mean cost for various λp.

λp 0.1 0.3 0.5 0.7 0.9

K∗ 1.8 1.8 1.8 1.6 1.6
L∗ 1.6 1.6 1.6 1.6 1.6
C(3, K∗, L∗) 80.4577 79.5170 78.5762 77.5985 76.5933
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5. Conclusions

In the paper, the effect of external shocks on the degradation
of products with nonrenewing and two-dimensional rect-
angle warranty service is considered. On each shock before
the Nth one, either a failure of the product or an increase in
product failure rate follows.-e product is replaced by a new
one on the Nth shock or after failures. A periodic 2D PM
strategy, under which PM activities are scheduled every K

units of age or L units of usage, whichever occurs first, is
adopted over the warranty region. Under the assumption
that shocks arrive according a homogenous Poisson process,
the mean cost over the warranty region is obtained by using
the renewal theory. Based on direct numerical Riemann–
Stieltjes integration, an approximation algorithm of the cost
is given. In the numerical example, the mean cost is min-
imized by the optimization of 2D preventive maintenance
interval (K, L) and the joint optimization of (N, K, L).

-e effects of model parameters such as cost of various
maintenance actions, failure rates, the arrival rate of the
shocks on the optimal warranty strategies, and the mean
warranty cost are analyzed.-e numerical example indicates
that, for the fixed number of shocks before replacements
N � 3, the mean servicing cost increases with the increase of
cost parameters, the arrival rate of shocks, and the raising in
intensity function on a shock and decreases with the in-
creases of the reduction in the intensity function after a PM
action. Furthermore, the optimal 2D PM interval decreases
with the increase of the minimal repair cost and the re-
duction in the product intensity function and increases with
the increase of the cost of per PM and the arrival rate of
shocks, whereas the cost of per replacement and the increase
of product failure rate on shocks have little effects on the
optimal 2D PM interval.

Customized and flexible warranty contracts are be-
coming widely popular recently. Combining them with the
proposed 2D preventive maintenance warranty strategy
considering external shocks is potential interest, further-
more, in the automobile warranty industry, customers
usually insure against external shocks annually. Insurance
companies, instead of manufacturers, bear the maintenance
cost caused by external shocks, and they outsource the
service to manufacturers. Hence, warranty decision-making
analysis, based on the game theory of tripartite participation,
will be another direction in future research.
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[35] D. Montoro-Cazorla and R. Pérez-Ocón, “A reliability system
under cumulative shocks governed by a BMAP,” Applied
Mathematical Modelling, vol. 39, no. 23-24, pp. 7620–7629,
2015.

[36] S. Ross, Stochastic Processes, John, Wiely & Sons, New York,
NY, USA, 1983.

[37] M. Xie, “On the solution of renewal-type integral equations,”
Communications in Statistics-Simulation and Computation,
vol. 18, no. 1, pp. 281–293, 1989.

Mathematical Problems in Engineering 15


