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Numerous studies have already been attempted to explore the reliability of systems considering mask data, though the mass of
them has largely focused on basic series or parallel systems, where component failures are assumed to follow an exponential or
Weibull distribution. However, most electrotonic products and systems are made up of numerous components integrated in
parallel-series, series-parallel, and other bridge hybrid structures, and the number of studies in the area of accelerated life testing
(ALT) employing masked data for hybrid systems is limited. In this paper, the constant-stress ALT (CSALT) is explored based on
type-II progressive censoring scheme (TIIPCS) for a four-component hybrid system using geometric process (GmP). �e failure
times of the components of the system are assumed to follow the generalized Pareto (GP) distribution. �e maximum likelihood
estimate (MLE) technique is used to establish statistical inference for the model’s unknown parameters under the premise that the
failure reasons are unknown for the hybrid system. In addition, the asymptotic con�dence intervals (ACIs) are also obtained by
inverting the �sher information matrix. Finally, a simulation study is given to explain the proposed techniques and to evaluate the
performance of the estimates. �e performance of MLEs is assessed in terms of root mean square errors (RMSEs) and relative
absolute biases (RABs), whereas the performance of ACIs is assessed in terms of their interval length (IL) and coverage
probabilities (CPs). �e �ndings show that the technique can deliver good estimation performance with small and intermediate
sample sizes, and the estimates are more accurate when more failures are observed, showing the estimation method’s e�ciency.

1. Introduction

Typical life testing and reliability tests are supposed to look
at failure time data collected in normal working conditions.
However, due to a lack of testing budget and time restric-
tions, life data for highly reliable objects like electronics

systems, electric circuits, engines and insulating materials
etc., are exceptionally di�cult to obtain employing typical
life-testing methods. Because of its ability to provide rapid
failure information to examine product design and life at a
reduced cost, accelerated life testing (ALT) is extensively
employed in the manufacturing industry for analyzing
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product reliability and projected life. ALT is a method for
inferring the life expectancy of systems under normal usage
circumstances based on failure data acquired under harsh
conditions (e.g., vibration, voltage, temperature, pressure,
and humidity) using the relationship between life charac-
teristics and stress variables. In ALT, there are three ways
that are often used to apply stress (harsh conditions):
constant stress, step stress, and linearly rising stress. ALT has
been examined by numerous writers using various lifespan
distributions and test conditions. See Miller and Nelson [1];
Nelson [2]; Meeker et al. [3]; Guan et al. [4]; El-Din et al. [5];
Han and Bai [6]; Kamal et al. [7]; and Zhang et al. [8] as
examples and for more information.

However, step-stress and progressive stress tests have the
advantage of ensuring failures quickly due to increasing
stress levels, but they have a significant drawback when it
comes to estimating reliability. Since themajority of goods in
real-life situations operate under constant stress rather than
step stress or progressive stress, the model must appropri-
ately account for the cumulative effect of increasing stresses
over time. Additionally, controlling the step and increasing
stresses appropriately may be challenging. Fitting these
models is thus more complex than fitting a model for a
constant stress test. As a result, constant stress testing is
often favored over step-stress and progressive stress tests for
estimating dependability. Nelson [2]; Zarrin et al. [9]; El-Din
et al. [5]; and Kamal [10] provide further information on
constant stress testing. We explored a CSALT that used a
TIIPCS in this paper.

Most electrotonic goods and systems are made up of
numerous separate components that are linked in one of two
fundamental ways, such as series and parallel. More com-
plicated systems are often a mix of these fundamental sub-
systems interconnected in parallel-series, series-parallel, and
other bridge structures such as the four-component series-
parallel hybrid system under study and can be seen in Fig-
ure 1. (e reliability of these systems is dependent on the
reliability of the components and subsystems. (e primary
task that must be performed prior to the launch of the product
for usage in real life is to assess its reliability. Collecting
lifetime data for reliability analysis for such complex struc-
tures is a challenging task since the component causing the
system failure is not always identifiable for a variety of rea-
sons. (is phenomenon is known as masking, and data
produced from such studies is referred to as masked data.

Miyakawa [11] proposed a model based on masked data
for two component series system assuming the constant
failure rate for components. Since then, a substantial amount
of research has been conducted using mask data based on
typical reliability tests and ALTs considering basic series or
parallel systems, see, for example, Guess et al. [12]; Xu and
Tang [13]; Zarrin et al. [14]; Xu et al. [15]; Wang et al. [16];
Cai et al. [17]; and Shi et al. [18]. Unfortunately, thus far, in
the existing literature, only a few studies on ALTs that fo-
cused on hybrid systems and masked data are available. Shi
et al. [19] and Shi et al. [20] derived the MLEs for hybrid
system of four components under SSPALT and CSPALT,
respectively, based on masked data. Xiaolin et al. [21]
considered two distinct three-component hybrid systems

and derived MLEs of the modified Weibull distribution.
Recently, Liu et al. [22] investigated a series system with
component dependence structure and applied a nonpara-
metric Bayesian technique for censored masked data in an
ALT with the copula function. Kamal [23] investigated a
three-component hybrid system for the power linear hazard
rate distribution and utilized the MLE technique to estimate
parameters using progressive hybrid censored masked data.

Lin Ye [24] pioneered the use of the GmP model to study
repair and replacement problems. A significant number of
research on system reliability and maintenance issues has
demonstrated that the GmP model is an effective and simple
approach for analyzing data with single or multiple trends.
Lam and Zhang [25] used the GmP model to analyze a two-
component series systemwith one repairman. Using the GmP
model, Yeh [26] examined a multistate system and proposed
an optimal replacement policy to decrease the long-run av-
erage cost per unit time. Zhang [27] modelled a basic re-
pairable system with delayed repair using the GmP. Several
studies have been conducted to date that employ the GmP in
the investigation of ALT. Huang [28] proposed the use of the
GmP model in CSALT for analysis of complete and censored
exponential failure data. Under CSALT, Kamal et al. [29]
extended theGmPmodel to evaluate completeWeibull failure
data. Kamal [30] further explored the GmPmodel to evaluate
censoredWeibull failure data. Kamal et al. [31] andMohamed
et al. [32] are among others who implemented the GmP
model to estimate the parameters of different distributions
with different types of data under CSALT. Recently, Rahman
et al. [33] computed the parameters of the Burr X distribution
employing type-I censoring and the MLE approach under
CSALT, assuming that lifespan comprises a GmP with in-
creasing stress levels. Aly et al. [34] utilized the GmPmodel to
explore the CSALT and made statistical inferences based on
theMLE technique by taking into account the generalized half
logistic lifespan distribution under TIIPCS.

To the best of our knowledge, no work has yet addressed
CSALT with TIIPCS for a hybrid system under masked
conditions using the GmP model. (e main objective of this
study is to provide a resilient framework for the hybrid
system (Figure 1) that collapsed owing to masked factors
under the CSALTdesign. (en, utilizing TIIPC masked data
and the MLE technique, we provide point and interval es-
timates for the unknown parameters of the GP distribution
and the ratio of GmP. (e remainder of the paper is
structured as follows: Section 2 discusses some of the study’s
assumptions, test methodologies, and other significant
points. (e method for estimating the parameters is de-
scribed in Section 3. Section 4 incorporates a simulation
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Figure 1: (e parallel series hybrid system.
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analysis to assess the efficiency of the estimators, as well as a
discussion based on the study’s results. Section 5 concluded
the paper by suggesting some future research directions.

2. The Model and Test Procedure

2.1. �e GP Distribution. If Y is a nonnegative random
variable with a GP distribution, then its probability density
function (PrDF) with scale parameter ξ and shape parameter
σ, let us call it GP (σ, ξ), can be written as follows:

f(y|σ, ξ) � σξ(1 + ξy)
− (σ+1)

, y> 0, σ, ξ > 0. (1)

(e corresponding cumulative distribution, survival
functions, and hazard rate are each provided by

F(y|σ, ξ) � 1 − (1 + ξy)
− σ

, y> 0, σ, ξ > 0,

R(y|σ, ξ) � (1 + ξy)
− σ

, y> 0, σ, ξ > 0,

h(y|σ, ξ) �
σξ

(1 + ξy)
, y> 0, σ, ξ > 0.

(2)

Definition 1. Geometric process.
A counting process Xn, n � 1, 2, . . .􏼈 􏼉 is a nonnegative,

integer, andnondecreasing stochastic process that depicts the
number of failures during a life testing experiment. If there
exists a real-valued δ > 0 such that the random variables
Zn � δn− 1Xn, n � 1, 2, . . ., are independent and identi-
cally distributed according to a given distribution function
F(.), then the counting process Xn, n � 1, 2, . . .􏼈 􏼉 is known
as a GmP, where δ is known as the ratio of GmP.

It is obvious that a GP for δ > 1 is decreasing function
stochastically, whereas it is an increasing function with
0< δ < 1. As a result, the GmP can be considered as more
natural way for evaluating sequential data with trends.

If occurrence X1, E(X1) � μ, var(X1) � σ2􏼈 􏼉 formGmP
Xn, n � 1, 2, . . .􏼈 􏼉 has a PrDF f(.), then it is easy to show
that δn− 1f(δn− 1y) will be the PrDF of Xn, E(Xn) � μ/δn− 1,􏽮

var(Xn) � σ2/δ2(n− 1)}.

2.2.Assumptions. Assume we are subjected to a CSALTwith
k increasing levels of stress. Let As, s � 0, 1, 2, . . . , k are k

levels of stress. If s � 0, stress is normal use condition,
whereas s � 1, 2, . . . , k represents accelerated conditions.
Consider the parallel series hybrid system explained by
Figure 1. LetYsi be the lifetime of ith system at sth stress and
ysi being its observation. Also,Ysij represents the lifetime of
the jth component of ith system at sth stress and its observed
value is ysij. We have the following assumptions:

(i) (e test contains N systems in total and N is first
split into the samples of sizes n1, n2, . . . , nk such that
􏽐

k
s�1 ns � N. Now, each ns assigned to test at a

prespecified stress As, s � 0, 1, 2, . . . , k.
(ii) (e component lifetimes in the system are

independent.

(iii) At any constant stress As, s � 0, 1, 2, . . . , k, the
failure times follows GP (σ, ξ) distribution given in
equation (1).

(iv) Ysi, s � 0, 1, 2, . . . , k; i � 1, 2, . . . , n are i.i.d. at sth

stress.
(v) (e relationship between the scale parameter ξ and

the stresses As is a log-linear function defined by
log ξs � θ0 + θ1As, s � 0, 1, 2, . . . , k, where θ0
and θ1 are the unknown parameters of the rela-
tionship and their values usually depend on true
nature of the items under the consideration.

(vi) (e stresses are increased with an equal amountd,
which means stresses are equidistant and can be
explained by the relation As � As− 1 + d.

(vii) Let RVs, Y0,Y1,Y2, . . . ,Yk, represent the life-
times at sth stress level, and hence, the sequence
Ys, s � 0, 1, 2, . . . , k􏼈 􏼉 constitutes a GmP with a
ratio δ > 0.

Assumptions (i–v) are the most often used in ALT.
Assumptions (vii) and (vi) may be preferable to the con-
ventional treatment of the ALT in this discourse without
adding computational complexity. Now, we examine the
assumptions of the constant-stress and GmP models to
demonstrate how a stochastically decreasing GmP model
may be utilized as an ALT model. (e following theorems
show how the GmP assumption (vii) is satisfied when a life
attribute and stress have a log-linear relationship assump-
tion (v).

Theorem 1. In ALT, if the stress increases arithmetically, i.e.,
(As+1 − As) � d; s � 0, 1, 2, . . . , k, then the sequence
ξs, s � 0, 1, 2, . . . , k􏼈 􏼉 of life characteristic constitutes a
GmP with a ratio eθ1d � δ > 0.

Proof: Using assumption (v), we have, ξs � e(θ0+θ1As) and
ξs− 1 � e(θ0+θ1As− 1). As a result, we can now write

ξs

ξs− 1
� e

θ1 As− As− 1( ) � e
θ1d. (3)

(is demonstrates that the increasing stress levels
generate an arithmetic sequence with a constant difference
d. Let us assume ξs/ξs− 1 � δ > 0, which a constant ratio;
therefore, ξs, s � 0, 1, 2, . . . , k􏼈 􏼉 forms a GmP with ratio
δ > 0 which completes the proof. □

Theorem 2. For arithmetically increasing stress level
As, s � 0, 1, 2, . . . , k, in CSALT, if the PrDF ofY0 is PD (ξ)

and the sequence of RVs Ys, s � 0, 1, 2, . . . , k􏼈 􏼉 forms a GmP
with ratio δ > 0, then PrDF of Ys can be written as

fYs
ys( 􏼁 � δs

fY0
δs
y0( 􏼁. (4)

Proof: From (eorem 1, we can write

ξs � δξs− 1 � δsξs− 2 � · · · � δsξ. (5)
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(ePDF of the product lifespan at the sth stress level may
now be expressed as follows:

fYs
ys( 􏼁�σδsξ 1+δsξy( 􏼁

− (σ+1)
�δsσξ 1+δsξy( 􏼁

− (σ+1)

�δs
fY0

δs
y0( 􏼁, (6)

which completes the proof.
Now, from (eorems 1 and 2, it is obvious that the log

linear and GmPmodels are equivalent in an ALT if the stress
level increases arithmetically and the lifetime under each
stress level forms a GmP. It is also clear from(eorem 1 and
the definition of GmP that if the PrDF of Y0 is fY0

(y0),
then the PrDF of fYs

is determined by δsfY0
(δsy0). As a

result, it is obvious that lifetimes underneath a series of
mathematically escalating levels of stress constitute a GmP
with ratio eθ1d � δ > 0. And, the life distribution at the
design stress level is GP (σ, ξ), then the life distribution at the
sth stress level is also GP (σ, δsξ). Now, the PrDF of the
component at sth stress level by using (eorem 1 can be
written as

f(y|σ,ξ,δ) � δsσξ 1+δsξy( 􏼁
− (σ+1)

, y>0,σ,ξ,δ>0. (7)

(e corresponding survival functions is provided by

R(y|σ, ξ) � 1 + δsξy( 􏼁
− σ

, y> 0, σ, ξ, δ > 0. (8)

Now, we will look over masked probability in a nutshell.
Let us first assume that one of the four-component failures is
responsible for the system’s failure. Assume that the system’s
failure times can be observed. Let Wsi signify the set of
components that might be the source of system i failure such
that Wsi⊆ 1, 2, 3, 4{ } implying that the source of system
failure can only come from the smallest random subset of the
set 1, 2, 3, 4{ }. (is implies that Wsi represent a set of all the
fifteen possible occurrences 1{ }, 2{ }, 3{ }, 4{ }, 1, 2{ }, 1, 3{ },{

1, 4{ }, 2, 3{ }, 2, 4{ }, 3, 4{ }, 1, 2, 3{ }, 1, 2, 4{ }, 2, 3, 4{ }, 1, 3, 4{ },

1, 2, 3, 4{ }} that can result in system i failure [20]. Let wsi be
the observed values ofWsi, and ifwsi looks to be composed
of more than one element, the precise cause of system failure
is unknown and the received life data is referred to be
masked. Now, using the concept of masked probability, a
theorem to obtain the reliability and density function of the
system will be stated and proved. □

Definition 2. Masked probability.
Suppose thatwsiϵWsi be the masked event and Cξi be the

specific cause of the system i failure due to the jth com-
ponent. If only one element belongs to ysi, then the failure
cause is exact; otherwise, the cause of system failure is
unknown. Now, according to Wang et al. [16], the masking
probability (MP) is

MP � P Wsi � wsi|ysi <Ysi <ysi + dysi, Cξi � j􏼐 􏼑. (9)

In general, it is often assumed that masking mechanisms,
various stress conditions, and causes of failure are statisti-
cally independent. (erefore, the expression in equation (9)
for MP can be given as

P Wsi �wsi|ysi<Ysi<ysi+dysi,Cξi �j􏼐 􏼑

�P Wsi �wsi|Cξi �j􏼐 􏼑�Λ. (10)

Theorem 3. �e PrDF for j independent components hybrid
system failure timeYsi with MP P(Wsi � wsi|Csi � j), due to
masked event ysiϵWsi at time wsi can be written as

P ysi <ysi <ysi + dysi,Wsi � wsi( 􏼁 � 􏽘
j∈ysij

Λsifsij. (11)

Proof: Following Wang et al.’s [16] steps, the failure
probability ωξi for system i which is failed because of
component j at time tξi is

P ysi <Ysi <ysi + dysi,Wsi � wsi( 􏼁

� 􏽘
4

j�1
P ysi <Ysi <ysi + dysi,Wsi � wsi, Cξi � j􏼐 􏼑

� 􏽘
3

j�1
P ysi <Ysi <ysi + dvsi, Cξi � j􏼐 􏼑

P Wsi � wsi|ysi <Ysi < vsi + dysi, Cξi � j􏼐 􏼑

� 􏽘
j∈ysi

P ysi <Ysi <ysi + dysi, Cξi � j􏼐 􏼑

P Wsi � wsi|ysi <Ysi <ysi + dysi, Cξi � j􏼐 􏼑.

(12)

Now, from the results in Shi et al. [19], the RF for i-th
hybrid system in Figure 1 is

P Ysi >ysi( 􏼁 � 1 − P min Ysi 1,Ysi 2( 􏼁( 􏼁≤ tξi􏼐 􏼑

P min Ysi 3,Ysi 4( 􏼁( ≤ysi( 􏼁

� 1 − 1 − Rsi 1 tsi( 􏼁Rsi 2 tsi( 􏼁􏼂 􏼃

1 − Rsi 3 tsi( 􏼁Rsi 4 tsi( 􏼁􏼂 􏼃. (13)

Similarly, the PrDF of i-th system failure because of
component j at time tξi is derived as

fsi 1 � fs1 tsi( 􏼁Rs2 tsi( 􏼁 1 − Rs3 tsi( 􏼁Rs4 tsi( 􏼁􏼂 􏼃;

fsi 2 � Rs1fs2 tsi( 􏼁 tsi( 􏼁 1 − Rs3 tsi( 􏼁Rs4 tsi( 􏼁􏼂 􏼃,

fsi 3 � 1 − Rs1 tsi( 􏼁Rs2 tsi( 􏼁􏼂 􏼃fs3 tsi( 􏼁Rs4 tsi( 􏼁;

fsi 4 � 1 − Rs1 tsi( 􏼁Rs2 tsi( 􏼁􏼂 􏼃Rs3 tsi( 􏼁fs4 tsi( 􏼁. (14)

Now, using equations (9), (10), (14), and assumption 2,
we obtained the following:

P Ysi <Ysi <Ysi + dYsi,Wsi � wsi( 􏼁 � 􏽘
j∈Ysi

Λsifsij, (15)

which completes the proof.
Now, by using(eorem 2 and 3, the PrDF at the sth stress

for the system can be written as

f(Y|ξ, σ, δ) � δsσξ 1 + δsξy( 􏼁
− (2σ+1) 1 − 1 + δsξy( 􏼁

− 2σ
􏼐 􏼑

·y> 0, σ, ξ, δ > 0. (16)

(e corresponding survival functions is provided by
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R(Y|ξ, σ, δ) � 2 1 + δsξy( 􏼁
− 2σ

− 1 + δsξy( 􏼁
− 4σ

,

y> 0, σ, ξ, δ > 0.
(17)

□

3. Inference under TIIPCS

Suppose that we are dealing with a CSALT with As, s �

0, 1, 2, . . . , k increasing stress levels. Now, a random sample
of ns, s � 0, 1, 2, . . . , k, identical systems is exposed to test
at each stress As, s � 0, 1, 2, . . . , k, and the testing is
initiated on all As at the same time. Let
ysi, i � 1, 2, . . . , n, s � 0, 1, 2, . . . , k, be the observed time
for failure of ith system at As, s � 0, 1, 2, . . . , k, stress level.
According to the TIIPCS, at each stress level As, at the first
breakdown point ys1, Rs1 systems are eliminated from the
remaining (ns − 1) randomly. Likewise, at the time ys2 of
second failure, Rs2 systems are eliminated from the
remaining (ns − 2 − Rs1) systems, or so until the specified
sample of size ms, s � 0, 1, 2, . . . , k is accomplished at each
stress level As, s � 0, 1, 2, . . . , k, and afterwards, the test is
concluded by eliminating all the existing Rsms

� ns − ms −

􏽐
ms− 1
i�1 Rsi systems.

Now, the obtained observed failure samples at sth stress
level can be written as ys1 ≤ys2 ≤ · · · ≤yms

, s � 0, 1, 2,

. . . , k, and the likelihood for TIIPC data will be of the form:

L(Y|ξ,σ,δ) � 􏽙
k

s�1
Cs 􏽙

ms

i�1
􏽘

j∈Ysi

Λsifsij
⎛⎝ ⎞⎠ 1 − FYsi

ysi( 􏼁􏼐 􏼑
Rsi

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(18)

where
Cs � ns(ns − 1 − Rs1)(ns − 2 − Rs1 − Rs2) . . . 􏽐

ms− 1
i�1 Rsi. After

swapping the values of􏽐j∈wsi
Λsifsij & FYsi

(ysi) and applying
log on both sides, the log likelihood ℓ � L(ysi, ξ, σ, δ) related
to equation (18) is determined as follows:

ℓ � 􏽘
k

s�1
􏽘

ms

i�1
slogδ + logσ + logξ − (2σ + 1)log(B)􏼈

+log 1 − B
− 2σ

􏼐 􏼑 +Rsilog 2B− 2σ
− B

− 4σ
􏼐 􏼑􏽯, (19)

where B � (1 + δsξysi) and the model parameters’ MLEs
may now be computed using the following equations:

zℓ
zξ

� 􏽘
k

s�1
􏽘

ms

i�1

(B − 1)

ξ
1

(B − 1)
+
2σB− (2σ+1)

1 − B
− 2σ

􏼐 􏼑
−

(1 + 2σ)

B
+
4Rsiσ B

− (4σ+1)
− B

− (2σ+1)
􏼐 􏼑􏼐

2B− 2σ
− B

− 4σ
􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭, (20)

zℓ
zσ

� 􏽘
k

s�1
􏽘

ms

i�1

1
σ

+ log(B) − 2 +
2B− 2σ

1 − B
− 2σ

􏼐 􏼑
+
4Rsi B

− 4σ
− B

− 2σ
􏼐 􏼑

2B− 2σ
− B

− 4σ
􏼐 􏼑

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭, (21)

zℓ
zδ

� 􏽘
k

s�1
􏽘

ms

i�1

sσ
δ

− 2 +
2B− 2σ

1 − B
− 2σ

􏼐 􏼑
+
4Rsi B

− 4σ
− B

− 2σ
􏼐 􏼑

2B− 2σ
− B

− 4σ
􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭. (22)

Because equations (20), (21), and (22) are nonlinear,
obtaining closed-form solutions manually is very tough
process. To seek numerical solutions to the aforementioned
nonlinear system, an iterative technique such as New-
ton–Raphson can be employed, but we numerically obtained
solutions in our paper using the Optim() function of R
programming language.

(e ACIs of the parameters may now be estimated using
TIIPC masked data and the asymptotic characteristics of the
MLEs. (e ACIs can be calculated by mathematically
inverting the observed Fisher information matrix. As a
result, the estimated 95% two-sided ACIs for ξ, σ, and δmay
now be calculated as follows:

􏽢ξ ± 1.96
������

var(􏽢ξ)

􏽱

,

􏽢σ ± 1.96
������
var(􏽢σ)

􏽰
,

􏽢δ ± 1.96
������

var(􏽢δ)

􏽱

.

(23)

where var(􏽢ξ), var(􏽢σ), and var(􏽢δ) are main diagonal entries
of F− 1 and can be obtained as follows:

F
− 1

�

−
z2ℓ
zξ2

−
z2ℓ

zξ zσ
−

z2ℓ
zξ zδ

−
z2ℓ

zσ zξ
−

z2ℓ
zσ2

−
z2ℓ

zδ zσ

−
z2ℓ

zδ zξ
−

z2ℓ
zσ zδ

−
z2ℓ
zδ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

(􏽢ξ,􏽢σ,􏽢δ)

�

var(􏽢ξ) covar(􏽢ξ􏽢σ) covar(􏽢ξ􏽢δ)

covar(􏽢σ􏽢ξ) var(􏽢σ) covar(􏽢δ􏽢σ)

covar(􏽢δ􏽢ξ) covar(􏽢σ􏽢δ) var(􏽢δ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(24)
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(e constituents of F are determined by the computa-
tions as follows:

z
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zξ2
�􏽘

k
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􏽘
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−
1
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−
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siδ
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􏼐 􏼑
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2
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2 +
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2
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⎧⎪⎨
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2
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􏽘
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(25)

4. Simulation Study and Discussion

AMonte-Carlo simulation uses the R package carried out to
examine the performance of the suggested techniques for
estimating the parameters of the GP distribution based on
the CSALTunder TIIPCS for hybrid systems using GmP.We
select initial values of parameter (ξ � 0.8, σ � 0.5, δ � 1.1)

with various sample combinations (ns, ms) � (40, 20), (50,
25), (60, 30), (70, 35), (80, 40), (90, 45), (100, 50), (110, 55),
(120, 60), and (130, 65). Under the TIIPCS, the four levels of
constant stress are considered as: the normal stress level

A0 � 5; A1 � 10, A2 � 15, and A3 � 20. Additionally, we
describe two distinct test censoring schemes (CS)
(i) Rs1, Rs2, . . . , Rs(m− 1) � (ns − ms)/ms andRsm � 0; (ii) Rs1,

Rs2, . . . , Rs(m− 1) � 1 andRsm � ns − 2.25ms + 1. Under four
different constant-stress levels, TIIPC samples are created
with various combinations of ns,ms, and the test schemes. To
accommodate for the masking impact, 15% of the simulated
system lifetime data is removed from all the simulated
system failures. We derive average RABs and RMSEs for
point estimates, as well as average confidence ILs of 95%
ACIs with associated CPs, for each test scheme. Moreover,

(1) Step 1: initialize the values of parameters ξ, σ, and δ.
(2) Step 2: define the stress levels As, s � 0, 1, 2, . . . , k.
(3) Step 3: using the uniform (0, 1) distribution, generate kTIIPC samples of sizem following the procedure given by Balakrishnan and

Sandhu [35].
(4) Step 4: for each sample size and removed items, TIIPC sample data for each stress level using (exp(ln(1 − u)/σ) − 1)/ξδs based on

the TIIPC data generated in step 3.
(5) Step 5: for each censoring scheme and stress levels, repeat the above steps for 10000 times.
(6) Step 6: compute the average MLEs of ξ, σ, and δ with their respective RABs and RMSEs.
(7) Step 7: compute ILs and CPs of ACIs.
(8) Step 8: compute the reliability estimates with RABs, RMSEs, lengths, and CPs using the MLEs of ξ, σ, and δ. obtained in previous

step 6.

ALGORITHM 1
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the reliability estimates are also derived at normal use
conditions with their RABs and RMSEs and the limits of
ACIs with ILs and CPs.(e simulation process is carried out
in accordance with the following Algorithm 1.

(e numerical results of MLEs, as well as their RMSE
and RABs, are produced and shown in Table 1, whereas
ACIs, together with their ILs and CPs, are represented in
Table 2. Table 3 provides the reliability estimates with RABs,
RMSEs, ILs, and CPs.

(e computed values of the MLEs of the parameters, as
well as their related RMSEs and RABs, based on the simu-
lation study have been reported in Table 1.(e ILs and CPs of
ACIs for parameters have been presented in Table 2. System
reliability based on MLEs, along with its RMSEs and RABs,
has been discussed in Table 3. (e ACIs for system reliability
with their respective ILs and CPs are also presented in Table 3.
(e reported results show that the estimations are a little bit
biased but with relatively small values for RMSEs and RABs. It

Table 1: (e MLEs, RMSEs, and RABs of the parameters with true values of parameters ξ � 0.8, σ � 0.5, δ � 1.1, and 15% masking.

n, m CS
ξ σ δ

MLE RMSE RAB MLE RMSE RAB MLE RMSE RAB
40, 20 1 6.70872 3.48434 0.37987 0.17639 0.01815 0.08097 1.00983 0.14779 0.1164
50, 25 1 6.58008 3.0252 0.34308 0.17583 0.01639 0.0736 1.0082 0.13027 0.10233
60, 30 1 6.49486 2.73192 0.31463 0.17549 0.01497 0.06767 1.0056 0.1198 0.09456
70, 35 1 6.43676 2.50032 0.29154 0.1749 0.01363 0.06211 1.00657 0.11088 0.08759
80, 40 1 6.3333 2.25387 0.27141 0.17486 0.01295 0.05873 1.00864 0.10381 0.08167
90, 45 1 6.32515 2.07271 0.25346 0.17477 0.01195 0.05437 1.00545 0.09704 0.07663
100, 50 1 6.30859 1.96555 0.24063 0.17465 0.01129 0.05155 1.00404 0.09172 0.07308
110, 55 1 6.29448 1.87339 0.2291 0.17437 0.01077 0.04891 1.00462 0.08701 0.06872
120, 60 1 6.27696 1.77539 0.21945 0.17431 0.01045 0.04758 1.00366 0.08378 0.0669
130, 65 1 6.24094 1.66062 0.20712 0.17425 0.00977 0.04447 1.00419 0.07984 0.06338
40, 20 2 3.43475 1.92971 0.41046 0.20131 0.02906 0.10791 1.29854 0.19853 0.12048
50, 25 2 6.21753 3.00922 0.35999 0.22651 2.04973 0.2724 1.00761 0.13504 0.10609
60, 30 2 5.01443 2.23527 0.33352 0.20304 0.58332 0.12237 1.09482 0.1325 0.09595
70, 35 2 6.06881 2.50164 0.31086 0.21741 1.22705 0.21315 1.00672 0.11487 0.0905
80, 40 2 3.2682 1.31908 0.30879 0.1991 0.02313 0.08682 1.29195 0.14047 0.0862
90, 45 2 6.06618 2.21213 0.27792 0.19603 0.02042 0.07917 1.00339 0.10027 0.07967
100, 50 2 4.93844 1.74497 0.26947 0.20443 0.8286 0.12644 1.08741 0.10398 0.0761
110, 55 2 5.99213 2.02393 0.26291 0.19558 0.01971 0.07714 1.00576 0.09243 0.07323
120, 60 2 3.21844 1.11995 0.2702 0.22703 1.44499 0.26244 1.29465 0.48778 0.07875
130, 65 2 5.9579 1.8565 0.24311 0.19602 0.01958 0.07479 1.00217 0.08499 0.06757

Table 2: (e ACI lengths (ACIL) and CPs of 95% ACIs with true values of parameters ξ � 0.25, σ � 1.25, δ � 1.1, and 15% masking.

n, m CS
ξ σ δ

ACIL ACICP ACIL ACICP ACIL ACICP
40, 20 1 13.65862 0.9555 0.07114 0.952 0.57933 0.9519
50, 25 1 11.8588 0.9537 0.06424 0.9506 0.51067 0.9528
60, 30 1 10.70912 0.9543 0.05869 0.9551 0.46961 0.9488
70, 35 1 9.80127 0.9552 0.05343 0.9537 0.43463 0.9511
80, 40 1 8.83517 0.9543 0.05075 0.9509 0.40693 0.9523
90, 45 1 8.12502 0.9553 0.04685 0.951 0.38039 0.9516
100, 50 1 7.70497 0.9566 0.04427 0.9512 0.35956 0.9525
110, 55 1 7.34368 0.9555 0.04223 0.9492 0.34109 0.9509
120, 60 1 6.95955 0.9572 0.04097 0.9516 0.32842 0.952
130, 65 1 6.50964 0.957 0.03828 0.9503 0.31296 0.9507
40, 20 2 7.56447 0.9549 0.11391 0.9575 0.77825 0.9543
50, 25 2 11.79616 0.9525 8.03492 0.9998 0.52935 0.9509
60, 30 2 8.76226 0.9545 2.28661 0.9999 0.51941 0.9504
70, 35 2 9.80642 0.9554 4.81004 0.9997 0.4503 0.9536
80, 40 2 5.17081 0.953 0.09067 0.9578 0.55063 0.9479
90, 45 2 8.67153 0.9545 0.08006 0.9571 0.39307 0.9512
100, 50 2 6.84028 0.9551 3.24812 0.9999 0.40759 0.9509
110, 55 2 7.9338 0.9552 0.07726 0.9547 0.36234 0.9519
120, 60 2 4.39021 0.9553 5.66437 0.9996 1.91208 0.9996
130, 65 2 7.27749 0.9543 0.07676 0.959 0.33316 0.9508
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is noteworthy to highlight that the estimates are fairly stable
and, more importantly, are coming closer to the true values as
sample sizes increase. Furthermore, Table 2 shows that ACIs
are attaining quite high coverage probabilities and are typi-
cally greater than 0.94 in all sample scenarios, although the
length of ACIs decreases as sample size increases. A similar
trend can be seen in Table 3 for the system reliability esti-
mations. We can also see from all these tables that CS (i)
performs better than CS (ii) in all sample cases.

5. Conclusion

In this article, we employed GmP to investigate the CSALT
for the hybrid system in the presence of TIIPC censored
masked data. Considering that the failure times of com-
ponents of the hybrid system follow the GP distribution, the
MLE approach was utilized to get point and interval esti-
mates of unknown parameters as well as the system’s reli-
ability. RMSEs and RABs were computed to evaluate the
efficiency of point estimates of the parameters. (e observed
Fisher information matrix was developed and utilized to
generate the 95% ACIs for the parameters. Moreover, to
assess the accuracy of the ACIs of the parameters, the ILs and
CPs for parameters, as well as for the reliability estimates,
were also addressed. Based on the stated results, the esti-
mates were found to be generally consistent, with relatively
small values for both RMSEs and RABs in all sample cases.
ACIs were also determined to be of reasonable quality, with
high CPs and precise length.(e reliability estimates, like the
parameter estimates, followed a consistent pattern across all
sample combinations. Furthermore, in all sample circum-
stances, the estimates under CS (i) fared better than the
estimates under CS (ii). In terms of future research options,
the current study could be broadened to investigate the

scenario with a more complicated hybrid system using other
censoring strategies based on masked data and taking into
account different failure time distributions. Instead of using
MLE, the Bayesian approach for parameter estimation might
be explored.
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